升温和水位下降对泥炭地碳库稳定性的影响

黄咸雨 ,  张一鸣 ,  薛建涛 ,  于小芳

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 846 -856.

PDF (1395KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 846 -856. DOI: 10.3799/dqkx.2024.119

升温和水位下降对泥炭地碳库稳定性的影响

作者信息 +

Influence of Warming and Water Level Drawdown on the Stability of Peatland Carbon Stock

Author information +
文章历史 +
PDF (1427K)

摘要

泥炭地作为全球重要的碳汇,也是最重要的天然CH4排放源.气候变化如何影响泥炭碳库的稳定性,这是泥炭地碳循环研究的热点问题.本文综述了升温、水位下降等因素对泥炭地碳库稳定性的影响,还介绍了植被在升温、干旱等影响中的调节作用.现有的研究显示,泥炭地碳循环对温度变化非常敏感,其中氧化层的分解速率在小幅度升温下显著加快,而缺氧层则需要更大的温度提升和更长的时间才能显著分解.此外,升温导致CH4/CO2比值增大,这将会增大泥炭地的全球增温潜势.水位下降是影响泥炭地碳循环的关键因素,干旱事件不仅直接导致CO2释放,还可能通过火灾间接影响碳库稳定性.研究还表明,维管束植物能促进老碳的释放.未来的研究需要关注代谢产物的原位观测技术,极端气候事件的地质记录,以及气候变化条件下泥炭碳库的响应与反馈机制.

Abstract

Peatlands play a crucial role in the global carbon cycle by storing carbon, but they are also a major source of methane emissions. Understanding how climate change affects the stability of carbon stores in peatlands is a key area of research. This review examines the effects of factors such as warming and fluctuations in water levels on the stability of carbon stores in peatlands, as well as the role of plants in responding to warming and drought. Research indicates that peatland carbon stocks are highly sensitive to warming, with decomposition rates increasing significantly in the aerobic layer with even slight temperature increases. The anaerobic layer requires greater temperature increases and longer periods to show significant decomposition. Warming also leads to an increase in the CH4/CO2 ratio, which can enhance the global warming potential of peatlands. Changes in water levels are a key factor affecting peatland carbon cycling, as drought events not only directly result in enhanced CO2 emissions but can also indirectly impact carbon store stability through wildfires. Studies have shown that vascular plants can also play a role in releasing old carbon. Future research should focus on developing in-situ observation techniques for metabolic products, examining geological records of extreme climate events, and understanding the response and feedback mechanisms of peatland carbon stores under changing climate conditions.

Graphical abstract

关键词

碳库稳定性 / 升温 / 水位下降 / 植物调控 / 代谢产物再利用 / 碳循环 / 气候变化.

Key words

stability of carbon stock / warming / water level drawdown / plant mediation / utilization of metabolic product / carbon cycle / climate change

引用本文

引用格式 ▾
黄咸雨,张一鸣,薛建涛,于小芳. 升温和水位下降对泥炭地碳库稳定性的影响[J]. 地球科学, 2025, 50(03): 846-856 DOI:10.3799/dqkx.2024.119

登录浏览全文

4963

注册一个新账户 忘记密码

泥炭地是重要的陆地碳循环场所,全球泥炭地存储的总碳量约为6 000亿吨,占据了全球土壤有机碳总量的约1/3(Yu, 2011).在现今气候条件下,全球泥炭地年均固碳量约为4亿吨(IUCN,2021).巨大的泥炭碳库是全新世时期长期积累的结果.面对如此规模的碳储存,其稳定性在气候变化下的表现,以及是否可能加剧全球变暖的正反馈效应,成为了当前学术界广泛关注的议题(Limpens et al., 2008; Page and Barid, 2016).为此,学者们积极开展了多种研究,包括野外实地调研、控制条件下的实验模拟、室内培养分析等,旨在深入探究气候变化对泥炭地碳库的具体影响.
影响泥炭地碳库稳定性的因素很多(Loisel et al., 2021),其中最重要的,也是研究得最多的因素是升温和水位下降.本文重点介绍基于野外控制实验(升温和水位下降)对泥炭地碳库稳定性影响的研究进展.围绕泥炭地碳库的稳定性与代谢产物再利用,本文开展了系统的文献调研与总结,阐述了升温、水位下降、植被等因素对碳库稳定性的影响,总结了泥炭藓内共生噬甲烷菌、地表植物再利用CO2等代谢产物再利用方面的进展,最后对未来研究工作进行了展望.

1 泥炭地碳循环简介

泥炭地发育在滞水的缺氧环境,气候相对偏凉或寒冷.这样的环境造就了凋落物输入与分解间的微弱不平衡,形成了泥炭堆积,通常可达数米甚至超过10 m.泥炭地碳循环过程主要包括成炭植物的光合作用,土壤呼吸作用,CH4的生成、氧化与排放,以及以可溶有机碳(dissolved organic carbon,简称DOC)为主的横向迁移(Page and Baird, 2016).典型的泥炭通常可被划分为两层:上部的氧化层(acrotelm)和下部的缺氧层(catotelm)(Clymo, 1984图1).一些研究者还在两层之间划分出一个中间过渡层(mesotelm; Lin et al., 2014).氧化层的厚度通常在20~50 cm不等,取决于泥炭堆积的快慢、水文条件和地形等因素.在相对稳定的自然条件下,泥炭地碳循环处于一种近似平衡的状态.泥炭分解主要发生在氧化层,只有约10%的碳能够转移到缺氧层.深部缺氧层的分解较弱,一般被当作稳定的碳库.在此背景下,本文关注的碳库稳定性主要是指气候变化或人类活动对已经形成的泥炭地碳储库稳定性的影响.一些学者通过试管培养的方式来探究泥炭地碳库的稳定性,而另一些研究则从控制条件的角度,在野外现场开展模拟实验(Krassovski et al., 2015).

泥炭的分解产物主要是CO2,作为土壤异养呼吸的产物被排放到大气中.分解还会产生一定量的CH4,可能主要形成于氧化层,也有研究表明CH4可以广泛地形成于整个泥炭柱.对于代谢产物CO2和CH4,通常认为它们的碳源自表层的DOC,证据主要来自这些碳组分的14C数据,在大多数情况下两者均显示出年轻的特征(Chanton et al., 2008Bridgham et al., 2013).年轻的DOC主要来自地上部分凋落物的分解,还有根系凋落物和分泌物(Crow et al., 2005).虽然泥炭柱内不同深度的DOC的14C年龄较为年轻,但深部DOC的表观14C年龄比表层大,揭示出仍有部分DOC来自深层泥炭的分解.

2 升温对碳库的影响

在全球变暖的时代,升温如何影响泥炭地碳库,特别是深层碳库,是需要优先考虑的问题,也是目前研究得最为广泛的问题.野外现场增温技术主要分为两类:被动增温和主动增温(朱彪和陈迎, 2020).在被动增温中,运用最广泛的是开顶箱技术(open⁃top chamber;Lamentowicz et al., 2016).它利用一个顶部开口的箱体,形成类似于温室的环境.通过这种方式,可以增温约1~2 ℃.主动增温方式包括红外线辐射增温、电缆加热增温.最先进的是全土壤剖面增温(whole⁃soil profile warming),典型代表是美国的SPRUCE试验场(https://mnspruce.ornl.gov/),对深达3 m的泥炭柱进行增温,最大增温幅度是9 ℃;增温实验开始于2014年,预计运行10年(Krassovski et al., 2015).

2.1 深度响应差异

对于开顶箱增温,虽然只能升温约1~2 ℃,但已开展的实验显示,增温后土壤异养呼吸产生的CO2通量显著上升,验证了泥炭碳库对温度的敏感性(Dorrepaal et al., 2009Yang et al., 2014).不过,大部分研究都只监测了地气界面或近地大气的CO2通量,而没有测试异养呼吸产生的CO214C含量,因而无法对CO2的来源深度进行辨析.在SPRUCE实验中,加热的深度大,升温幅度高,持续时间长,是开展深部碳库稳定性研究的理想场所(Krassovski et al., 2015).加热13个月后的结果显示,表层泥炭孔隙水中的CH4浓度上升,而深层溶解的CO2和CH4的Δ14C值变化不明显,这一结果支持了深部碳库对升温不敏感的观点(Wilson et al., 2016).然而,加热5年后实验结果发生了非常显著的变化,CH4浓度在全剖面都显著上升,其Δ14C值在加热5年后也逐渐偏负,反映出深层泥炭厌氧呼吸增强(Hopple et al., 2020).不同加热年份之间的差异,可能是泥炭地深部碳库对增温响应的滞后性导致的.通过端元模型估算,加热7年后,深部呼吸所利用的碳有35%~40%来自泥炭分解,显著高于基线状态的20%~25%贡献率(Wilson et al., 2021a).

总的来看,泥炭全剖面都对升温敏感,特别是氧化层,在较小幅度的升温条件下,泥炭分解显著加快,是CO2和CH4等代谢产物贡献的主要层位(Hopple et al., 2020Wilson et al., 2021a).归一到每升温1 ℃,SPRUCE全土壤剖面增温实验揭示出碳损失高达31.3 g·C·m-2a-1Hanson et al., 2020),是历史时期泥炭碳累积速率的数倍至十多倍.不同于氧化层,缺氧层需要经历较大的升温幅度和较长的持续时间,它的碳库分解才会有明显的提升.如果叠加水位下降或植物的影响,深部泥炭的分解有可能被加速,具体见下文的讨论.

2.2 CH4/CO2比值

除了不同深度响应的差异性,SPRUCE全土壤剖面增温实验的另一个重要发现是,CH4/CO2比值随着升温而增大(Hopple et al., 2020Wilson et al., 2021b).这种变化是特别值得引起注意的,由于CH4的温室效应明显强于CO2,因此会增加泥炭地的升温潜势.对于CH4/CO2比值增加的原因目前仍在探究中.一种可能的解释是,深部的泥炭微生物群落,特别是产甲烷菌,其最适生长温度是30 ℃,因而需要温度接近最适温度后才有显著的响应(Hopple et al., 2020).此外,终端电子受体的供给是控制CH4/CO2比值的关键因素.深层泥炭地降解程度大于表层泥炭,因而通常表现出终端电子不足,更适宜产CH4.在升温的影响下,终端电子供给的限制性可能会更显著,由此导致CH4/CO2比值增加(Wilson et al., 2021b).最近,一项全球湿地的荟萃分析中,Hu et al.(2024)提出湿地CH4/CO2比值的温度依赖性取决于底物的C∶N比值.

能否将SPRUCE增温实验发现的CH4/CO2比值增大外推到自然状态?在类似于SPRUCE这样的增温实验中,主要考虑的是升温,后期还增加了CO2浓度倍增的控制实验.但如果同时考虑水位,可能在技术上增加了非常大的难度.增温能够通过影响蒸散发使得泥炭地水位下降,进而影响到表层的甲烷氧化速率,这里是调节泥炭地CH4排放的关键区域(Evans et al., 2021Yang et al., 2022).在SPRUCE实验运行过程中,实验样地的水位变化比较弱,可能是增温和实际降雨量变化共同影响的结果(Baysinger et al., 2022).如何区分出温度的直接影响和通过蒸散发产生的间接影响,是一项值得考虑的挑战.

2.3 化学组成响应

需要注意的是,同样是在SPRUCE试验场,有研究人员观测到泥炭化学组成对升温的响应不明显(Baysinger et al., 2022Roth et al., 2023).一项在冻土泥炭地开展的工作也显示,从代谢产物通量上推测,冻融作用使得深部碳损失19%,但深部碳的化学性质变化并不明显(Harris et al., 2023).红外光谱(FTIR)的特征显示,高纬度泥炭具有更高的碳水化合物比率(Hodgkins et al., 2018),这属于较高标称氧化态的碳(nominal oxidation state of carbon,简称NOSC; LaRowe and van Cappellen, 2011),更容易被微生物所利用.为何FTIR结果(化学组成变化不明显)与基于代谢产物(排放量大幅增加)得到的认识不一致?原因尚不清楚,有可能是由于技术方法的差异,FTIR主要反映的是泥炭化学成分的整体变化.此外,还需要考虑DOC与固体泥炭响应的差异.DOC作为泥炭柱中CO2、CH4等代谢产物的主要碳源,以表层输入为主,对深层碳的影响程度有限.

3 水位下降对碳库的影响

水位是控制泥炭地碳循环的最重要因素(Limpens et al., 2008Evans et al., 2021Loisel et al., 2021).伴随着全球变暖,一些地区被预测将会更频繁的发生干旱,而且极端气候事件的频次会增加(Stirling et al., 2020).除了气候变化引起的水位下降,人类活动,特别是排水,也是影响泥炭地碳库稳定性的重要因素.一项新的荟萃分析显示,全球因排水引起的泥炭地CO2释放总量占到了全球人为排放量的约5%(Ma et al., 2022).

3.1 水位调节实验

水位调节实验已经在全球范围内被广泛开展,关于水位下降对泥炭地碳循环影响的综述文章也有不少(Stirling et al., 2020Zhong et al., 2020Salimi et al., 2021Yang et al., 2022Cui et al., 2024).现代观测普遍显示,水位下降会严重地威胁泥炭碳库的稳定性,触发大量的CO2释放.不过,鲜有研究去关注CO2的来源深度.受实际情况的限制,目前前人在野外主要观测一些短期的干旱,对持续数年甚至更长时间的观测偏少,极端条件下的观测更少(Zhong et al., 2020).

除此之外,水位下降还能通过诱发火灾来间接地影响泥炭碳库的稳定性.火灾是影响热带泥炭地和北方泥炭地碳库稳定性的重要因素(Turetsky et al., 2015).以1997年印尼泥炭地火灾为例,超强厄尔尼诺,造成泥炭地发生严重火灾,释放的CO2总量占到全球人为CO2排放总量的近10%(Page et al., 2002).2015年厄尔尼诺事件促进了印尼泥炭地发生火灾,火灾来源的气溶胶对应的泥炭碳库周转时间约800 a,表明火灾不仅烧掉了表层泥炭,有相当部分的深部碳也被燃烧(Wiggins et al., 2018).

在同时考虑升温和水位调节的情况下,实验数据大多支持水位是泥炭碳库稳定性的主控因素(White et al., 2008Laine et al., 2019Yang et al., 2014Goodrich et al., 2015).例如,在若尔盖泥炭地开展的一项中宇宙实验中,单纯的升温能够显著地增加CH4的排放,但同时考虑升温和减少降雨,观测到的结果却是CH4排放的显著降低(Yang et al., 2014).此外,观测数据支持水位调控着泥炭地代谢产物对温度的敏感性(Laine et al., 2019).一项针对广泛意义上湿地的新近荟萃分析显示,湿地水位与CH4排放温度敏感性呈正相关关系,而与CO2排放的温度敏感性关系不显著(Chen et al., 2021).

3.2 地质记录

地质记录能够提供极端干旱条件下碳库稳定性的相似情景.对刚果河流域的一处全新世泥炭柱的研究表明,在湿润撒哈拉阶段的结束期,区域发生了严重的干旱,造成泥炭沉积速率显著降低,沉积下来的泥炭表现出强降解特征.让人惊奇的是,这次干旱还影响到了干旱事件之前堆积的泥炭层,使得距今7~5 ka累积的泥炭的表观积累速率也降低.根据估算,可能损失了2.36~3.68 m厚的泥炭(Garcin et al., 2022).这足以表明严重干旱事件对泥炭碳库的影响程度,在极端干旱条件下泥炭地会变成“碳炸弹”.

中国亚热带地区一些山地泥炭地碳累积速率数据显示,全新世干旱阶段的碳累积比湿润阶段更大(张明明等,2021).这些山地泥炭地发育于洼地,在降水充沛的条件下,容易积水成湖;反之,适度的干旱有利于泥炭地发育和泥炭堆积.不过,目前并不清楚干旱程度与碳累积的量化关系,也不清楚植被类型在其中的作用.这也暗示着,水位下降或干旱对泥炭地碳库影响有可能存在着双面性,值得特别关注.

4 植物的调控作用

成炭植物是泥炭地生态系统的关键成员,泥炭藓被称为泥炭地生态系统的工程师.泥炭植物能够直接和间接地影响泥炭碳库对气候变化的响应.不同类型植物的化学成分差异明显,特别是泥炭藓,它因含有一定量的泥炭酸(sphagnum acid)而难以降解.在鄂西开展的泥炭藓分解实验中,经过1 a后,泥炭藓的质量残留量高于85%,而其他植物的残留量低于80%(刘雪飞等,2020).植物化学成分的差异会被继承到泥炭中,影响着后者的碳质量.泥炭藓没有根,而维管束植物的维管和根系起到了连接近地大气和浅层泥炭的桥梁.一方面,能够把氧气导入浅层泥炭,形成独特的根际微生物;另一方面,维管束能够将浅层的代谢产物直接排放到大气中.

在一项温带雨养泥炭地CH4观测中,14C证据显示,CH4的表观年龄变化较大,既有现代的,也有明显偏老的(~1 400 a BP)(Garnett et al., 2020).在另一项泥炭呼吸CO213C和14C研究中,研究人员根据端元模型推测,维管束植物能够将缺氧层的代谢产物(14C年龄推测是 ~2 000 a BP)导入近地大气中(Hardie et al., 2009).

在增温或水位下降实验中,也观察到了维管束植物的调控作用(Ward et al., 2013).这种现象并不发生在泥炭藓覆盖的泥炭,主要是发生在苔草、矮灌木覆盖处(Walker et al., 2016).在水位下降实验中,发现在有苔草覆盖、水位降低的样地中,代谢产物利用的是核爆峰值出现之前的碳(Stuart et al., 2023).上述现象的可能机制是,维管束植物根系分泌物或凋落物能够直接进入土层内部,特别是以DOC的形式.这种新鲜的有机质能够引起激发效应(priming effect;Poirier et al., 2018),促进老碳的降解.类似的机制也被发现于矿质土壤中,新鲜碳的输入能够激发次表层碳的分解(Fontaine et al., 2007).

5 代谢产物再利用

从上面的分析可以看出,自然条件下,泥炭中代谢产物的排放量是较大的.当遇到升温、干旱等扰动时,呼吸通量大幅上升,CH4释放量在升温条件下增加显著.这些代谢产物在从土体向大气传输的过程中,是否会被土体内的微生物和地表成炭植物所利用,这是非常值得关注的问题.如果能证实,那将揭示出一种或多种负反馈机制,调节着干扰条件下的碳释放量.不过,从现有的研究来看,可靠的证据非常有限,导致人们对泥炭地代谢产物再利用的认识非常薄弱.

5.1 碳库效应

按常规的想法,泥炭主要来自植物地上和地下部分的贡献,虽然有微生物的改造或微生物生物量的输入,但主要是沉积形成时期的新碳,应该不存在类似于湖泊那样的碳库效应(carbon reservoir).不过,在早期的一些研究中,学者们观察到了泥炭14C年龄与树轮校正曲线的变化模式相似,但泥炭的14C年龄偏老,认为是利用了来自CH4氧化产生的老碳(Kilian et al., 1995),也有学者认为是大量地利用了来自呼吸作用的CO2Pancost et al., 2000).不过,随后的研究并不支持雨养型泥炭地存在较为明显的碳库效应(Blaauw et al., 2004).

5.2 泥炭藓利用代谢产物

泥炭地地表的CO2浓度只是略高于正常大气的水平,不足以维持泥炭藓泥炭地的较高初级生产力.而在泥炭内部,孔隙水中溶解的CO2浓度远高于大气(Clymo and Bryant, 2008Taillardat et al., 2022).当发生干旱时,泥炭地异养呼吸快速增大,会排放更多的CO2Dorrepaal et al., 2009).由此带来一个非常值得关注的问题,生长在地表层的泥炭藓是否会利用自下而上输送的CO2

针对泥炭藓利用代谢产物的问题,学者们从碳同位素显著偏负、内共生噬甲烷菌等多个方面开展了探索.Price et al.(1997)发现,生长在较为潮湿的丘间(hollow)的泥炭藓,其叶片纤维素碳同位素组成变化范围非常大,部分值比岗(hummock)顶生长泥炭藓的值更偏负,这无法用C3植物碳同位素模型来解释.随后,Smolders et al.(2001)通过室内模拟发现,生长在较高溶解CO2水体中的Sphagnum magellanicum展现了更大的初级生产率,揭示出来自基底呼吸产生的CO2的重要性.随后,泥炭藓内共生噬甲烷菌的发现,为代谢产物再利用提供了新的视角.分子生物学和碳同位素标记实验显示,泥炭藓光合作用固定的CO2有10%~15%(Raghoebarsing et al., 2005)甚至35%(Kip et al., 2010)来自甲烷氧化过程.

笔者在鄂西泥炭藓泥炭地开展的中链烷烃单体碳同位素研究也为泥炭藓利用来自CH4的碳提供了重要证据.在泥炭地水坑中生长的泥炭藓,其下部C23和C25烷烃单体碳同位素比上部偏负,可能是下部能接触到更多的CH4,因而同化了相对多的来自CH4的碳(Huang et al., 2012).在神农架大九湖,新鲜泥炭藓的C23正构烷烃单体碳同位素与水位埋深负相关,而表层泥炭的C23和C25正构烷烃单体碳同位素与水位埋深正相关,揭示出来自嗜甲烷菌的同位素信号可以保存于泥炭沉积中,有潜力用来反演地质历史时期嗜甲烷过程的变化(Nichols et al., 2009Huang et al., 2014).

5.3 维管束植物利用分解产生的CO2

不同于泥炭藓,比较确切的维管束植物利用分解产生的CO2的研究案例非常稀少.一方面是技术方法需要改进,另一方面也和土壤呼吸产生的CO2主要来自表层的好氧呼吸有关(Crow et al., 2005).在表层,呼吸利用的碳主要来自根的凋落物和根系分泌物,它们来自光合作用,表现为年轻的14C特征.即使是来自泥炭地分解产物,由于好氧层堆积历史不长,代谢产物的14C值不会显著偏负,当它与好氧呼吸产物混合时,14C特征会变得更不明显.

在神农架大九湖全新世泥炭沉积中开展的一项多脂类稳定碳同位素研究,为探索维管束植物利用分解产生的CO2提供了新的视角.在长江中游地区,中全新世干湿古气候的显著特征是长期的干旱(Xie et al., 2013Zhu et al., 2017).对于陆生C3植物,干旱时叶蜡烷烃δ13C会变正.但在大九湖ZK⁃5中,中全新世出现了多次的长链烷烃δ13C显著偏负现象,发生于干旱阶段;而且,随着干旱频次的增多,长链烷烃δ13C偏负的幅度更大(Huang et al., 2018).同一套样品中,来自好氧细菌的C29 ββ藿烷的δ13C值在干旱阶段显著偏负,甚至<-40‰,应该是和利用了来自CH4的碳有关.综合好氧细菌和维管束植物的数据,笔者提出了在干旱阶段泥炭植物光合作用可能利用了来自泥炭分解产生的CO2、且老碳利用率存在着累积效应的新认识(Huang et al., 2018).

6 研究展望

6.1 代谢产物原位观测

现有的研究已经充分说明,泥炭表层碳库对气候变化非常敏感.对于深部碳库,目前的证据还比较零散,主要还是来自美国SPRUCE试验场的全土壤剖面增温实验,属于增温幅度非常大的情景.在可预见的未来,全土壤剖面增温仍将是发展的重点方向.与此同时,需要发展代谢产物原位观测技术,针对控制条件实验样地或者极端气候事件发生时的自然泥炭地,重点关注深部碳库.直接的途径,可以对深部开展同位素标记,包括13C和2H标记.Dorodnikov et al.(2022)提出了一种可行的深部13C标记实验方法.除了同位素标记,磷脂脂肪酸(PLFAs)分子组成和碳同位素分析也是值得关注的技术(张一鸣等,2021).PLFAs记录的是活体微生物群落结构和代谢活性,结合单分子(compound⁃specific)或单组分(compound class)放射性碳同位素分析,就能够了解深部微生物的活跃程度和碳源.除了PLFAs,其他微生物脂类也值得关注,不过需要区分活体记录与化石记录.除了直接的观测,还可以对泥炭地出水开展代谢产物浓度和14C分析.目前已有很多学者对泥炭地下游溪水开展了此类研究(Garnett et al., 2012Campeau et al., 2017).

6.2 极端气候事件的地质记录

过去是了解未来的钥匙(Lamentowicz et al., 2019).除了现代过程调查,还需要开展地质历史时期极端气候事件对碳库稳定性及老碳利用率的影响.这可以作为应对未来极端气候事件的借鉴.从SPRUCE实验场的结果来看,观测时间是一项需要着重考虑的因素.在较短的时间内,生态系统的状态并没有达到平衡,观测到的可能是瞬态变化的信号(Wilson et al., 2016);持续观测,可以发现泥炭地生态系统对升温等变化的响应具有滞后性(Hopple et al., 2020).在一些情况下,生态系统对全球变化的响应可能会相对缓慢,需要较长的时间才能表现出来(Melillo et al., 2017Machmuller et al., 2024).更为重要的是,结合地质记录和模拟,有助于阐明泥炭地碳库对气候变化响应的临界点(tipping point),服务于泥炭地碳循环管理(Pancost, 2024).例如,Garcin et al.(2022)的研究揭示出,当发生严重干旱,或者气候系统跨越某个或某些阈值时,泥炭的分解将会显著地提速.

6.3 响应与反馈机制

泥炭地生态系统中水文条件和碳循环高度耦合,植被是其中的重要调节因素.在自然条件下,泥炭藓与维管束植物对碳循环的影响差异明显.但在气候条件发生变化的背景下,植被生活型的影响将会明显增强.例如,SPRUCE增温实验发现,随着增温的进行,泥炭中的细根(fine root)快速增多,特别是灌木的细根(Malhotra et al., 2020Duchesneau et al., 2024).细根的增多能够通过根系呼吸和根际微生物途径影响泥炭碳库稳定性.在更长时间尺度,升温或水位下降能够引起植被类型的变化,包括泥炭藓的减少、维管束植物特别是灌木的增多.这将从初级生产力、土壤呼吸、根际微生物活性等多个方面对泥炭碳库稳定性产生影响.因此,需要查明气候变化条件下泥炭碳库响应与反馈机制,包括代谢产物再利用的比率及控制因素、植物对升温或水位下降条件下老碳释放的影响、CH4/CO2比值随温度升高的机制等.在响应与反馈机制研究中,除了关注植被的影响,还需重视微生物特别是异养微生物的作用.异养微生物脂类(包括藿类,来自细菌的四醚膜脂等)14C分析是破解气候变化条件下泥炭柱内部代谢产物产生、传输、利用过程和控制因素的重要工具.

参考文献

[1]

Baysinger, M. R., Wilson, R. M., Hanson, P. J., et al., 2022. Compositional Stability of Peat in Ecosystem⁃Scale Warming Mesocosms. PLoS One, 17(3): e0263994. https://doi.org/10.1371/journal.pone.0263994

[2]

Blaauw, M., van der Plicht, J., van Geel, B., 2004. Radiocarbon Dating of Bulk Peat Samples from Raised Bogs: Non⁃Existence of a Previously Reported ‘Reservoir Effect’? Quaternary Science Reviews, 23(14-15): 1537-1542. https://doi.org/10.1016/j.quascirev.2004.04.002

[3]

Bridgham, S. D., Cadillo⁃Quiroz, H., Keller, J. K., et al., 2013. Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Global Change Biology, 19(5): 1325-1346. https://doi.org/10.1111/gcb.12131

[4]

Campeau, A., Bishop, K. H., Billett, M. F., et al., 2017. Aquatic Export of Young Dissolved and Gaseous Carbon from a Pristine Boreal Fen: Implications for Peat Carbon Stock Stability. Global Change Biology, 23(12): 5523-5536. https://doi.org/10.1111/gcb.13815

[5]

Chanton, J. P., Glaser, P. H., Chasar, L. S., et al., 2008. Radiocarbon Evidence for the Importance of Surface Vegetation on Fermentation and Methanogenesis in Contrasting Types of Boreal Peatlands. Global Biogeochemical Cycles, 22(4): GB4022. https://doi.org/10.1029/2008GB003274

[6]

Chen, H. Y., Xu, X., Fang, C. M., et al., 2021. Differences in the Temperature Dependence of Wetland CO2 and CH4 Emissions Vary with Water Table Depth. Nature Climate Change, 11: 766-771. https://doi.org/10.1038/s41558⁃021⁃01108⁃4

[7]

Clymo, R. S., 1984. The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society B⁃Biological Sciences, 303: 605-654.

[8]

Clymo, R. S., Bryant, C. L., 2008. Diffusion and Mass Flow of Dissolved Carbon Dioxide, Methane, and Dissolved Organic Carbon in a 7 m Deep Raised Peat Bog. Geochimica et Cosmochimica Acta, 72(8): 2048-2066. https://doi.org/10.1016/j.gca.2008.01.032

[9]

Crow, S. E., Wieder, R. K., 2005. Sources of CO2 Emission from a Northern Peatland: Root Respiration, Exudation, and Decomposition. Ecology, 86(7): 1825-1834. https://doi.org/10.1890/04⁃1575

[10]

Crump, J., 2017. Smoke on Water⁃Countering Global Threats From Peatland Loss and Degradation. A UNEP Rapid Response Assessment. United Nations Environment Programme and GRID⁃Arendal, Nairobi and Arendal. https://www.unep.org/resources/publication/smoke⁃water⁃countering⁃global⁃threats⁃peatland⁃loss⁃ and⁃degradation⁃rapid

[11]

Cui, S. H., Liu, P. F., Guo, H. N., et al., 2024. Wetland Hydrological Dynamics and Methane Emissions. Communications Earth & Environment, 5: 470. https://doi.org/10.1038/s43247⁃024⁃01635⁃w

[12]

Dorodnikov, M., Knorr, K. H., Fan, L., et al., 2022. A Novel Belowground In⁃Situ Gas Labeling Approach: CH4 Oxidation in Deep Peat Using Passive Diffusion Chambers and 13C Excess. Science of the Total Environment, 806: 150457. https://doi.org/10.1016/j.scitotenv.2021.150457

[13]

Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., et al., 2009. Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic. Nature, 460: 616-619. https://doi.org/10.1038/nature08216

[14]

Duchesneau, K., Defrenne, C. E., Petro, C., et al., 2024. Responses of Vascular Plant Fine Roots and Associated Microbial Communities to Whole⁃Ecosystem Warming and Elevated CO2 in Northern Peatlands. New Phytologist, 242(3): 1333-1347. https://doi.org/10.1111/nph.19690

[15]

Evans, C. D., Peacock, M., Baird, A. J., et al., 2021. Overriding Water Table Control on Managed Peatland Greenhouse Gas Emissions. Nature, 593(7860): 548-552. https://doi.org/10.1038/s41586⁃021⁃03523⁃1

[16]

Fontaine, S., Barot, S., Barré, P., et al., 2007. Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature, 450(7167): 277-280. https://doi.org/10.1038/nature06275

[17]

Garcin, Y., Schefuß, E., Dargie, G. C., et al., 2022. Hydroclimatic Vulnerability of Peat Carbon in the Central Congo Basin. Nature, 612(7939): 277-282. https://doi.org/10.1038/s41586⁃022⁃05389⁃3

[18]

Garnett, M. H., Hardie, S. M. L., Murray, C., 2012. Radiocarbon Analysis of Methane Emitted from the Surface of a Raised Peat Bog. Soil Biology and Biochemistry, 50: 158-163. https://doi.org/10.1016/j.soilbio.2012.03.018

[19]

Garnett, M. H., Hardie, S. M. L., Murray, C., 2020. Radiocarbon Analysis Reveals that Vegetation Facilitates the Release of Old Methane in a Temperate Raised Bog. Biogeochemistry, 148(1): 1-17. https://doi.org/10.1007/s10533⁃020⁃00638⁃x

[20]

Goodrich, J. P., Campbell, D. I., Roulet, N. T., et al., 2015. Overriding Control of Methane Flux Temporal Variability by Water Table Dynamics in a Southern Hemisphere, Raised Bog. Journal of Geophysical Research: Biogeosciences, 120(5): 819-831. https://doi.org/10.1002/2014jg002844

[21]

Hanson, P. J., Griffiths, N. A., Iversen, C. M., et al., 2020. Rapid Net Carbon Loss from a Whole⁃Ecosystem Warmed Peatland. AGU Advances, 1(3): e2020AV000163. https://doi.org/10.1029/2020av000163

[22]

Hardie, S. M. L., Garnett, M. H., Fallick, A. E., et al., 2009. Bomb⁃14C Analysis of Ecosystem Respiration Reveals that Peatland Vegetation Facilitates Release of Old Carbon. Geoderma, 153: 393-401. https://doi.org/10.1016/j.geoderma.2009.09.002

[23]

Harris, L. I., Olefeldt, D., Pelletier, N., et al., 2023. Permafrost Thaw Causes Large Carbon Loss in Boreal Peatlands while Changes to Peat Quality Are Limited. Global Change Biology, 29(19): 5720-5735. https://doi.org/10.1111/gcb.16894

[24]

Hodgkins, S. B., Richardson, C. J., Dommain, R., et al., 2018. Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance. Nature Communications, 9(1): 3640. https://doi.org/10.1038/s41467⁃018⁃06050⁃2

[25]

Hopple, A. M., Wilson, R. M., Kolton, M., et al., 2020. Massive Peatland Carbon Banks Vulnerable to Rising Temperatures. Nature Communications, 11(1): 2373. https://doi.org/10.1038/s41467⁃020⁃16311⁃8

[26]

Hu, H., Chen, J., Zhou, F., et al., 2024. Relative Increases in CH4 and CO2 Emissions from Wetlands under Global Warming Dependent on Soil Carbon Substrates. Nature Geoscience, 17: 26-31. https://doi.org/10.1038/s41561⁃023⁃01345⁃6

[27]

Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. Response of Carbon Cycle to Drier Conditions in the Mid⁃Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467⁃018⁃03804⁃w

[28]

Huang, X., Xue, J., Meyers, P. A., et al., 2014. Hydrologic influence on the δ13C variation in Long Chain n⁃Alkanes in the Dajiuhu Peatland, Central China. Organic Geochemistry, 69: 114-119. https://doi.org/10.1016/j.orggeochem.2014.01.016

[29]

Huang, X., Xue, J., Zhang, J., et al., 2012. Effect of Different Wetness Conditions on Sphagnum Lipid Composition in the Erxianyan Peatland, Central China. Organic Geochemistry, 44: 1-7. https://doi.org/10.1016/j.orggeochem.2011.12.005

[30]

IUCN, 2021. Peatlands and Climate Change. https://iucn.org/sites/default/files/2022⁃04/iucn_issues_brief_peatlands_and_climate_change_final_nov21.pdf

[31]

Kilian, M. R., Van der Plicht, J., Van Geel, B., 1995. Dating Raised Bogs: New Aspects of AMS 14C Wiggle Matching, a Reservoir Effect and Climatic Change. Quaternary Science Reviews, 14(10): 959-966. https://doi.org/10.1016/0277⁃3791(95)00081⁃X

[32]

Kip, N., van Winden, J. F., Pan, Y., et al., 2010. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat⁃Moss Ecosystems. Nature Geoscience, 3: 617-621. https://doi.org/10.1038/ngeo939

[33]

Krassovski, M. B., Riggs, J. S., Hook, L. A., et al., 2015. A Comprehensive Data Acquisition and Management System for an Ecosystem⁃Scale Peatland Warming and Elevated CO2 Experiment. Geoscientific Instrumentation, Methods and Data Systems, 4(2): 203-213. https://doi.org/10.5194/gi⁃4⁃203⁃2015

[34]

Laine, A. M., Mäkiranta, P., Laiho, R., et al., 2019. Warming Impacts on Boreal Fen CO2 Exchange under Wet and Dry Conditions. Global Change Biology, 25(6): 1995-2008. https://doi.org/10.1111/gcb.14617

[35]

Lamentowicz, M., Gałka, M., Marcisz, K., et al., 2019. Unveiling Tipping Points in Long⁃Term Ecological Records from Sphagnum⁃Dominated Peatlands. Biology Letters, 15(4): 20190043.https://doi.org/10.1098/rsbl.2019.0043[PubMed]

[36]

Lamentowicz, M., Słowińska, S., Słowiński, M., et al., 2016. Combining Short⁃Term Manipulative Experiments with Long⁃Term Palaeoecological Investigations at High Resolution to Assess the Response of Sphagnum Peatlands to Drought, Fire and Warming. Mires and Peat, 18(20): 1-17

[37]

LaRowe, D. E., Van Cappellen, P., 2011. Degradation of Natural Organic Matter: A Thermodynamic Analysis. Geochimica et Cosmochimica Acta, 75(8): 2030-2042. https://doi.org/10.1016/j.gca.2011.01.020

[38]

Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications: A Synthesis. Biogeosciences, 5(5): 1475-1491. https://doi.org/10.5194/bg⁃5⁃1475⁃2008

[39]

Lin, X. J., Tfaily, M. M., Steinweg, J. M., et al., 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 80(11): 3518-3530. https://doi.org/10.1128/aem.00205⁃14

[40]

Liu, X. F., Wu, L., Wang, H., et al., 2020. Growth and Decomposition Characteristics of Sphagnum in a Subalpine Wetland, Southwestern Hubei, China. Chinese Journal of Plant Ecology, 44(3): 228-235 (in Chinese with English abstract).

[41]

Loisel, J., Gallego⁃Sala, A. V., Amesbury, M. J., et al., 2021. Expert Assessment of Future Vulnerability of the Global Peatland Carbon Sink. Nature Climate Change, 11: 70-77. https://doi.org/10.1038/s41558⁃020⁃00944⁃0

[42]

Ma, X. Y., Xu, H., Cao, Z. Y., et al., 2022. Will Climate Change Cause the Global Peatland to Expand or Contract? Evidence from the Habitat Shift Pattern of Sphagnum Mosses. Global Change Biology, 28(21): 6419-6432. https://doi.org/10.1111/gcb.16354

[43]

Machmuller, M. B., Lynch, L. M., Mosier, S. L., et al., 2024. Arctic Soil Carbon Trajectories Shaped by Plant⁃Microbe Interactions. Nature Climate Change, 14: 1178-1185. https://doi.org/10.1038/s41558⁃024⁃02147⁃3

[44]

Malhotra, A., Brice, D. J., Childs, J., et al., 2020. Peatland Warming Strongly Increases Fine⁃Foot Growth. Proceedings of the National Academy of Sciences, 117 (30): 17627-17634. https://doi.org/10.1073/pnas.200336111

[45]

Melillo, J. M., Frey, S. D., DeAngelis, K. M., et al., 2017. Long⁃Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science, 358(6359): 101-105. https://doi.org/10.1126/science.aan2874

[46]

Nichols, J. E., Walcott, M., Bradley, R., et al., 2009. Quantitative Assessment of Precipitation Seasonality and Summer Surface Wetness Using Ombrotrophic Sediments from an Arctic Norwegian Peatland. Quaternary Research, 72: 443-451. https://doi.org/10.1016/j.yqres.2009.07.007

[47]

Page, S. E., Baird, A. J., 2016. Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41: 35-57. https://doi.org/10.1146/annurev⁃environ⁃110615⁃085520

[48]

Page, S. E., Siegert, F., Rieley, J. O., et al., 2002. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature, 420(6911): 61-65. https://doi.org/10.1038/nature01131

[49]

Pancost, R. D., 2024. Biomarker Carbon and Hydrogen Isotopes Reveal Changing Peatland Vegetation, Hydroclimate and Biogeochemical Tipping Points. Quaternary Science Reviews, 339: 108828. https://doi.org/10.1016/j.quascirev.2024.108828

[50]

Pancost, R. D., van Geel, B., Baas, M., et al., 2000. δ13C Values and Radiocarbon Dates of Microbial Biomarkers as Tracers for Carbon Recycling in Peat Deposits. Geology, 28(7): 663-666. https://doi.org/10.1130/0091⁃7613(2000)0280663: cvardo>2.3.co;2

[51]

Poirier, V., Roumet, C., Munson, A. D., 2018. The Root of the Matter: Linking Root Traits and Soil Organic Matter Stabilization Processes. Soil Biology and Biochemistry, 120: 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016

[52]

Price, G. D., McKenzie, J. E., Pilcher, J. R., et al., 1997. Carbon⁃Isotope Variation in Sphagnum from Hummock⁃Hollow Complexes: Implications for Holocene Climate Reconstruction. The Holocene, 7(2): 229-233. https://doi.org/10.1177/095968369700700211

[53]

Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., et al., 2005. Methanotrophic Symbionts Provide Carbon for Photosynthesis in Peat Bogs. Nature, 436(7054): 1153-1156. https://doi.org/10.1038/nature03802

[54]

Roth, S. W., Griffiths, N. A., Kolka, R. K., et al., 2023. Elevated Temperature Alters Microbial Communities, but not Decomposition Rates, during 3 Years of in Situ peat Decomposition. mSystems, 8(5): e00337-23. https://doi.org/10.1128/msystems.00337⁃23

[55]

Salimi, S., Almuktar, S. A. A. A. N., Scholz, M., 2021. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. Journal of Environmental Management, 286: 112160. https://doi.org/10.1016/j.jenvman.2021.112160

[56]

Smolders, A. J. P., Tomassenm, H. B. M., Pijnappelm, H. W., et al., 2001. Substrate‐Derived CO2 is Important in the Development of Sphagnum spp. New Phytologist, 152: 325-332. https://doi.org/10.1046/j.0028⁃646X.2001.00261.x

[57]

Stirling, E., Fitzpatrick, R. W., Mosley, L. M., 2020. Drought Effects on Wet Soils in Inland Wetlands and Peatlands. Earth⁃Science Reviews, 210: 103387. https://doi.org/10.1016/j.earscirev.2020.103387

[58]

Stuart, J. E. M., Tucker, C. L., Lilleskov, E. A., et al., 2023. Evidence for Older Carbon Loss with Lowered Water Tables and Changing Plant Functional Groups in Peatlands. Global Change Biology, 29(3): 780-793. https://doi.org/10.1111/gcb.16508

[59]

Taillardat, P., Bodmer, P., Deblois, C. P., et al., 2022. Carbon Dioxide and Methane Dynamics in a Peatland Headwater Stream: Origins, Processes and Implications. Journal of Geophysical Research: Biogeosciences, 127(7): e2022JG006855. https://doi.org/10.1029/2022jg006855

[60]

Turetsky, M. R., Benscoter, B., Page, S., et al., 2015. Global Vulnerability of Peatlands to Fire and Carbon Loss. Nature Geoscience, 8: 11-14. https://doi.org/10.1038/ngeo2325

[61]

Walker, T. N., Garnett, M. H., Ward, S. E., et al., 2016. Vascular Plants Promote Ancient Peatland Carbon Loss with Climate Warming. Global Change Biology, 22(5): 1880-1889. https://doi.org/10.1111/gcb.13213

[62]

Ward, S. E., Ostle, N. J., Oakley, S., et al., 2013. Warming Effects on Greenhouse Gas Fluxes in Peatlands Are Modulated by Vegetation Composition. Ecology Letters, 16(10): 1285-1293. https://doi.org/10.1111/ele.12167

[63]

White, J. R., Shannon, R. D., Weltzin, J. F., et al., 2008. Effects of Soil Warming and Drying on Methane Cycling in a Northern Peatland Mesocosm Study. Journal of Geophysical Research: Biogeosciences, 113(G3): G00A06. https://doi.org/10.1029/2007JG000609

[64]

Wiggins, E. B., Czimczik, C. I., Santos, G. M., et al., 2018. Smoke Radiocarbon Measurements from Indonesian Fires Provide Evidence for Burning of Millennia⁃Aged Peat. Proceedings of the National Academy of Sciences, 115(49): 12419-12424. https://doi.org/10.1073/pnas.1806003115

[65]

Wilson, R. M., Griffiths, N. A., Visser, A., et al., 2021a. Radiocarbon Analyses Quantify Peat Carbon Losses with Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences, 126(11): e2021JG006511. https://doi.org/10.1029/2021JG006511

[66]

Wilson, R. M., Hopple, A. M., Tfaily, M. M., et al., 2016. Stability of Peatland Carbon to Rising Temperatures. Nature Communications, 7: 13723. https://doi.org/10.1038/ncomms13723

[67]

Wilson, R. M., Tfaily, M. M., Kolton, M., et al., 2021b. Soil Metabolome Response to Whole⁃Ecosystem Warming at the Spruce and Peatland Responses under Changing Environments Experiment. Proceedings of the National Academy of Sciences, 118(25): e2004192118. https://doi.org/10.1073/pnas.2004192118

[68]

Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon⁃Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1

[69]

Yang, G., Chen, H., Wu, N., et al., 2014. Effects of Soil Warming, Rainfall Reduction and Water Table Level on CH4 Emissions from the Zoigé Peatland in China. Soil Biology & Biochemistry, 78: 83-89. https://doi.org/10.1016/j.soilbio.2014.07.013

[70]

Yang, T., He, Q., Jiang, J., et al., 2022. Impact of Water Table on Methane Emission Dynamics in Terrestrial Wetlands and Implications on Strategies for Wetland Management and Restoration. Wetlands, 42(8): 120. https://doi.org/10.1007/s13157⁃022⁃01634⁃7

[71]

Yu, Z. C., 2011. Holocene Carbon Flux Histories of the World’s Peatlands. The Holocene, 21(5): 761-774. https://doi.org/10.1177/0959683610386982

[72]

Zhang, M. M., Huang, X. Y., Chen, X., 2021. Distribution Patterns and Controlling Factors of Peatlands in Subtropical Mountainous Areas of China. Wetland Science, 19(6): 753-761 (in Chinese with English abstract).

[73]

Zhang, Y. M., Huang, X. Y., Xie, S. C., 2021. Compound⁃Specific Carbon Isotope Compositions of Microbial Phospholipid Fatty Acids Reveal Carbon Cycling Processes. Quaternary Sciences, 41(4): 877-892 (in Chinese with English abstract).

[74]

Zhong, Y. H., Jiang, M., Middleton, B. A., 2020. Effects of Water Level Alteration on Carbon Cycling in Peatlands. Ecosystem Health and Sustainability, 6(1): 1806113. https://doi.org/10.1080/20964129.2020.1806113

[75]

Zhu, B., Chen, Y., 2020. Techniques and Methods for Field Warming Manipulation Experiments in Terrestrial Ecosystems. Chinese Journal of Plant Ecology, 44(4): 330-339 (in Chinese with English abstract).

[76]

Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO⁃Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852-857. https://doi.org/10.1073/pnas.1610930114

基金资助

国家自然科学基金项目(42472368)

湖北省地球科学基础学科研究中心重点项目(HRCES⁃202402)

AI Summary AI Mindmap
PDF (1395KB)

108

访问

0

被引

详细

导航
相关文章

AI思维导图

/