PDF
摘要
[目的]为解决生菜分类、分割和鲜重估测独立处理,增加时间成本的问题,本文提出一种端到端的生菜无损鲜重估测模型——LettuceNet。[方法]LettuceNet模型通过分析俯视图像估测生菜鲜重。LettuceNet结合Swin Transformer-Tiny(Swin-T)和UPerNet,有效提取生菜冠层图像的特征。模型设计了基于K-Net的用于语义分割的分割头部网络以及用于鲜重估测的回归头部网络。回归头部网络融合利用Swin-T的特征与分割头部网络的结果,用于生菜的分类和冠层面积统计,使LettuceNet能够同时高效处理语义分割和鲜重估测任务。[结果]2个数据集的试验结果表明,LettuceNet语义分割任务中,其平均像素准确度(MPA)分别为98.01%和98.75%,而平均交并比(MIoU)分别为96.02%和97.63%;在鲜重预测方面,决定系数R2分别为0.898和0.919,均方根误差(RMSE)分别为0.865和30.814 g,平均绝对百分比误差(MAPE)分别为1.894%和18.194%。[结论]通过输入生菜冠层图像,LettuceNet能够实时且无损完成生菜的分类、分割与鲜重估测,能够快速对生菜的生长情况进行定量分析,为植物工厂的智能管控提供数据支持。
关键词
生菜
/
无损检测
/
语义分割
/
鲜重估测
/
深度学习
Key words
一种基于深度学习的端到端生菜无损鲜重估测模型的建立[J].
南京农业大学学报, 2024, 47(06): 1212-1220 DOI: