晚三叠世诺利期极端温室期地质事件

江海水 ,  陈龑

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1037 -1047.

PDF (1994KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1037 -1047. DOI: 10.3799/dqkx.2024.118

晚三叠世诺利期极端温室期地质事件

作者信息 +

Geological Events during the Extreme Greenhouse Interval of Norian, Late Triassic

Author information +
文章历史 +
PDF (2041K)

摘要

晚三叠世诺利期存在一个极端温室期,从中诺利期延续到晚诺利期早期,低纬度地区海水表层最高温度曾高达35 °C,极高温期发生在牙形石Mockina bidentata带下部所代表的时限.诺利期极端温室期海洋和陆地上伴随着重要的生物演化事件,干湿气候的变化在不同地区表现并不完全一致.该时期发生了全球板块运动、火成岩省活动、火流星、地球化学指标显著变化等众多事件.这些事件的全球意义、潜在的因果关系以及在东特提斯的响应等亟需研究.我国发育有良好的诺利期地层序列,是东特提斯地区研究这一极端温室期气候变化与生物演化的理想区域.

Abstract

An extreme greenhouse interval existed in the Norian of Late Triassic, lasted from the Middle Norian to the early Late Norian. The maximum sea surface temperature in low latitudes can reach 35 °C during the extremely high temperature interval occurred in the lower part of the conodont Mockina bidentata Zone. The extreme greenhouse interval of the Norian was accompanied by important biological evolution events in the ocean and land. The changes of dry and wet climate were not completely consistent in different regions. Many events occurred in this interval, such as global plate movement, igneous province activity, bolide and significant changes of geochemical indexes. The global significance of these events, their potential causality, and the response in the East Tethys need to be further studied. China has a good Norian stratigraphic sequence, which is an ideal area to study the climate change and biological evolution of this extreme greenhouse interval in the East Tethys region.

Graphical abstract

关键词

诺利期 / 极端温室 / 联合古陆 / 晚三叠世 / 特提斯 / 地层学 / 气候变化.

Key words

Norian / extreme greenhouse / Pangaea / Late Triassic / Tethys / stratigraphy / climate change

引用本文

引用格式 ▾
江海水,陈龑. 晚三叠世诺利期极端温室期地质事件[J]. 地球科学, 2025, 50(03): 1037-1047 DOI:10.3799/dqkx.2024.118

登录浏览全文

4963

注册一个新账户 忘记密码

1 晚三叠世诺利期极端温室期

研究地质历史上极端温室期的气候变化及相应的生物演化对逐渐变暖的当今社会具有重要的启示意义.三叠纪是地质历史上一个重要的温室时期(Trotter et al.,2015Song et al.,2019Grossman and Joachimski,2022).经历古‒中生代之交的显生宙最大的生物灭绝(Erwin,1993)事件之后,早三叠世以环境动荡为特点(Payne et al.,2004),中三叠世则是气候改善和复杂生态群落恢复和重建时期(Erwin,1993Bottjer,2004Chen and Benton,2012).晚三叠世也是生物演化历史上关键转折时期.Dal Corso et al.(2020)基于化石记录的分析研究认为晚三叠世卡尼期雨季事件(Carnian Pluvial Episode)虽然导致了生物灭绝事件,但也可能引发了许多主导现代生态系统的关键种群的辐射(Simms and Ruffell,1990Tanner et al.,2004Lucas and Tanner,2004Demangel et al.,2020Dal Corso et al.,2020,2022Rigo et al.,2020Dunne et al.,2021),被视作当今地球生态系统的黎明.

Trotter et al.(2015)根据牙形石磷灰石测量的氧同位素(δ18Ophos)重建了三叠纪海洋表面温度,提出了三叠纪存在三次极端温室事件(Warm event).分别是早三叠世温室事件(W1)、晚三叠世卡尼期温室事件(W2)和晚三叠世晚诺利期温室事件(W3).其中来自西特提斯Lagonegro盆地(见图1,红五星)的数据显示牙形石δ18Ophos的氧同位素值在晚诺利期牙形石Mockina bidentata带内可低至18.29‰,据此估算的古海水表面温度最高可达33.5 °C,升温幅度约7 °C(Trotter et al.,2015).而来自联合古大陆(Pangaea)西部Williston Lake(见图1,橙五星)的牙形石磷灰石δ18Ophos值也证实了从Alaunian(中诺利期)到Sevatian(晚诺利期)存在一个极端温室期,升温幅度约6 °C,海水表面最高温度曾高达35 °C(Sun et al.,2020).同样的,对东特提斯保山地块(见图1)的晚诺利期牙形石Mockina bidentata带内牙形石δ18Ophos的氧同位素研究显示,该时期海水表面最高温度也曾高达约35 °C(Chen et al.,2024,黄五星).这些研究指示晚三叠世诺利期存在一个极端温室期,可能从中诺利期延续到晚诺利期早期,时间长达五百万年,极高温期发生在牙形石Mockina bidentata带下部所代表的时限(图2).

2 晚三叠世诺利期极端温室期生物演化

诺利期极端温室期,特别是中‒晚诺利期之交,许多生物类群发生了重要转变.Lucas(2018b)总结认为晚三叠世大多数大型两栖动物在诺利期末灭绝.在爬行动物中,中三叠世至晚三叠世卡尼期繁盛的食草动物喙龙和二齿兽最终在晚诺利期灭绝(Spielmann et al.,2013Racki and Lucas,2020).Baranyi et al.(2018)通过对美国西南部Chinle组的孢粉数据进行定量分析,发现在中‒晚诺利期之交,植物组合出现了重大更替.Kent et al.(2019)Hayes et al.(2020)基于美国亚利桑那州石化森林国家公园(Petrified Forest National Park)脊椎动物组合与高精度地质年代学和岩石地层学研究,通过建模分析发现该时期存在重要的脊椎动物类群转变.Kent and Clemmensen(2021)总结观察到蜥脚类恐龙从冈瓦纳大陆南半球的高纬度地区(巴西、阿根廷等地)迅速向北迁移扩散至北半球温带的欧洲以及格林兰岛地区.

海相生物中,McRoberts(2007,2010)观察到在中‒晚诺利期之交Halobia属、Eomonotis属的双壳类几乎全部消失,而Monotis属的双壳类开始出现,至诺利期‒瑞替期之交,Monotis属双壳类发生大灭绝,只有2个侏儒种(MonotishoernesiMonotisrhaetica)孑余.钙质超微浮游生物在Sevatian亚阶Mockina bidentata带发生演替和小型化(Preto et al.,2013Demangel et al.,2020Jia et al.,2024).Onoue et al.(2012,2016)观察到泛大洋的放射虫在Sevatian亚阶牙形石Epigondolella bidentata(=Mockina bidentata)带内逐步灭绝,其组合发生重大更替(Onoue et al.,2016Sato et al.,2020),多样性有明显的降低(O’Dogherty et al.,2010).Lucas (2018a)总结前人关于菊石的研究后指出在诺利期Sevatian亚期,菊石多样性发生显著下降并且出现异态(heteromorphs).Rigo et al.(2020)总结前人研究指出,菊石在晚三叠世经历了两幕灭绝,第一幕灭绝发生在诺利期‒瑞替期之交,第二幕则发生于瑞替期晚期.中诺利期(Alaunian亚期)牙形石动物群落通常由大量的幼体或者亚成年体标本组成,仅有少量的成年体标本(Martínez⁃Pérez et al.,2014Karádi et al.,2020).

3 晚三叠世诺利期极端温室期的气候变化

晚三叠世,联合古大陆超级季风气候达到最强,气候总体上相对炎热干旱,但是常被湿润事件所打断,例如卡尼期中期的雨季事件.整个诺利期到瑞替期初,一个稳定的巨型季风气候系统使得联合古大陆内陆低到中古纬度的地区处于干旱状态(Boucot et al.,2013Tanner,2018Bahr et al.,2020)(见图1).但也有学者认为,在诺利期超过2 000万年的时间内,这种非常长时间的环境稳定性可能是由于缺乏详细的古气候研究造成的(Preto et al.,2010).近年来越来越多的证据显示全球很多区域在诺利期出现了明显的气候环境波动.Haas et al.(2012)提出中诺利期至晚诺利期的气候湿度可能逐渐增加,并在诺利末期发生了显著的气候变化从而导致湿度明显增加.波兰地区的孢粉记录亦表明在晚诺利期(Sevatian亚期)植物向喜湿类群转变,指示该时期有一个小型的湿润气候变化(Fijałkowska⁃Mader,2015).除此之外,位于欧洲的多个沿海地区,均有晚诺利期出现一次湿润气候或者开始向湿润气候转变的报道(Kent and Olsen,2000Ahlberg et al.,2002Hornung,2005Berra et al.,2010Haas et al.,2012,2017;Fijałkowska⁃Mader,2015),显示诺利期末期至瑞替期气候开始逐渐转变为更加湿润.Lepre and Olsen(2021)针对北美科罗拉多高原的Chinle组红层赤铁矿的研究表明在诺利期 ~215 Ma开始,古气候加剧干旱化,并表明在 Adamanian⁃Revueltian脊椎动物转换期(216 Ma至213 Ma)时段降雨量发生了显著降低.除此之外,位于北美的多个晚诺利期内陆研究区,均有逐渐向干旱环境转变的报道(Nordt et al.,2015Lepre and Olsen,2021).

晚三叠世在诺利期极端温室事件之后主要经历了一个快速变冷的阶段(Trotter et al.,2015Chen et al.,2024)(图2).目前驱动这一变冷的详细模式和原因仍存在巨大争议,包括有因联合古大陆向北漂移造成赤道地区风化面积的增加(Golonka,2007),早基梅里‒印支运动(Early Cimmerian⁃Indosinian Orogeny)引起的陆地风化强度的增加(Onoue et al.,2018),古特提斯闭合期联合古大陆汇聚顶峰时暴露的硅酸盐风化强度增强(Chen et al.,2024),颗石藻等钙质超微化石的繁盛(Goddéris et al.,2008),以及小行星撞击事件(Sato et al.,2020)等等.

4 晚三叠世诺利期极端温室期的其他地质事件

晚三叠世主要构造事件是早基梅里运动(Early Cimmerian Orogeny)和印支运动(Indosinian Orogeny)(图2).基梅里‒印支造山运动是一个多阶段的造山运动,涉及基梅里微陆块群与欧亚大陆南缘的碰撞和构造相互作用.从二叠纪起,多个微陆块从冈瓦纳大陆北缘裂解,古特提斯洋达到最大化(吴福元等,2020;朱日祥等,2022).随着微陆块群的北向漂移,古特提斯洋逐渐消亡.基梅里微陆块群在晚三叠世开始与欧亚大陆南缘碰撞拼合,先是发生在欧洲的阿尔卑斯‒喀尔巴阡‒地中海地区,而后发生在东欧‒中亚地区,最后发生在东南亚地区(Şengör et al.,2023).在这时期,东特提斯地区的印度支那、羌塘与华南等板块最终与地球上其他绝大多数板块汇聚在一起形成联合古大陆,关闭了古特提斯洋,随后早侏罗世联合古大陆开始出现裂解,标志着晚三叠世时联合古大陆达到其最大面积(Stampfli et al.,2013Golonka et al.,2018).

晚三叠世发生了三次著名的大火成岩省活动,即:北美洲西北的Wrangellian玄武岩大火成岩省(约发生在230~225 Ma之间;Greene et al.,2010)、Angayucham大火成岩省(约发生于(214±7)Ma;Prokoph et al.,2013),以及中大西洋岩浆省(The Central Atlantic Magmatic Province,约发生在 201 Ma前;Marzoli et al.,2018).晚三叠世卡尼期的高温事件(Trotter et al.,2015Sun et al.,2016)被认为与Wrangellian大火成省大规模CO2释放有关.中大西洋岩浆省(Central Atlantic Magmatic Province,CAMP)的火山活动曾被认为可能导致了W3等晚三叠世诺利期Alaunian至Sevatian的环境变化.但随着CAMP的最老喷发年龄确定于201.625 Ma(Davies et al.,2017),该火山活动多被认为是三叠纪‒侏罗纪界线附近古环境变化的主要驱动因素(Rigo et al.,2020Schoepfer et al.,2022).北美阿拉斯加地区的Angayucham洋底火山的喷发被认为是诺利期Alaunian⁃Sevatian时期的气候与环境变化的主要驱动机制(图2)(Zaffani et al.,2017Jin et al.,2022a,2022bSato et al.,2023).然而,最近的锇同位素研究表明,Angayucham大火成岩省喷发要晚于牙形石Mockina bidentata的首现,与W3极端高温时期存在明显的时间差别(Sato et al.,2023).

需要指出的是,诺利期与瑞替期之交的Sr和Os同位素比值(Kuroda et al.,2010Callegaro et al.,2012)表明CAMP的前火山活动可能接近诺利期极端温室阶段.然而近年来关于该岩浆作用的持续时间和空间仍有许多不同意见(Marzoli et al.,1999,2011,2018;Tanner et al.,2004Davies et al.,2017Sato et al.,2023).因此,CAMP事件或CAMP的前火山活动是否造成了诺利期极端温室事件还有待深入研究.

除此之外,至少有五次火流星撞击地面的构造(直径从9~85 km不等,撞击时间在235~ 200 Ma前;Clutson et al.,2018)被发现于现在的北纬地区.其中最大的一次为Manicouagan 小行星撞击事件(图2),发生在中‒晚诺利期之交(Ramezani et al.,2005van Soest et al.,2011),直径约85 km(Spray et al.,2010),与诺利期极端温室事件时间上耦合,然而,目前尚不清楚这次撞击是否会对气候产生长期影响(Clutson et al.,2018).

碳同位素在晚三叠世诺利期早期主要维持在较高值,并在早诺利期末期达到最大值(Early Norian Event,ENE),随后在诺利期极端温室时期,碳同位素逐渐开始负偏,并在中‒晚诺利期之交,即全球海表水温达到35 °C时,碳同位素比值达到并维持在低值(Cramer and Jarvis,2020)(图2).前人在西特提斯地区晚三叠世诺利期晚期,即诺利期极端温室事件之后的快速变冷阶段,发现数百万年内碳同位素维持在低值以外,同样出现数次快速负偏,并称之为“诺利期碳同位素混乱区间”(Whiteside and Ward,2011).该事件随后在全球陆相及海相地层中均被报道(Preto et al.,2013Zaffani et al.,2017;Jin et al.,2022a,2022b;Wu et al.,2024),表明该事件可能是全球碳循环波动留下的记录.大火成岩省的喷发以及地外撞击等灾难性事件被解释为与该时期碳同位素快速波动有关(Rigo et al.,2020Sato et al.,2023),然而目前关于以上事件与该时期碳同位素混乱事件之间的具体联系尚不清楚.

5 国内研究现状

由上可见,晚三叠世中晚诺利期至瑞替期早期发生了重要的生物灭绝和演替事件(双壳、菊石、放射虫、孢粉、牙形石、钙质超微化石、陆地脊椎动物等)和明显的古气候、古环境变化(大气pCO2下降、碳同位素混乱区间、牙形石氧同位素负偏等),这些生物与气候环境的变化可能是三叠纪末生物大灭绝的序幕.上述研究显示关于诺利期极端温室期的研究已经成为了当今的热点之一.但是以上大部分研究区均在特提斯洋西部和联合古大陆赤道地区.

晚三叠世时我国南方位于东特提斯地区,与西特提斯地区受早基梅里运动影响不同,该地区在该时期主要受印支运动影响.印度支那、羌塘板块与华南板块正在汇聚(Golonka et al.,2018Huang et al.,2018;Metcalfe,2021;Yu et al.,2022),板块构造活动活跃.许多地方也有同期的火成岩报道:如三江地区北段的松潘‒甘孜褶皱带和义敦地体的晚三叠世岩浆岩事件(其形成年龄分别为约210 Ma前(Zhan et al.,2018Wang et al.,2024)和216 Ma前(Zhan et al.,2021));羌塘盆地的大规模火山与火山沉积事件(225~ 201 Ma;Wang et al.,2008Fu et al.,2010;付修根 等,2020);秦祁昆结合部的岩浆岩事件(225~ 205 Ma;解小龙等,2015);滇缅泰马地块(Sibumasu)岩浆岩事件等(230~200 Ma,Wang et al.,2018及其中引用的文献),说明我国华南地区在诺利期同样处于板块构造、火成岩等事件活跃背景之下.

需要指出的是,尽管东特提斯地区在这一关键时期板块构造、火成岩等事件很活跃,但在印度支那、羌塘板块与华南板块(或其中的微板块)周缘的台地仍然形成了许多碳酸盐岩沉积,很好地保留了气候变化与海相生物演化的信息.前人在这一地区建立了比较好的海相生物地层格架(董致中和王伟,2006;Du et al.,2020Zeng et al.,2021,2023等).近年来,我国华南地区有关该时期生物演化与环境事件的研究也越来越多,如Jin et al.(2022b)对云南保山地区的碳同位素研究认为,该时期的碳同位素偏移可能与Angayucham玄武岩侵位期间的脱气作用有关.Zeng et al.(2023)基于云南保山地区的牙形石资料也报道了该时期牙形石动物群存在重要转变.Jia et al.(2024)报道了该时期钙质超微化石存在小型化现象,可能与极端温室事件相对应.Chen et al.(2024)基于牙形石氧同位素和锶同位素的研究更是证实了诺利期极端温室事件在东特提斯地区的存在,并认为该次温室事件之后的变冷是高温以及高湿度环境下的硅酸盐的快速风化,快速消耗大气中CO2,从而导致全球气温及海洋表层温度的快速下降.

6 结论与展望

晚诺利期存在一个极端温室期,从中诺利期延续到晚诺利期早期,该时期低纬度地区海水表面最高温度可高达35 °C,极高温期发生在牙形石Mockina bidentata带下部所代表的时限.诺利期极端温室期的干湿气候变化在不同地区表现不一致,其变化情况尚不完全清楚;诺利期极端温室期伴随着重要的生物演化事件,其与该时期地质事件及气候变化之间的因果联系也不清楚.我国发育有良好的诺利期地层序列,是东特提斯地区研究诺利期极端温室期气候变化与生物演化的理想区域.这些事件的全球意义、潜在因果关系以及在东特提斯的响应等亟需深入研究.

参考文献

[1]

Ahlberg, A., Arndorff, L., Guy⁃Ohlson, D., 2002. Onshore Climate Change during the Late Triassic Marine Inundation of the Central European Basin. Terra Nova, 14(4): 241-248. https://doi.org/10.1046/j.1365⁃3121.2002.00416.x

[2]

Bahr, A., Kolber, G., Kaboth⁃Bahr, S., et al., 2020. Mega⁃Monsoon Variability during the Late Triassic: Re⁃Assessing the Role of Orbital Forcing in the Deposition of Playa Sediments in the Germanic Basin. Sedimentology, 67(2): 951-970. https://doi.org/10.1111/sed.12668

[3]

Baranyi, V., Reichgelt, T., Olsen, P. E., et al., 2018. Norian Vegetation History and Related Environmental Changes: New Data from the Chinle Formation, Petrified Forest National Park (Arizona, SW USA). GSA Bulletin, 130(5-6): 775-795. https://doi.org/10.1130/b31673.1

[4]

Berra, F., Jadoul, F., Anelli, A., 2010. Environmental Control on the End of the Dolomia Principale/Hauptdolomit Depositional System in the Central Alps: Coupling Sea⁃Level and Climate Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 138-150. https://doi.org/10.1016/j.palaeo.2009.06.037

[5]

Bottjer, D. J., 2004. The Beginning of the Mesozoic: 70 Million Years of Environmental Stress and Extinction. In: Taylor, P. D., ed., Extinctions in the History of Life. Cambridge University Press, Cambridge, 99-118. https://doi.org/10.1017/CBO9780511607370.005

[6]

Boucot, A. J., Xu, C., Scotese, C. R., et al., 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate. SEPM Society for Sedimentary Geology, Claremore. https://doi.org/10.2110/sepmcsp.11

[7]

Callegaro, S., Rigo, M., Chiaradia, M., Marzoli, A., 2012. Latest Triassic marine Sr Isotopic Variations, Possible Causes and Implications. Terra Nova, 24(2): 130-135. https://doi.org/10.1111/j.1365⁃3121.2011.01046.x

[8]

Chen, Y., Zeng, W., Joachimski, M. M., et al., 2024. Late Triassic (Norian) Strontium and Oxygen Isotopes from the Baoshan Block, Southwestern China: Possible Causes and Implications for Climate Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112378. https://doi.org/10.1016/j.palaeo.2024.112378

[9]

Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475

[10]

Clutson, M. J., Brown, D. E., Tanner, L. H., 2018. Distal Processes and Effects of Multiple Late Triassic Terrestrial Bolide Impacts: Insights from the Norian Manicouagan Event, Northeastern Quebec, Canada. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_5

[11]

Cramer, B. D., Jarvis, I., 2020. Chapter 11⁃Carbon Isotope Stratigraphy. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York. https://doi.org/10.1016/B978⁃0⁃12⁃824360⁃2.00011⁃5

[12]

Dal Corso, J., Bernardi, M., Sun, Y. D., et al., 2020. Extinction and Dawn of the Modern World in the Carnian (Late Triassic). Science Advances, 6(38): eaba0099. https://doi.org/10.1126/sciadv.aba0099

[13]

Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2022. Background Earth System State Amplified Carnian (Late Triassic) Environmental Changes. Earth and Planetary Science Letters, 578: 117321. https://doi.org/10.1016/j.epsl.2021.117321

[14]

Davies, J. H. F. L., Marzoli, A., Bertrand, H., et al., 2017. End⁃Triassic Mass Extinction Started by Intrusive CAMP Activity. Nature Communications, 8: 15596. https://doi.org/10.1038/ncomms15596

[15]

Demangel, I., Kovács, Z., Richoz, S., et al., 2020. Development of Early Calcareous Nannoplankton in the Late Triassic (Northern Calcareous Alps, Austria). Global and Planetary Change, 193: 103254. https://doi.org/10.1016/j.gloplacha.2020.103254

[16]

Dong, Z. Z., Wang, W., 2006. Yunnan Conodont Fauna: A Study on Related Biostratigraphy and Biogeography. Yunnan Science and Technology Press, Kunming (in Chinese).

[17]

Du, Y. X., Bertinelli, A., Jin, X., et al., 2020. Integrated Conodont and Radiolarian Biostratigraphy of the Upper Norian in Baoshan Block, Southwestern China. Lethaia, 53(4): 533-545. https://doi.org/10.1111/let.12374

[18]

Du, Y. X., Onoue, T., Karádi, V., et al., 2021. Evolutionary Process from Mockina Bidentata to Parvigondolella Andrusovi: Evidence from the Pizzo Mondello Section, Sicily, Italy. Journal of Earth Science, 32(3): 667-676. https://doi.org/10.1007/s12583⁃020⁃1362⁃2

[19]

Dunne, E. M., Farnsworth, A., Greene, S. E., et al., 2021. Climatic Drivers of Latitudinal Variation in Late Triassic Tetrapod Diversity. Palaeontology, 64(1): 101-117. https://doi.org/10.1111/pala.12514

[20]

Erwin, D. H., 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York.

[21]

Fijałkowska⁃Mader, A., 2015. A Record of Climatic Changes in the Triassic Palynological Spectra from Poland. Geological Quarterly, 59(4): 615-653. https://doi.org/10.7306/gq.1239

[22]

Fu, X. G., Wang, J., Tan, F. W., et al., 2010. The Late Triassic Rift⁃Related Volcanic Rocks from Eastern Qiangtang, Northern Tibet (China): Age and Tectonic Implications. Gondwana Research, 17(1): 135-144. https://doi.org/10.1016/j.gr.2009.04.010

[23]

Fu, X. G., Wang, J., Zeng, Y. H., et al., 2020.Oceanic Anoxic Events in the Mesozoic Qiangtang Basin and Global Comparison. Geological Review, 66(5): 1130-1142 (in Chinese with English abstract).

[24]

Goddéris, Y., Donnadieu, Y., de Vargas, C., et al., 2008. Causal or Casual Link between the Rise of Nannoplankton Calcification and a Tectonically⁃Driven Massive Decrease in Late Triassic Atmospheric CO2? Earth and Planetary Science Letters, 267(1-2): 247-255. https://doi.org/10.1016/j.epsl.2007.11.051

[25]

Golonka, J., 2007. Late Triassic and Early Jurassic Palaeogeography of the World. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1-4): 297-307. https://doi.org/10.1016/j.palaeo.2006.06.041

[26]

Golonka, J., Embry, A., Krobicki, M., 2018. Late Triassic Global Plate Tectonics. In: Tanner, L.H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_2

[27]

Greene, A. R., Scoates, J. S., Weis, D., et al., 2010. The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 6(1): 47-73. https://doi.org/10.1130/ges00212.1

[28]

Grossman, E. L., Joachimski, M. M., 2022. Ocean Temperatures through the Phanerozoic Reassessed. Scientific Reports, 12(1): 8938. https://doi.org/10.1038/s41598⁃022⁃11493⁃1

[29]

Haas, J., Budai, T., Raucsik, B., 2012. Climatic Controls on Sedimentary Environments in the Triassic of the Transdanubian Range (Western Hungary). Palaeogeography, Palaeoclimatology, Palaeoecology, 353: 31-44. https://doi.org/10.1016/j.palaeo.2012.06.031

[30]

Haas, J., Hips, K., Budai, T., et al., 2017. Processes and Controlling Factors of Polygenetic Dolomite Formation in the Transdanubian Range, Hungary: A Synopsis. International Journal of Earth Sciences, 106(3): 991-1021. https://doi.org/10.1007/s00531⁃016⁃1347⁃7

[31]

Hayes, R. F., Puggioni, G., Parker, W. G., et al., 2020. Modeling the Dynamics of a Late Triassic Vertebrate Extinction: The Adamanian/Revueltian Faunal Turnover, Petrified Forest National Park, Arizona, USA. Geology, 48(4): 318-322. https://doi.org/10.1130/g47037.1

[32]

Hornung, T., 2005. Palaeoclimate Background and Stratigraphic Evidence of Late Norian / Early Rhaetian Polyphase Synsedimentary Tectonics in the Hallstatt Limestones of Berchtesgaden (Rappoltstein, Southern Germany). Austrian Journal of Earth Science, 98: 106-119.

[33]

Huang, B. C., Yan, Y. G., Piper, J. D. A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth⁃Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004

[34]

Jia, E. H., Preto, N., Corso, J. D., et al., 2024. Dwarfing of Calcareous Nannofossils during the Norian Warming Event in the Palaeo⁃Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 648: 112305. https://doi.org/10.1016/j.palaeo.2024.112305

[35]

Jin, X., Du, Y. X., Bertinelli, A., et al., 2022a. Carbon⁃ Isotope Excursions in the Norian Stage (Upper Triassic) of the Baoshan Terrane, Western Yunnan, China. Journal of Asian Earth Sciences, 230: 105215. https://doi.org/10.1016/j.jseaes.2022.105215

[36]

Jin, X., Ogg, J. G., Lu, S., et al., 2022b. Terrestrial Record of Carbon⁃Isotope Shifts across the Norian/Rhaetian Boundary: A High⁃Resolution Study from Northwestern Sichuan Basin, South China. Global and Planetary Change, 210: 103754. https://doi.org/10.1016/j.gloplacha.2022.103754

[37]

Karádi, V., Virág, A., Kolar⁃Jurkovšek, T., et al., 2020. Stress⁃Related Evolution in Triassic Conodonts and the Middle Norian Juvenile Mortality. In: Guex, J., Torday, J. S., Miller, W. B., eds., Morphogenesis, Environmental Stress and Reverse Evolution. Springer International Publishing, Cham. https://doi.org/10.1007/978⁃3⁃030⁃47279⁃5_4

[38]

Kent, D. V., Clemmensen, L. B., 2021. Northward Dispersal of Dinosaurs from Gondwana to Greenland at the Mid⁃Norian (215-212 Ma, Late Triassic) Dip in Atmospheric pCO2 Proceedings of the National Academy of Sciences of the United States of America, 118(8): e2020778118. https://doi.org/10.1073/pnas.2020778118

[39]

Kent, D. V., Olsen, P. E., 2000. Magnetic Polarity Stratigraphy and Paleolatitude of the Triassic⁃Jurassic Blomidon Formation in the Fundy Basin (Canada): Implications for Early Mesozoic Tropical Climate Gradients. Earth and Planetary Science Letters, 179(2): 311-324. https://doi.org/10.1016/S0012⁃821X(00)00117⁃5

[40]

Kent, D. V., Olsen, P. E., Lepre, C., et al., 2019. Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core from Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic. Geochemistry, Geophysics, Geosystems, 20(11): 4654-4664. https://doi.org/10.1029/2019GC008474

[41]

Knobbe, T. K., Schaller, M. F., 2018. A Tight Coupling between Atmospheric pCO2 and Sea⁃Surface Temperature in the Late Triassic. Geology, 46(1): 43-46. https://doi.org/10.1130/g39405.1

[42]

Kuroda, J., Hori, R. S., Suzuki, K., et al., 2010. Marine Osmium Isotope Record across the Triassic⁃Jurassic Boundary from a Pacific Pelagic Site. Geology, 38(12): 1095-1098. https://doi.org/10.1130/g31223.1

[43]

Lepre, C. J., Olsen, P. E., 2021. Hematite Reconstruction of Late Triassic Hydroclimate over the Colorado Plateau. Proceedings of the National Academy of Sciences, 118(7): e2004343118. https://doi.org/10.1073/pnas.2004343118

[44]

Lucas, S. G., 2018a. Late Triassic Ammonoids: Distribution, Biostratigraphy and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_7

[45]

Lucas, S. G., 2018b. Late Triassic Terrestrial Tetrapods: Biostratigraphy, Biochronology and Biotic Events. In: Tanner, L. H., ed., Topics in Geobiology. Springer International Publishing, Cham. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_10

[46]

Lucas, S. G., Tanner, L. H., 2004. Late Triassic Extinction Events. Albertiana, (31): 31-40.

[47]

Martínez⁃Pérez, C., Plasencia, P., Cascales⁃Miñana, B., et al., 2014. New Insights into the Diversity Dynamics of Triassic Conodonts. Historical Biology, 26(5): 591-602. https://doi.org/10.1080/08912963.2013.808632

[48]

Marzoli, A., Callegaro, S., Dal Corso, J., et al., 2018. The Central Atlantic Magmatic Province (CAMP): A Review. In: Tanner, L. H., ed., The Late Triassic World: Earth in a Time of Transition.Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_4

[49]

Marzoli, A., Jourdan, F., Puffer, J. H., et al., 2011. Timing and Duration of the Central Atlantic Magmatic Province in the Newark and Culpeper Basins, Eastern U.S.A. Lithos, 122(3-4): 175-188. https://doi.org/10.1016/j.lithos.2010.12.013

[50]

Marzoli, A., Renne, P. R., Piccirillo, E. M., et al., 1999. Extensive 200⁃Million⁃Year⁃Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science, 284(5414): 616-618. https://doi.org/10.1126/science.284.5414.616

[51]

McRoberts, C. A., 2007. Diversity Dynamics and Evolutionary Ecology of Middle and Late Triassic Halobiid and Monotid Bivalves. New Mexico Museum of Natural History and Science Bulletin, 41: 272.

[52]

McRoberts, C. A., 2010. Biochronology of Triassic Bivalves. Geological Society, London, Special Publications, 334(1): 201-219. https://doi.org/10.1144/sp334.9

[53]

Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012

[54]

Nordt, L., Atchley, S., Dworkin, S., 2015. Collapse of the Late Triassic Megamonsoon in Western Equatorial Pangea, Present⁃Day American Southwest. Geological Society of America Bulletin, 127(11/12): 1798-1815. https://doi.org/10.1130/B31186.1

[55]

O’Dogherty, L., Carter, E. S., Goričan, Š., et al., 2010. Triassic Radiolarian Biostratigraphy. Geological Society, London, Special Publications, 334(1): 163-200. https://doi.org/10.1144/sp334.8

[56]

Ogg, J. G., Chen, Z. Q., Orchard, M. J., et al., 2020. The Triassic Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., Geologic Time Scale 2020. Elsevier, New York. https://doi.org/10.1016/B978⁃0⁃12⁃824360⁃2.00025⁃5

[57]

Onoue, T., Sato, H., Nakamura, T., et al., 2012. Deep⁃Sea Record of Impact Apparently Unrelated to Mass Extinction in the Late Triassic. Proceedings of the National Academy of Sciences of the United States of America, 109(47): 19134-19139. https://doi.org/10.1073/pnas.1209486109

[58]

Onoue, T., Sato, H., Yamashita, D., et al., 2016. Bolide Impact Triggered the Late Triassic Extinction Event in Equatorial Panthalassa. Scientific Reports, 6: 29609. https://doi.org/10.1038/srep29609

[59]

Onoue, T., Yamashita, K., Fukuda, C., et al., 2018. Sr Isotope Variations in the Upper Triassic Succession at Pizzo Mondello, Sicily: Constraints on the Timing of the Cimmerian Orogeny. Palaeogeography, Palaeoclimatology, Palaeoecology, 499: 131-137. https://doi.org/10.1016/j.palaeo.2018.03.025

[60]

Payne, J. L., Lehrmann, D. J., Wei, J. Y., et al., 2004. Large Perturbations of the Carbon Cycle during Recovery from the End⁃Permian Extinction. Science, 305(5683): 506-509. https://doi.org/10.1126/science.1097023

[61]

Preto, N., Agnini, C., Rigo, M., et al., 2013. The Calcareous Nannofossil Prinsiosphaera Achieved Rock⁃Forming Abundances in the Latest Triassic of Western Tethys: Consequences for the δ13C of Bulk Carbonate. Biogeosciences, 10(9): 6053-6068. https://doi.org/10.5194/bg⁃10⁃6053⁃2013

[62]

Preto, N., Kustatscher, E., Wignall, P. B., 2010. Triassic Climates—State of the Art and Perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1-4): 1-10. https://doi.org/10.1016/j.palaeo.2010.03.015

[63]

Prokoph, A., El Bilali, H., Ernst, R., 2013. Periodicities in the Emplacement of Large Igneous Provinces through the Phanerozoic: Relations to Ocean Chemistry and Marine Biodiversity Evolution. Geoscience Frontiers, 4(3): 263-276. https://doi.org/10.1016/j.gsf.2012.08.001

[64]

Racki, G., Lucas, S. G., 2020. Timing of Dicynodont Extinction in Light of an Unusual Late Triassic Polish Fauna and Cuvier’s Approach to Extinction. Historical Biology, 32(4): 452-461. https://doi.org/10.1080/08912963.2018.1499734

[65]

Ramezani, J., Bowring, S. A., Pringle, M. S., et al., 2005. The Manicouagan impact melt rock: A Proposed Standard for the Intercalibration of U⁃Pb and 40Ar/39Ar Isotopic Systems. 2005 Goldschmidt Conference, Moscow.

[66]

Rigo, M., Onoue, T., Tanner, L. H., et al., 2020. The Late Triassic Extinction at the Norian/Rhaetian Boundary: Biotic Evidence and Geochemical Signature. Earth⁃Science Reviews, 204: 103180. https://doi.org/10.1016/j.earscirev.2020.103180

[67]

Sato, H., Nozaki, T., Onoue, T., et al., 2023. Rhenium⁃Osmium Isotope Evidence for the Onset of Volcanism in the Central Panthalassa Ocean during the Norian “Chaotic Carbon Episode”. Global and Planetary Change, 229: 104239. https://doi.org/10.1016/j.gloplacha.2023.104239

[68]

Sato, H., Takaya, Y., Yasukawa, K., et al., 2020. Biotic and Environmental Changes in the Panthalassa Ocean across the Norian (Late Triassic) Impact Event. Progress in Earth and Planetary Science, 7(1): 61. https://doi.org/10.1186/s40645⁃020⁃00371⁃x

[69]

Schoepfer, S. D., Algeo, T. J., van de Schootbrugge, B., et al., 2022. The Triassic⁃Jurassic Transition: A Review of Environmental Change at the Dawn of Modern Life. Earth⁃Science Reviews, 232: 104099. https://doi.org/10.1016/j.earscirev.2022.104099

[70]

Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev⁃earth⁃081320⁃064052

[71]

Şengör, A. M. C., Altıner, D., Zabcı, C., et al., 2023. On the Nature of the Cimmerian Continent. Earth⁃Science Reviews, 247: 104520. https://doi.org/10.1016/j.earscirev.2023.104520

[72]

Simms, M. J., Ruffell, A. H., 1990. Climatic and Biotic Change in the Late Triassic. Journal of the Geological Society, 147(2): 321-327. https://doi.org/10.1144/gsjgs.147.2.0321

[73]

Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583⁃018⁃1002⁃2

[74]

Spielmann, J. A., Lucas, S. G., Hunt, A. P., 2013. The First Norian (Revueltian) Rhynchosaur: Bull Canyon Formation, New Mexico, USA. New Mexico Museum of Natural History and Science Bulletin, 61: 562-566.

[75]

Spray, J. G., Thompson, L. M., Biren, M. B., et al., 2010. The Manicouagan Impact Structure as a Terrestrial Analogue Site for Lunar and Martian Planetary Science. Planetary and Space Science, 58(4): 538-551. https://doi.org/10.1016/j.pss.2009.09.010

[76]

Stampfli, G. M., Hochard, C., Vérard, C., et al., 2013. The Formation of Pangea. Tectonophysics, 593: 1-19. https://doi.org/10.1016/J.TECTO.2013.02.037

[77]

Sun, Y. D., Orchard, M. J., Kocsis, Á. T., et al., 2020. Carnian⁃Norian (Late Triassic) Climate Change: Evidence from Conodont Oxygen Isotope Thermometry with Implications for Reef Development and Wrangellian Tectonics. Earth and Planetary Science Letters, 534: 116082. https://doi.org/10.1016/j.epsl.2020.116082

[78]

Sun, Y. D., Wignall, P. B., Joachimski, M. M., et al., 2016. Climate Warming, Euxinia and Carbon Isotope Perturbations during the Carnian (Triassic) Crisis in South China. Earth and Planetary Science Letters, 444: 88-100. https://doi.org/10.1016/j.epsl.2016.03.037

[79]

Tanner, L. H., 2018. Climates of the Late Triassic: perspectives, proxies and problems. In: Tanner, L.H., ed., The Late Triassic World: Earth in a Time of Transition. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃319⁃68009⁃5_3

[80]

Tanner, L. H., Lucas, S. G., Chapman, M. G., 2004. Assessing the Record and Causes of Late Triassic Extinctions. Earth⁃Science Reviews, 65(1-2): 103-139. https://doi.org/10.1016/S0012⁃8252(03)00082⁃5

[81]

Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long⁃Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038

[82]

van Soest, M. C., Hodges, K. V., Wartho, J. A., et al., 2011. (U⁃Th)/He Dating of Terrestrial Impact Structures: The Manicouagan Example. Geochemistry, Geophysics, Geosystems, 12(5): 1-8. https://doi.org/10.1029/2010gc003465

[83]

Wang, D., Kang, H., Chen, Y. L., et al., 2024. Timeframe of Eastern Paleo⁃Tethys Closure: Constraint on the Songpan⁃Ganzi Complex by Big Data⁃Based Multiproxy Provenance Analysis. Lithos, 466-467: 107457. https://doi.org/10.1016/j.lithos.2023.107457

[84]

Wang, J., Fu, X. G., Chen, W. X., et al., 2008. Chronology and Geochemistry of the Volcanic Rocks in Woruo Mountain Region, Northern Qiangtang Depression: Implications to the Late Triassic Volcanic⁃ Sedimentary Events. Science China Earth Sciences, 51(2): 194-205. https://doi.org/10.1007/s11430⁃008⁃0010⁃y

[85]

Wang, Y. J., Qian, X., Cawood, P. A., et al., 2018. Closure of the East Paleotethyan Ocean and Amalgamation of the Eastern Cimmerian and Southeast Asia Continental Fragments. Earth⁃Science Reviews, 186: 195-230. https://doi.org/10.1016/j.earscirev.2017.09.013

[86]

Whiteside, J. H., Ward, P. D., 2011. Ammonoid Diversity and Disparity Track Episodes of Chaotic Carbon Cycling during the Early Mesozoic. Geology, 39(2): 99-102. https://doi.org/10.1130/G31401.1

[87]

Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract).

[88]

Wu, Q. W., Jin, X., Karádi, V., et al., 2024. Norian (Upper Triassic) Carbon Isotopic Perturbations and Conodont Biostratigraphy from the Simao Terrane, Eastern Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 650: 112380. https://doi.org/10.1016/j.palaeo.2024.112380

[89]

Xie, X. L., Niu, M. L., Wu, Q., et al., 2015. Petrological Characteristics of Triassic Magmatic Rocks from the Conjunction of Qinling, Qilian and Kunlun Orogens and Their Tectonic Environment. Journal of Earth Sciences and Environment, 37(6): 72-81 (in Chinese with English abstract).

[90]

Yu, L., Yan, M. D., Domeier, M., et al., 2022. New Paleomagnetic and Chronological Constraints on the Late Triassic Position of the Eastern Qiangtang Terrane: Implications for the Closure of the Paleo⁃Jinshajiang Ocean. Geophysical Research Letters, 49(2): e2021GL096902. https://doi.org/10.1029/2021GL096902

[91]

Zaffani, M., Agnini, C., Concheri, G., et al., 2017. The Norian “Chaotic Carbon Interval”: New Clues from the δ13Corg Record of the Lagonegro Basin (Southern Italy). Geosphere,: GES01459.1. https://doi.org/10.1130/ges01459.1

[92]

Zeng, W. P., Jiang, H. S., Chen, Y., et al., 2023. Upper Norian Conodonts from the Baoshan Block, Western Yunnan, Southwestern China, and Implications for Conodont Turnover. PeerJ, 11: e14517. https://doi.org/10.7717/peerj.14517

[93]

Zeng, W. P., Purnell, M. A., Jiang, H. S., et al., 2021. Late Triassic (Norian) Conodont Apparatuses Revealed by Conodont Clusters from Yunnan Province, Southwestern China. Journal of Earth Science, 32(3): 709-724. https://doi.org/10.1007/s12583⁃021⁃1459⁃2

[94]

Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2018. Constructing the Eastern Margin of the Tibetan Plateau during the Late Triassic. Journal of Geophysical Research: Solid Earth, 123(12): 10449-10459. https://doi.org/10.1029/2018jb016353

[95]

Zhan, Q. Y., Zhu, D. C., Wang, Q., et al., 2021. Imaging the Late Triassic Lithospheric Architecture of the Yidun Terrane, Eastern Tibetan Plateau: Observations and Interpretations. GSA Bulletin, 2279-2290. https://doi.org/10.1130/b35778.1

[96]

Zhu, R. X., Zhao, P., Zhao, L., 2022. Evolution and Dynamic Process of NeoTethys Ocean. Science in China (Series D), 52(1): 1-25 (in Chinese).

基金资助

国家自然科学基金项目(42372005)

AI Summary AI Mindmap
PDF (1994KB)

84

访问

0

被引

详细

导航
相关文章

AI思维导图

/