晚三叠世诺利期极端温室期地质事件
Geological Events during the Extreme Greenhouse Interval of Norian, Late Triassic
,
晚三叠世诺利期存在一个极端温室期,从中诺利期延续到晚诺利期早期,低纬度地区海水表层最高温度曾高达35 °C,极高温期发生在牙形石Mockina bidentata带下部所代表的时限.诺利期极端温室期海洋和陆地上伴随着重要的生物演化事件,干湿气候的变化在不同地区表现并不完全一致.该时期发生了全球板块运动、火成岩省活动、火流星、地球化学指标显著变化等众多事件.这些事件的全球意义、潜在的因果关系以及在东特提斯的响应等亟需研究.我国发育有良好的诺利期地层序列,是东特提斯地区研究这一极端温室期气候变化与生物演化的理想区域.
An extreme greenhouse interval existed in the Norian of Late Triassic, lasted from the Middle Norian to the early Late Norian. The maximum sea surface temperature in low latitudes can reach 35 °C during the extremely high temperature interval occurred in the lower part of the conodont Mockina bidentata Zone. The extreme greenhouse interval of the Norian was accompanied by important biological evolution events in the ocean and land. The changes of dry and wet climate were not completely consistent in different regions. Many events occurred in this interval, such as global plate movement, igneous province activity, bolide and significant changes of geochemical indexes. The global significance of these events, their potential causality, and the response in the East Tethys need to be further studied. China has a good Norian stratigraphic sequence, which is an ideal area to study the climate change and biological evolution of this extreme greenhouse interval in the East Tethys region.
诺利期 / 极端温室 / 联合古陆 / 晚三叠世 / 特提斯 / 地层学 / 气候变化.
Norian / extreme greenhouse / Pangaea / Late Triassic / Tethys / stratigraphy / climate change
| [1] |
Ahlberg, A., Arndorff, L., Guy⁃Ohlson, D., 2002. Onshore Climate Change during the Late Triassic Marine Inundation of the Central European Basin. Terra Nova, 14(4): 241-248. https://doi.org/10.1046/j.1365⁃3121.2002.00416.x |
| [2] |
Bahr, A., Kolber, G., Kaboth⁃Bahr, S., et al., 2020. Mega⁃Monsoon Variability during the Late Triassic: Re⁃Assessing the Role of Orbital Forcing in the Deposition of Playa Sediments in the Germanic Basin. Sedimentology, 67(2): 951-970. https://doi.org/10.1111/sed.12668 |
| [3] |
Baranyi, V., Reichgelt, T., Olsen, P. E., et al., 2018. Norian Vegetation History and Related Environmental Changes: New Data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA). GSA Bulletin, 130(5-6): 775-795. https://doi.org/10.1130/b31673.1 |
| [4] |
Berra, F., Jadoul, F., Anelli, A., 2010. Environmental Control on the End of the Dolomia Principale/Hauptdolomit Depositional System in the Central Alps: Coupling Sea⁃Level and Climate Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 138-150. https://doi.org/10.1016/j.palaeo.2009.06.037 |
| [5] |
Bottjer, D. J., 2004. The Beginning of the Mesozoic: 70 Million Years of Environmental Stress and Extinction. In: Taylor, P. D., ed., Extinctions in the History of Life. Cambridge University Press, Cambridge, 99-118. https://doi.org/10.1017/CBO9780511607370.005 |
| [6] |
Boucot, A. J., Xu, C., Scotese, C. R., et al., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Society for Sedimentary Geology, Claremore. https://doi.org/10.2110/sepmcsp.11 |
| [7] |
Callegaro, S., Rigo, M., Chiaradia, M., Marzoli, A., 2012. Latest Triassic marine Sr Isotopic Variations, Possible Causes and Implications. Terra Nova, 24(2): 130-135. https://doi.org/10.1111/j.1365⁃3121.2011.01046.x |
| [8] |
Chen, Y., Zeng, W., Joachimski, M. M., et al., 2024. Late Triassic (Norian) Strontium and Oxygen Isotopes from the Baoshan Block, Southwestern China: Possible Causes and Implications for Climate Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112378. https://doi.org/10.1016/j.palaeo.2024.112378 |
| [9] |
Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475 |
| [10] |
Clutson, M. J., Brown, D. E., Tanner, L. H., 2018. Distal Processes and Effects of Multiple Late Triassic Terrestrial Bolide Impacts: Insights from the Norian Manicouagan Event, Northeastern Quebec, Canada. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_5 |
| [11] |
Cramer, B. D., Jarvis, I., 2020. Chapter 11⁃Carbon Isotope Stratigraphy. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York. https://doi.org/10.1016/B978⁃0⁃12⁃824360⁃2.00011⁃5 |
| [12] |
Dal Corso, J., Bernardi, M., Sun, Y. D., et al., 2020. Extinction and Dawn of the Modern World in the Carnian (Late Triassic). Science Advances, 6(38): eaba0099. https://doi.org/10.1126/sciadv.aba0099 |
| [13] |
Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2022. Background Earth System State Amplified Carnian (Late Triassic) Environmental Changes. Earth and Planetary Science Letters, 578: 117321. https://doi.org/10.1016/j.epsl.2021.117321 |
| [14] |
Davies, J. H. F. L., Marzoli, A., Bertrand, H., et al., 2017. End⁃Triassic Mass Extinction Started by Intrusive CAMP Activity. Nature Communications, 8: 15596. https://doi.org/10.1038/ncomms15596 |
| [15] |
Demangel, I., Kovács, Z., Richoz, S., et al., 2020. Development of Early Calcareous Nannoplankton in the Late Triassic (Northern Calcareous Alps, Austria). Global and Planetary Change, 193: 103254. https://doi.org/10.1016/j.gloplacha.2020.103254 |
| [16] |
Dong, Z. Z., Wang, W., 2006. Yunnan Conodont Fauna: A Study on Related Biostratigraphy and Biogeography. Yunnan Science and Technology Press, Kunming (in Chinese). |
| [17] |
Du, Y. X., Bertinelli, A., Jin, X., et al., 2020. Integrated Conodont and Radiolarian Biostratigraphy of the Upper Norian in Baoshan Block, Southwestern China. Lethaia, 53(4): 533-545. https://doi.org/10.1111/let.12374 |
| [18] |
Du, Y. X., Onoue, T., Karádi, V., et al., 2021. Evolutionary Process from Mockina Bidentata to Parvigondolella Andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy. Journal of Earth Science, 32(3): 667-676. https://doi.org/10.1007/s12583⁃020⁃1362⁃2 |
| [19] |
Dunne, E. M., Farnsworth, A., Greene, S. E., et al., 2021. Climatic Drivers of Latitudinal Variation in Late Triassic Tetrapod Diversity. Palaeontology, 64(1): 101-117. https://doi.org/10.1111/pala.12514 |
| [20] |
Erwin, D. H., 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York. |
| [21] |
Fijałkowska⁃Mader, A., 2015. A Record of Climatic Changes in the Triassic Palynological Spectra from Poland. Geological Quarterly, 59(4): 615-653. https://doi.org/10.7306/gq.1239 |
| [22] |
Fu, X. G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift⁃Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135-144. https://doi.org/10.1016/j.gr.2009.04.010 |
| [23] |
Fu, X. G., Wang, J., Zeng, Y. H., et al., 2020.Oceanic Anoxic Events in the Mesozoic Qiangtang Basin and Global Comparison. Geological Review, 66(5): 1130-1142 (in Chinese with English abstract). |
| [24] |
Goddéris, Y., Donnadieu, Y., de Vargas, C., et al., 2008. Causal or Casual Link between the Rise of Nannoplankton Calcification and a Tectonically⁃Driven Massive Decrease in Late Triassic Atmospheric CO2? Earth and Planetary Science Letters, 267(1-2): 247-255. https://doi.org/10.1016/j.epsl.2007.11.051 |
| [25] |
Golonka, J., 2007. Late Triassic and Early Jurassic Palaeogeography of the World. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1-4): 297-307. https://doi.org/10.1016/j.palaeo.2006.06.041 |
| [26] |
Golonka, J., Embry, A., Krobicki, M., 2018. Late Triassic Global Plate Tectonics. In: Tanner, L.H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_2 |
| [27] |
Greene, A. R., Scoates, J. S., Weis, D., et al., 2010. The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 6(1): 47-73. https://doi.org/10.1130/ges00212.1 |
| [28] |
Grossman, E. L., Joachimski, M. M., 2022. Ocean Temperatures through the Phanerozoic Reassessed. Scientific Reports, 12(1): 8938. https://doi.org/10.1038/s41598⁃022⁃11493⁃1 |
| [29] |
Haas, J., Budai, T., Raucsik, B., 2012. Climatic Controls on Sedimentary Environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 353: 31-44. https://doi.org/10.1016/j.palaeo.2012.06.031 |
| [30] |
Haas, J., Hips, K., Budai, T., et al., 2017. Processes and Controlling Factors of Polygenetic Dolomite Formation in the Transdanubian Range, Hungary: A Synopsis. International Journal of Earth Sciences, 106(3): 991-1021. https://doi.org/10.1007/s00531⁃016⁃1347⁃7 |
| [31] |
Hayes, R. F., Puggioni, G., Parker, W. G., et al., 2020. Modeling the Dynamics of a Late Triassic Vertebrate Extinction: The Adamanian/Revueltian Faunal Turnover, Petrified Forest National Park, Arizona, USA. Geology, 48(4): 318-322. https://doi.org/10.1130/g47037.1 |
| [32] |
Hornung, T., 2005. Palaeoclimate Background and Stratigraphic Evidence of Late Norian / Early Rhaetian Polyphase Synsedimentary Tectonics in the Hallstatt Limestones of Berchtesgaden (Rappoltstein, Southern Germany). Austrian Journal of Earth Science, 98: 106-119. |
| [33] |
Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth⁃Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004 |
| [34] |
Jia, E. H., Preto, N., Corso, J. D., et al., 2024. Dwarfing of Calcareous Nannofossils during the Norian Warming Event in the Palaeo⁃Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 648: 112305. https://doi.org/10.1016/j.palaeo.2024.112305 |
| [35] |
Jin, X., Du, Y. X., Bertinelli, A., et al., 2022a. Carbon⁃ Isotope Excursions in the Norian Stage (Upper Triassic) of the Baoshan Terrane, Western Yunnan, China. Journal of Asian Earth Sciences, 230: 105215. https://doi.org/10.1016/j.jseaes.2022.105215 |
| [36] |
Jin, X., Ogg, J. G., Lu, S., et al., 2022b. Terrestrial Record of Carbon⁃Isotope Shifts across the Norian/Rhaetian Boundary: A High⁃Resolution Study from Northwestern Sichuan Basin, South China. Global and Planetary Change, 210: 103754. https://doi.org/10.1016/j.gloplacha.2022.103754 |
| [37] |
Karádi, V., Virág, A., Kolar⁃Jurkovšek, T., et al., 2020. Stress⁃Related Evolution in Triassic Conodonts and the Middle Norian Juvenile Mortality. In: Guex, J., Torday, J. S., Miller, W. B., eds., Morphogenesis, Environmental Stress and Reverse Evolution. Springer International Publishing, Cham. https://doi.org/10.1007/978⁃3⁃030⁃47279⁃5_4 |
| [38] |
Kent, D. V., Clemmensen, L. B., 2021. Northward Dispersal of Dinosaurs from Gondwana to Greenland at the Mid⁃Norian (215-212 Ma, Late Triassic) Dip in Atmospheric pCO2 Proceedings of the National Academy of Sciences of the United States of America, 118(8): e2020778118. https://doi.org/10.1073/pnas.2020778118 |
| [39] |
Kent, D. V., Olsen, P. E., 2000. Magnetic Polarity Stratigraphy and Paleolatitude of the Triassic⁃Jurassic Blomidon Formation in the Fundy Basin (Canada): Implications for Early Mesozoic Tropical Climate Gradients. Earth and Planetary Science Letters, 179(2): 311-324. https://doi.org/10.1016/S0012⁃821X(00)00117⁃5 |
| [40] |
Kent, D. V., Olsen, P. E., Lepre, C., et al., 2019. Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core from Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic. Geochemistry, Geophysics, Geosystems, 20(11): 4654-4664. https://doi.org/10.1029/2019GC008474 |
| [41] |
Knobbe, T. K., Schaller, M. F., 2018. A Tight Coupling between Atmospheric pCO2 and Sea⁃Surface Temperature in the Late Triassic. Geology, 46(1): 43-46. https://doi.org/10.1130/g39405.1 |
| [42] |
Kuroda, J., Hori, R. S., Suzuki, K., et al., 2010. Marine Osmium Isotope Record across the Triassic⁃Jurassic Boundary from a Pacific Pelagic Site. Geology, 38(12): 1095-1098. https://doi.org/10.1130/g31223.1 |
| [43] |
Lepre, C. J., Olsen, P. E., 2021. Hematite Reconstruction of Late Triassic Hydroclimate over the Colorado Plateau. Proceedings of the National Academy of Sciences, 118(7): e2004343118. https://doi.org/10.1073/pnas.2004343118 |
| [44] |
Lucas, S. G., 2018a. Late Triassic Ammonoids: Distribution, Biostratigraphy and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_7 |
| [45] |
Lucas, S. G., 2018b. Late Triassic Terrestrial Tetrapods: Biostratigraphy, Biochronology and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_10 |
| [46] |
Lucas, S. G., Tanner, L. H., 2004. Late Triassic Extinction Events. Albertiana, (31): 31-40. |
| [47] |
Martínez⁃Pérez, C., Plasencia, P., Cascales⁃Miñana, B., et al., 2014. New Insights into the Diversity Dynamics of Triassic Conodonts. Historical Biology, 26(5): 591-602. https://doi.org/10.1080/08912963.2013.808632 |
| [48] |
Marzoli, A., Callegaro, S., Dal Corso, J., et al., 2018. The Central Atlantic Magmatic Province (CAMP): A Review. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition.Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_4 |
| [49] |
Marzoli, A., Jourdan, F., Puffer, J. H., et al., 2011. Timing and Duration of the Central Atlantic Magmatic Province in the Newark and Culpeper Basins, Eastern U.S.A. Lithos, 122(3-4): 175-188. https://doi.org/10.1016/j.lithos.2010.12.013 |
| [50] |
Marzoli, A., Renne, P. R., Piccirillo, E. M., et al., 1999. Extensive 200⁃Million⁃Year⁃Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science, 284(5414): 616-618. https://doi.org/10.1126/science.284.5414.616 |
| [51] |
McRoberts, C. A., 2007. Diversity Dynamics and Evolutionary Ecology of Middle and Late Triassic Halobiid and Monotid Bivalves. New Mexico Museum of Natural History and Science Bulletin, 41: 272. |
| [52] |
McRoberts, C. A., 2010. Biochronology of Triassic Bivalves. Geological Society, London, Special Publications, 334(1): 201-219. https://doi.org/10.1144/sp334.9 |
| [53] |
Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012 |
| [54] |
Nordt, L., Atchley, S., Dworkin, S., 2015. Collapse of the Late Triassic Megamonsoon in Western Equatorial Pangea, Present⁃Day American Southwest. Geological Society of America Bulletin, 127(11/12): 1798-1815. https://doi.org/10.1130/B31186.1 |
| [55] |
O’Dogherty, L., Carter, E. S., Goričan, Š., et al., 2010. Triassic Radiolarian Biostratigraphy. Geological Society, London, Special Publications, 334(1): 163-200. https://doi.org/10.1144/sp334.8 |
| [56] |
Ogg, J. G., Chen, Z. Q., Orchard, M. J., et al., 2020. The Triassic Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York. https://doi.org/10.1016/B978⁃0⁃12⁃824360⁃2.00025⁃5 |
| [57] |
Onoue, T., Sato, H., Nakamura, T., et al., 2012. Deep⁃Sea Record of Impact Apparently Unrelated to Mass Extinction in the Late Triassic. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19134-19139. https://doi.org/10.1073/pnas.1209486109 |
| [58] |
Onoue, T., Sato, H., Yamashita, D., et al., 2016. Bolide Impact Triggered the Late Triassic Extinction Event in Equatorial Panthalassa. Scientific Reports, 6: 29609. https://doi.org/10.1038/srep29609 |
| [59] |
Onoue, T., Yamashita, K., Fukuda, C., et al., 2018. Sr Isotope Variations in the Upper Triassic Succession at Pizzo Mondello, Sicily: Constraints on the Timing of the Cimmerian Orogeny. Palaeogeography, Palaeoclimatology, Palaeoecology, 499: 131-137. https://doi.org/10.1016/j.palaeo.2018.03.025 |
| [60] |
Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End⁃Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023 |
| [61] |
Preto, N., Agnini, C., Rigo, M., et al., 2013. The Calcareous Nannofossil Prinsiosphaera Achieved Rock⁃Forming Abundances in the Latest Triassic of Western Tethys: Consequences for the δ13C of Bulk Carbonate. Biogeosciences, 10(9): 6053-6068. https://doi.org/10.5194/bg⁃10⁃6053⁃2013 |
| [62] |
Preto, N., Kustatscher, E., Wignall, P. B., 2010. Triassic Climates—State of the Art and Perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 1-10. https://doi.org/10.1016/j.palaeo.2010.03.015 |
| [63] |
Prokoph, A., El Bilali, H., Ernst, R., 2013. Periodicities in the Emplacement of Large Igneous Provinces through the Phanerozoic: Relations to Ocean Chemistry and Marine Biodiversity Evolution. Geoscience Frontiers, 4(3): 263-276. https://doi.org/10.1016/j.gsf.2012.08.001 |
| [64] |
Racki, G., Lucas, S. G., 2020. Timing of Dicynodont Extinction in Light of an Unusual Late Triassic Polish Fauna and Cuvier’s Approach to Extinction. Historical Biology, 32(4): 452-461. https://doi.org/10.1080/08912963.2018.1499734 |
| [65] |
Ramezani, J., Bowring, S. A., Pringle, M. S., et al., 2005. The Manicouagan impact melt rock: A Proposed Standard for the Intercalibration of U⁃Pb and 40Ar/39Ar Isotopic Systems. 2005 Goldschmidt Conference, Moscow. |
| [66] |
Rigo, M., Onoue, T., Tanner, L. H., et al., 2020. The Late Triassic Extinction at the Norian/Rhaetian Boundary: Biotic Evidence and Geochemical Signature. Earth⁃Science Reviews, 204: 103180. https://doi.org/10.1016/j.earscirev.2020.103180 |
| [67] |
Sato, H., Nozaki, T., Onoue, T., et al., 2023. Rhenium⁃Osmium Isotope Evidence for the Onset of Volcanism in the Central Panthalassa Ocean during the Norian “Chaotic Carbon Episode”. Global and Planetary Change, 229: 104239. https://doi.org/10.1016/j.gloplacha.2023.104239 |
| [68] |
Sato, H., Takaya, Y., Yasukawa, K., et al., 2020. Biotic and Environmental Changes in the Panthalassa Ocean across the Norian (Late Triassic) Impact Event. Progress in Earth and Planetary Science, 7(1): 61. https://doi.org/10.1186/s40645⁃020⁃00371⁃x |
| [69] |
Schoepfer, S. D., Algeo, T. J., van de Schootbrugge, B., et al., 2022. The Triassic⁃Jurassic Transition: A Review of Environmental Change at the Dawn of Modern Life. Earth⁃Science Reviews, 232: 104099. https://doi.org/10.1016/j.earscirev.2022.104099 |
| [70] |
Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev⁃earth⁃081320⁃064052 |
| [71] |
Şengör, A. M. C., Altıner, D., Zabcı, C., et al., 2023. On the Nature of the Cimmerian Continent. Earth⁃Science Reviews, 247: 104520. https://doi.org/10.1016/j.earscirev.2023.104520 |
| [72] |
Simms, M. J., Ruffell, A. H., 1990. Climatic and Biotic Change in the Late Triassic. Journal of the Geological Society, 147(2): 321-327. https://doi.org/10.1144/gsjgs.147.2.0321 |
| [73] |
Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583⁃018⁃1002⁃2 |
| [74] |
Spielmann, J. A., Lucas, S. G., Hunt, A. P., 2013. The First Norian (Revueltian) Rhynchosaur: Bull Canyon Formation, New Mexico, USA. New Mexico Museum of Natural History and Science Bulletin, 61: 562-566. |
| [75] |
Spray, J. G., Thompson, L. M., Biren, M. B., et al., 2010. The Manicouagan Impact Structure as a Terrestrial Analogue Site for Lunar and Martian Planetary Science. Planetary and Space Science, 58(4): 538-551. https://doi.org/10.1016/j.pss.2009.09.010 |
| [76] |
Stampfli, G. M., Hochard, C., Vérard, C., et al., 2013. The Formation of Pangea. Tectonophysics, 593: 1-19. https://doi.org/10.1016/J.TECTO.2013.02.037 |
| [77] |
Sun, Y. D., Orchard, M. J., Kocsis, Á. T., et al., 2020. Carnian⁃Norian (Late Triassic) Climate Change: Evidence from Conodont Oxygen Isotope Thermometry with Implications for Reef Development and Wrangellian Tectonics. Earth and Planetary Science Letters, 534: 116082. https://doi.org/10.1016/j.epsl.2020.116082 |
| [78] |
Sun, Y. D., Wignall, P. B., Joachimski, M. M., et al., 2016. Climate Warming, Euxinia and Carbon Isotope Perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444: 88-100. https://doi.org/10.1016/j.epsl.2016.03.037 |
| [79] |
Tanner, L. H., 2018. Climates of the Late Triassic: perspectives, proxies and problems. In: Tanner, L.H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_3 |
| [80] |
Tanner, L. H., Lucas, S. G., Chapman, M. G., 2004. Assessing the Record and Causes of Late Triassic Extinctions. Earth⁃Science Reviews, 65(1-2): 103-139. https://doi.org/10.1016/S0012⁃8252(03)00082⁃5 |
| [81] |
Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long⁃Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038 |
| [82] |
van Soest, M. C., Hodges, K. V., Wartho, J. A., et al., 2011. (U⁃Th)/He Dating of Terrestrial Impact Structures: The Manicouagan Example. Geochemistry, Geophysics, Geosystems, 12(5): 1-8. https://doi.org/10.1029/2010gc003465 |
| [83] |
Wang, D., Kang, H., Chen, Y. L., et al., 2024. Timeframe of Eastern Paleo⁃Tethys Closure: Constraint on the Songpan⁃Ganzi Complex by Big Data⁃Based Multiproxy Provenance Analysis. Lithos, 466-467: 107457. https://doi.org/10.1016/j.lithos.2023.107457 |
| [84] |
Wang, J., Fu, X. G., Chen, W. X., et al., 2008. Chronology and Geochemistry of the Volcanic Rocks in Woruo Mountain Region, Northern Qiangtang Depression: Implications to the Late Triassic Volcanic⁃ Sedimentary Events. Science China Earth Sciences, 51(2): 194-205. https://doi.org/10.1007/s11430⁃008⁃0010⁃y |
| [85] |
Wang, Y. J., Qian, X., Cawood, P. A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth⁃Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013 |
| [86] |
Whiteside, J. H., Ward, P. D., 2011. Ammonoid Diversity and Disparity Track Episodes of Chaotic Carbon Cycling during the Early Mesozoic. Geology, 39(2): 99-102. https://doi.org/10.1130/G31401.1 |
| [87] |
Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract). |
| [88] |
Wu, Q. W., Jin, X., Karádi, V., et al., 2024. Norian (Upper Triassic) Carbon Isotopic Perturbations and Conodont Biostratigraphy from the Simao Terrane, Eastern Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112380. https://doi.org/10.1016/j.palaeo.2024.112380 |
| [89] |
Xie, X. L., Niu, M. L., Wu, Q., et al., 2015. Petrological Characteristics of Triassic Magmatic Rocks from the Conjunction of Qinling, Qilian and Kunlun Orogens and Their Tectonic Environment. Journal of Earth Sciences and Environment, 37(6): 72-81 (in Chinese with English abstract). |
| [90] |
Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo⁃Jinshajiang Ocean. Geophysical Research Letters, 49(2): e2021GL096902. https://doi.org/10.1029/2021GL096902 |
| [91] |
Zaffani, M., Agnini, C., Concheri, G., et al., 2017. The Norian “Chaotic Carbon Interval”: New Clues from the δ13Corg Record of the Lagonegro Basin (Southern Italy). Geosphere,: GES01459.1. https://doi.org/10.1130/ges01459.1 |
| [92] |
Zeng, W. P., Jiang, H. S., Chen, Y., et al., 2023. Upper Norian Conodonts from the Baoshan Block, Western Yunnan, Southwestern China, and Implications for Conodont Turnover. PeerJ, 11: e14517. https://doi.org/10.7717/peerj.14517 |
| [93] |
Zeng, W. P., Purnell, M. A., Jiang, H. S., et al., 2021. Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32(3): 709-724. https://doi.org/10.1007/s12583⁃021⁃1459⁃2 |
| [94] |
Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2018. Constructing the Eastern Margin of the Tibetan Plateau during the Late Triassic. Journal of Geophysical Research: Solid Earth, 123(12): 10449-10459. https://doi.org/10.1029/2018jb016353 |
| [95] |
Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2021. Imaging the Late Triassic Lithospheric Architecture of the Yidun Terrane, Eastern Tibetan Plateau: Observations and Interpretations. GSA Bulletin, 2279-2290. https://doi.org/10.1130/b35778.1 |
| [96] |
Zhu, R. X., Zhao, P., Zhao, L., 2022. Evolution and Dynamic Process of NeoTethys Ocean. Science in China (Series D), 52(1): 1-25 (in Chinese). |
国家自然科学基金项目(42372005)
/
| 〈 |
|
〉 |