地下储氢研究进展及展望
Research Progress in Underground Hydrogen Storage
,
随着氢气地位的进一步提高,大规模储氢逐渐得到重视.通过大量的调研文献对地下储氢库的特征、氢气与矿物的相互作用进行了阐述,并总结了粘土矿物和煤层对氢气的吸附特点.研究结果表明:(1)地下储氢库中,盐穴储氢是目前最好的方式;(2)温度、压力、硬脂酸浓度和有机酸碳数的变化会影响矿物的氢润湿性,从而影响盖层密封能力;(3)粘土矿物、煤层等可以吸附氢气,可为地下储氢新材料提供思路.基于以上研究和分析,指出了地下储氢目前存在的主要的难题,展望了地下储氢的未来发展前景,以期为地下储氢库的选址实施提供参考.并对地下多孔材料作为大规模储氢新材料的可行性做了简要概述,以期为寻求多样化、适宜化的储氢材料作出贡献.
地下储氢库 / 大规模储氢 / 氢润湿性 / 矿物储氢 / 吸附储氢.
hydrogen / natural hydrogen / underground hydrogen storage / large-scale hydrogen storage / hydrogen wettability / mineral hydrogen storage / salt caverns store hydrogen
| [1] |
Ali,A.,2021.Data-Driven Based Machine Learning Models for Predicting the Deliverability of Underground Natural Gas Storage in Salt Caverns.Energy,229:120648.https://doi.org/10.1016/j.energy.2021.120648 |
| [2] |
Ali,M.,Yekeen,N.,Pal,N.,et al.,2022.Influence of Organic Molecules on Wetting Characteristics of Mica/H2/Brine Systems:Implications for Hydrogen Structural Trapping Capacities.Journal of Colloid and Interface Science,608:1739-1749.https://doi.org/10.1016/j.jcis.2021.10.080 |
| [3] |
Alonso Frank,M.,Meltzer,C.,Braunschweig,B.,et al.,2017.Functionalization of Steel Surfaces with Organic Acids:Influence on Wetting and Corrosion Behavior.Applied Surface Science,404:326-333.https://doi.org/10.1016/j.apsusc.2017.01.199 |
| [4] |
Al-Yaseri,A.,Jha,N.K.,2021.On Hydrogen Wettability of Basaltic Rock.Journal of Petroleum Science and Engineering,200:108387.https://doi.org/10.1016/j.petrol.2021.108387 |
| [5] |
Arif,M.,Rasool Abid,H.,Keshavarz,A.,et al.,2022.Hydrogen Storage Potential of Coals as a Function of Pressure,Temperature,and Rank.Journal of Colloid and Interface Science,620:86-93.https://doi.org/10.1016/j.jcis.2022.03.138 |
| [6] |
Bai,M.X.,Song,K.P.,Sun,Y.X.,et al.,2014.An Overview of Hydrogen Underground Storage Technology and Prospects in China.Journal of Petroleum Science and Engineering,124:132-136.https://doi.org/10.1016/j.petrol.2014.09.037 |
| [7] |
Ball,M.,Wietschel,M.,2009.The Future of Hydrogen-Opportunities and Challenges.International Journal of Hydrogen Energy,34(2):615-627.https://doi.org/10.1016/j.ijhydene.2008.11.014 |
| [8] |
Bo,Z.K.,Zeng,L.P.,Chen,Y.Q.,et al.,2021.Geochemical Reactions-Induced Hydrogen Loss during Underground Hydrogen Storage in Sandstone Reservoirs.International Journal of Hydrogen Energy,46(38):19998-20009.https://doi.org/10.1016/j.ijhydene.2021.03.116 |
| [9] |
Çelik,D.,Yıldız,M.,2017.Investigation of Hydrogen Production Methods in Accordance with Green Chemistry Principles.International Journal of Hydrogen Energy,42(36):23395-23401.https://doi.org/10.1016/j.ijhydene.2017.03.104 |
| [10] |
Chouikhi,N.,Cecilia,J.A.,Vilarrasa-García,E.,et al.,2019.CO2 Adsorption of Materials Synthesized from Clay Minerals:A Review.Minerals,9(9):514.https://doi.org/10.3390/min9090514 |
| [11] |
Conte,M.,Iacobazzi,A.,Ronchetti,M.,et al.,2001.Hydrogen Economy for a Sustainable Development:State-of-the-Art and Technological Perspectives.Journal of Power Sources,100(1-2):171-187.https://doi.org/10.1016/s0378-7753(01)00893-x |
| [12] |
Cozzarelli,I.M.,Eganhouse,R.P.,Baedecker,M.J.,1990.Transformation of Monoaromatic Hydrocarbons to Organic Acids in Anoxic Groundwater Environment.Environmental Geology and Water Sciences,16(2):135-141.https://doi.org/10.1007/BF01890379 |
| [13] |
da Silva Veras,T.,Mozer,T.S.,da Costa Rubim Messeder dos Santos,D.,et al.,2017.Hydrogen:Trends,Production and Characterization of the Main Process Worldwide.International Journal of Hydrogen Energy,42(4):2018-2033.https://doi.org/10.1016/j.ijhydene.2016.08.219 |
| [14] |
Davoodabadi,A.,Mahmoudi,A.,Ghasemi,H.,2021.The Potential of Hydrogen Hydrate as a Future Hydrogen Storage Medium. Science, 24(1): 101907. https://doi.org/10.1016/j.isci.2020.101907 |
| [15] |
Dogan,A.U.,Dogan,M.,Onal,M.,et al.,2006.Baseline Studies of the Clay Minerals Society Source Clays:Specific Surface Area by the Brunauer Emmett Teller (BET) Method.Clays and Clay Minerals,54(1):62-66.https://doi.org/10.1346/ccmn.2006.0540108 |
| [16] |
Dopffel,N.,Jansen,S.,Gerritse,J.,2021.Microbial Side Effects of Underground Hydrogen Storage-Knowledge Gaps, Risks and Opportunities for Successful Implementation. International Journal of Hydrogen Energy, 46(12):8594-8606.https://doi.org/10.1016/j.ijhydene.2020.12.058 |
| [17] |
Dusselier,M.,Davis,M.E.,2018.Small-Pore Zeolites:Synthesis and Catalysis.Chemical Reviews,118(11):5265-5329.https://doi.org/10.1021/acs.chemrev.7b00738 |
| [18] |
Erdoğan Alver,B.,2018.Hydrogen Adsorption on Natural and Sulphuric Acid Treated Sepiolite and Bentonite.International Journal of Hydrogen Energy,43(2):831-838.https://doi.org/10.1016/j.ijhydene.2017.10.159 |
| [19] |
Esfandyari,H.,Haghighat Hoseini,A.,Shadizadeh,S.R.,et al.,2021.Simultaneous Evaluation of Capillary Pressure and Wettability Alteration Based on the USBM and Imbibition Tests on Carbonate Minerals.Journal of Petroleum Science and Engineering,200:108285.https://doi.org/10.1016/j.petrol.2020.108285 |
| [20] |
Esfandyari,H.,Shadizadeh,S.R.,Esmaeilzadeh,F.,et al.,2020.Implications of Anionic and Natural Surfactants to Measure Wettability Alteration in EOR Processes.Fuel,278:118392.https://doi.org/10.1016/j.fuel.2020.118392 |
| [21] |
Hao,Y.M.,Ren,K.,Cui,C.Z.,et al.,2023.Optimization of Cushion Gas Types and Injection Production Parameters for Underground Hydrogen Storage in Aquifers.Energy Storage Science and Technology,12(9):2881-2887 (in Chinese with English abstract). |
| [22] |
Hashemi,L.,Boon,M.,Glerum,W.,et al.,2022.A Comparative Study for H2-CH4 Mixture Wettability in Sandstone Porous Rocks Relevant to Underground Hydrogen Storage.Advances in Water Resources,163:104165.https://doi.org/10.1016/j.advwatres.2022.104165 |
| [23] |
He,X.X.,Cheng,Y.P.,Hu,B.,et al.,2020.Effects of Coal Pore Structure on Methane‐Coal Sorption Hysteresis:An Experimental Investigation Based on Fractal Analysis and Hysteresis Evaluation.Fuel,269:117438.https://doi.org/10.1016/j.fuel.2020.117438 |
| [24] |
Higgs,S.,Wang,Y.D.,Sun,C.H.,et al.,2022.In-Situ Hydrogen Wettability Characterisation for Underground Hydrogen Storage.International Journal of Hydrogen Energy,47(26):13062-13075.https://doi.org/10.1016/j.ijhydene.2022.02.022 |
| [25] |
Holladay,J.D.,Hu,J.,King,D.L.,et al.,2009.An Overview of Hydrogen Production Technologies.Catalysis Today,139(4):244-260.https://doi.org/10.1016/j.cattod.2008.08.039 |
| [26] |
Iglauer,S.,Abid,H.,Al-Yaseri,A.,et al.,2021a.Hydrogen Adsorption on Sub-Bituminous Coal:Implications for Hydrogen Geo-Storage.Geophysical Research Letters,48(10):e2021GL092976.https://doi.org/10.1029/2021gl092976 |
| [27] |
Iglauer,S.,Ali,M.,Keshavarz,A.,2021b.Hydrogen Wettability of Sandstone Reservoirs:Implications for Hydrogen Geo-Storage.Geophysical Research Letters,48(3):e2020GL090814.https://doi.org/10.1029/2020gl090814 |
| [28] |
Jin,Z.J.,Wang,L.,2022.Does Hydrogen Reservoir Exist in Nature? Earth Science,47(10):3858-3859 (in Chinese with English abstract). |
| [29] |
Kanaani,M.,Sedaee,B.,Asadian-Pakfar,M.,2022.Role of Cushion Gas on Underground Hydrogen Storage in Depleted Oil Reservoirs.Journal of Energy Storage,45:103783.https://doi.org/10.1016/j.est.2021.103783 |
| [30] |
Keshavarz,A.,Abid,H.,Ali,M.,et al.,2022.Hydrogen Diffusion in Coal:Implications for Hydrogen Geo‐Storage.Journal of Colloid and Interface Science,608:1457-1462.https://doi.org/10.1016/j.jcis.2021.10.050 |
| [31] |
Lankof,L.,Urbańczyk,K.,Tarkowski,R.,2022.Assessment of the Potential for Underground Hydrogen Storage in Salt Domes.Renewable and Sustainable Energy Reviews,160:112309.https://doi.org/10.1016/j.rser.2022.112309 |
| [32] |
Lewandowska-Śmierzchalska,J.,Tarkowski,R.,Uliasz-Misiak,B.,2018.Screening and Ranking Framework for Underground Hydrogen Storage Site Selection in Poland.International Journal of Hydrogen Energy,43(9):4401-4414.https://doi.org/10.1016/j.ijhydene.2018.01.089 |
| [33] |
Liu,C.W.,Hong,W.M.,Wang,D.C.,et al.,2023.Research Progress of Underground Hydrogen Storage Technology.Oil & Gas Storage and Transportation,42(8):841-855 (in Chinese with English abstract). |
| [34] |
Liu,N.,Kovscek,A.R.,Fernø,M.A.,et al.,2023.Pore-Scale Study of Microbial Hydrogen Consumption and Wettability Alteration during Underground Hydrogen Storage.Frontiers in Energy Research,11:1124621.https://doi.org/10.3389/fenrg.2023.1124621 |
| [35] |
Lord,A.S.,Kobos,P.H.,Borns,D.J.,2014.Geologic Storage of Hydrogen:Scaling up to Meet City Transportation Demands.International Journal of Hydrogen Energy,39(28):15570-15582.https://doi.org/10.1016/j.ijhydene.2014.07.121 |
| [36] |
Lu, A. H., Huang, S. S., Liu, R., et al., 2006. Environmental Effects of Micro- and Ultra-Microchannel Structures of Natural Minerals. Acta Geologica Sinica, 80(2): 161-169. https://doi.org/10.1111/j.1755-6724.2006.tb00225.x |
| [37] |
Luo,X.M.,Jia,Z.H.,Zhang,H.Y.,2023.Technical Challenges and Outlook of Underground Hydrogen Storage in Depleted Oil and Gas Reservoirs.Oil & Gas Storage and Transportation,42(9):1009-1023 (in Chinese with English abstract). |
| [38] |
Mu, S.C., 2005. Hydrogen Storage of Minerals. Geotectonica et Metallogenia, 29(1): 122-130 (in Chinese with English abstract). |
| [39] |
O’Keefe,J.M.K.,Bechtel,A.,Christanis,K.,et al.,2013.On the Fundamental Difference between Coal Rank and Coal Type.International Journal of Coal Geology,118:58-87.https://doi.org/10.1016/j.coal.2013.08.007 |
| [40] |
Ortiz,L.,Volckaert,G.,Mallants,D.,2002.Gas Generation and Migration in Boom Clay,a Potential Host Rock Formation for Nuclear Waste Storage.Engineering Geology,64(2-3):287-296.https://doi.org/10.1016/s0013-7952(01)00107-7 |
| [41] |
Pan,B.,Yin,X.,Iglauer,S.,2021.Rock-Fluid Interfacial Tension at Subsurface Conditions:Implications for H2,CO2 and Natural Gas Geo-Storage.International Journal of Hydrogen Energy,46(50):25578-25585.https://doi.org/10.1016/j.ijhydene.2021.05.067 |
| [42] |
Panfilov,M.,2010.Underground Storage of Hydrogen:In Situ Self-Organisation and Methane Generation.Transport in Porous Media,85(3):841-865.https://doi.org/10.1007/s11242-010-9595-7 |
| [43] |
Ranathunga,A.S.,Perera,M.S.A.,Ranjith,P.G.,et al.,2017.Effect of Coal Rank on CO2 Adsorption Induced Coal Matrix Swelling with Different CO2 Properties and Reservoir Depths.Energy & Fuels,31(5):5297-5305.https://doi.org/10.1021/acs.energyfuels.6b03321 |
| [44] |
Ren,P.,Qi,L.,Wang,W.,et al.,2023.Current Status and Development Trend of Utilization of Underground Salt Cavern Space.Oil-Gasfield Surface Engineering,42(5):1-8 (in Chinese with English abstract). |
| [45] |
Ren,W.X.,Zhou,Y.,Guo,J.C.,et al.,2022.High-Pressure Adsorption Model for Middle-Deep and Deep Shale Gas.Earth Science,47(5):1865-1875 (in Chinese with English abstract). |
| [46] |
Simon,J.,Ferriz,A.M.,Correas,L.C.,2015.HyUnder-Hydrogen Underground Storage at Large Scale:Case Study Spain.Energy Procedia,73:136-144.https://doi.org/10.1016/j.egypro.2015.07.661 |
| [47] |
Tarkowski,R.,2019.Underground Hydrogen Storage:Characteristics and Prospects.Renewable and Sustainable Energy Reviews,105:86-94.https://doi.org/10.1016/j.rser.2019.01.051 |
| [48] |
Tarkowski,R.,Uliasz-Misiak,B.,2022.Towards Underground Hydrogen Storage:A Review of Barriers.Renewable and Sustainable Energy Reviews,162:112451.https://doi.org/10.1016/j.rser.2022.112451 |
| [49] |
Thaysen,E.M.,Armitage,T.,Slabon,L.,et al.,2023.Microbial Risk Assessment for Underground Hydrogen Storage in Porous Rocks.Fuel,352:128852.https://doi.org/10.1016/j.fuel.2023.128852 |
| [50] |
Tu,J.W.,Sheng,J.J.,2020.Effect of Pressure on Imbibition in Shale Oil Reservoirs with Wettability Considered.Energy & Fuels,34(4):4260-4272.https://doi.org/10.1021/acs.energyfuels.0c00034 |
| [51] |
Wal,K.,Rutkowski,P.,Stawiński,W.,2021.Application of Clay Minerals and Their Derivatives in Adsorption from Gaseous Phase.Applied Clay Science,215:106323.https://doi.org/10.1016/j.clay.2021.106323 |
| [52] |
Wang,L.,Cheng,J.W.,Jin,Z.J.,et al.,2023a.High-Pressure Hydrogen Adsorption in Clay Minerals:Insights on Natural Hydrogen Exploration.Fuel,344:127919.https://doi.org/10.1016/j.fuel.2023.127919 |
| [53] |
Wang,L.,Jin,Z.J.,Chen,X.,et al.,2023b.The Origin and Occurrence of Natural Hydrogen.Energies,16(5):2400.https://doi.org/10.3390/en16052400 |
| [54] |
Wang, L., Jin, Z. J., Huang, X. W., et al., 2024a. Hydrogen Adsorption in Porous Geological Materials: A Review. Sustainability, 16(5): 1958. https://doi.org/10.3390/su16051958 |
| [55] |
Wang,L.,Jin,Z.J.,Liu,Q.Y.,et al.,2024b.The Occurrence Pattern of Natural Hydrogen in the Songliao Basin,P.R.China:Insights on Natural Hydrogen Exploration.International Journal of Hydrogen Energy,50:261-275.https://doi.org/10.1016/j.ijhydene.2023.08.237 |
| [56] |
Yan,W.,Leng,G.Y.,Li,Z.et al.,2023.Progress and Challenges of Underground Hydrogen Storage Technology.Acta Petrolei Sinica,44(3):556-568 (in Chinese with English abstract). |
| [57] |
Yekta,A.E.,Manceau,J.C.,Gaboreau,S.,et al.,2018.Determination of Hydrogen-Water Relative Permeability and Capillary Pressure in Sandstone:Application to Underground Hydrogen Injection in Sedimentary Formations.Transport in Porous Media,122(2):333-356.https://doi.org/10.1007/s11242-018-1004-7 |
| [58] |
Zeng, L. P., Vialle, S., Ennis-King, J., et al., 2023. Role of Geochemical Reactions on Caprock Integrity during Underground Hydrogen Storage. Journal of Energy Storage, 65: 107414. https://doi.org/10.1016/j.est.2023.107414 |
| [59] |
Ziemiański,P.P.,Derkowski,A.,2022.Structural and Textural Control of High-Pressure Hydrogen Adsorption on Expandable and Non-Expandable Clay Minerals in Geologic Conditions.International Journal of Hydrogen Energy,47(67):28794-28805.https://doi.org/10.1016/j.ijhydene.2022.06.204 |
| [60] |
Zivar, D., Kumar, S., Foroozesh, J., 2021. Underground Hydrogen Storage: A Comprehensive Review. International Journal of Hydrogen Energy, 46(45): 23436-23462. https://doi.org/10.1016/j.ijhydene.2020.08.138 |
国家重点研发计划(2019YFA0708504)
国家自然科学基金委员会重大项目(42090020)
/
| 〈 |
|
〉 |