升温和水位下降对泥炭地碳库稳定性的影响
Influence of Warming and Water Level Drawdown on the Stability of Peatland Carbon Stock
,
泥炭地作为全球重要的碳汇,也是最重要的天然CH4排放源.气候变化如何影响泥炭碳库的稳定性,这是泥炭地碳循环研究的热点问题.本文综述了升温、水位下降等因素对泥炭地碳库稳定性的影响,还介绍了植被在升温、干旱等影响中的调节作用.现有的研究显示,泥炭地碳循环对温度变化非常敏感,其中氧化层的分解速率在小幅度升温下显著加快,而缺氧层则需要更大的温度提升和更长的时间才能显著分解.此外,升温导致CH4/CO2比值增大,这将会增大泥炭地的全球增温潜势.水位下降是影响泥炭地碳循环的关键因素,干旱事件不仅直接导致CO2释放,还可能通过火灾间接影响碳库稳定性.研究还表明,维管束植物能促进老碳的释放.未来的研究需要关注代谢产物的原位观测技术,极端气候事件的地质记录,以及气候变化条件下泥炭碳库的响应与反馈机制.
Peatlands play a crucial role in the global carbon cycle by storing carbon, but they are also a major source of methane emissions. Understanding how climate change affects the stability of carbon stores in peatlands is a key area of research. This review examines the effects of factors such as warming and fluctuations in water levels on the stability of carbon stores in peatlands, as well as the role of plants in responding to warming and drought. Research indicates that peatland carbon stocks are highly sensitive to warming, with decomposition rates increasing significantly in the aerobic layer with even slight temperature increases. The anaerobic layer requires greater temperature increases and longer periods to show significant decomposition. Warming also leads to an increase in the CH4/CO2 ratio, which can enhance the global warming potential of peatlands. Changes in water levels are a key factor affecting peatland carbon cycling, as drought events not only directly result in enhanced CO2 emissions but can also indirectly impact carbon store stability through wildfires. Studies have shown that vascular plants can also play a role in releasing old carbon. Future research should focus on developing in-situ observation techniques for metabolic products, examining geological records of extreme climate events, and understanding the response and feedback mechanisms of peatland carbon stores under changing climate conditions.
碳库稳定性 / 升温 / 水位下降 / 植物调控 / 代谢产物再利用 / 碳循环 / 气候变化.
stability of carbon stock / warming / water level drawdown / plant mediation / utilization of metabolic product / carbon cycle / climate change
| [1] |
Baysinger, M. R., Wilson, R. M., Hanson, P. J., et al., 2022. Compositional Stability of Peat in Ecosystem⁃Scale Warming Mesocosms. PLoS One, 17(3): e0263994. https://doi.org/10.1371/journal.pone.0263994 |
| [2] |
Blaauw, M., van der Plicht, J., van Geel, B., 2004. Radiocarbon Dating of Bulk Peat Samples from Raised Bogs: Non⁃Existence of a Previously Reported ‘Reservoir Effect’? Quaternary Science Reviews, 23(14-15): 1537-1542. https://doi.org/10.1016/j.quascirev.2004.04.002 |
| [3] |
Bridgham, S. D., Cadillo⁃Quiroz, H., Keller, J. K., et al., 2013. Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales. Global Change Biology, 19(5): 1325-1346. https://doi.org/10.1111/gcb.12131 |
| [4] |
Campeau, A., Bishop, K. H., Billett, M. F., et al., 2017. Aquatic Export of Young Dissolved and Gaseous Carbon from a Pristine Boreal Fen: Implications for Peat Carbon Stock Stability. Global Change Biology, 23(12): 5523-5536. https://doi.org/10.1111/gcb.13815 |
| [5] |
Chanton, J. P., Glaser, P. H., Chasar, L. S., et al., 2008. Radiocarbon Evidence for the Importance of Surface Vegetation on Fermentation and Methanogenesis in Contrasting Types of Boreal Peatlands. Global Biogeochemical Cycles, 22(4): GB4022. https://doi.org/10.1029/2008GB003274 |
| [6] |
Chen, H. Y., Xu, X., Fang, C. M., et al., 2021. Differences in the Temperature Dependence of Wetland CO2 and CH4 Emissions Vary with Water Table Depth. Nature Climate Change, 11: 766-771. https://doi.org/10.1038/s41558⁃021⁃01108⁃4 |
| [7] |
Clymo, R. S., 1984. The Limits to Peat Bog Growth. Philosophical Transactions of the Royal Society B⁃Biological Sciences, 303: 605-654. |
| [8] |
Clymo, R. S., Bryant, C. L., 2008. Diffusion and Mass Flow of Dissolved Carbon Dioxide, Methane, and Dissolved Organic Carbon in a 7 m Deep Raised Peat Bog. Geochimica et Cosmochimica Acta, 72(8): 2048-2066. https://doi.org/10.1016/j.gca.2008.01.032 |
| [9] |
Crow, S. E., Wieder, R. K., 2005. Sources of CO2 Emission from a Northern Peatland: Root Respiration, Exudation, and Decomposition. Ecology, 86(7): 1825-1834. https://doi.org/10.1890/04⁃1575 |
| [10] |
Crump, J., 2017. Smoke on Water⁃Countering Global Threats From Peatland Loss and Degradation. A UNEP Rapid Response Assessment. United Nations Environment Programme and GRID⁃Arendal, Nairobi and Arendal. https://www.unep.org/resources/publication/smoke⁃water⁃countering⁃global⁃threats⁃peatland⁃loss⁃ and⁃degradation⁃rapid |
| [11] |
Cui, S. H., Liu, P. F., Guo, H. N., et al., 2024. Wetland Hydrological Dynamics and Methane Emissions. Communications Earth & Environment, 5: 470. https://doi.org/10.1038/s43247⁃024⁃01635⁃w |
| [12] |
Dorodnikov, M., Knorr, K. H., Fan, L., et al., 2022. A Novel Belowground In⁃Situ Gas Labeling Approach: CH4 Oxidation in Deep Peat Using Passive Diffusion Chambers and 13C Excess. Science of the Total Environment, 806: 150457. https://doi.org/10.1016/j.scitotenv.2021.150457 |
| [13] |
Dorrepaal, E., Toet, S., van Logtestijn, R. S. P., et al., 2009. Carbon Respiration from Subsurface Peat Accelerated by Climate Warming in the Subarctic. Nature, 460: 616-619. https://doi.org/10.1038/nature08216 |
| [14] |
Duchesneau, K., Defrenne, C. E., Petro, C., et al., 2024. Responses of Vascular Plant Fine Roots and Associated Microbial Communities to Whole⁃Ecosystem Warming and Elevated CO2 in Northern Peatlands. New Phytologist, 242(3): 1333-1347. https://doi.org/10.1111/nph.19690 |
| [15] |
Evans, C. D., Peacock, M., Baird, A. J., et al., 2021. Overriding Water Table Control on Managed Peatland Greenhouse Gas Emissions. Nature, 593(7860): 548-552. https://doi.org/10.1038/s41586⁃021⁃03523⁃1 |
| [16] |
Fontaine, S., Barot, S., Barré, P., et al., 2007. Stability of Organic Carbon in Deep Soil Layers Controlled by Fresh Carbon Supply. Nature, 450(7167): 277-280. https://doi.org/10.1038/nature06275 |
| [17] |
Garcin, Y., Schefuß, E., Dargie, G. C., et al., 2022. Hydroclimatic Vulnerability of Peat Carbon in the Central Congo Basin. Nature, 612(7939): 277-282. https://doi.org/10.1038/s41586⁃022⁃05389⁃3 |
| [18] |
Garnett, M. H., Hardie, S. M. L., Murray, C., 2012. Radiocarbon Analysis of Methane Emitted from the Surface of a Raised Peat Bog. Soil Biology and Biochemistry, 50: 158-163. https://doi.org/10.1016/j.soilbio.2012.03.018 |
| [19] |
Garnett, M. H., Hardie, S. M. L., Murray, C., 2020. Radiocarbon Analysis Reveals that Vegetation Facilitates the Release of Old Methane in a Temperate Raised Bog. Biogeochemistry, 148(1): 1-17. https://doi.org/10.1007/s10533⁃020⁃00638⁃x |
| [20] |
Goodrich, J. P., Campbell, D. I., Roulet, N. T., et al., 2015. Overriding Control of Methane Flux Temporal Variability by Water Table Dynamics in a Southern Hemisphere, Raised Bog. Journal of Geophysical Research: Biogeosciences, 120(5): 819-831. https://doi.org/10.1002/2014jg002844 |
| [21] |
Hanson, P. J., Griffiths, N. A., Iversen, C. M., et al., 2020. Rapid Net Carbon Loss from a Whole⁃Ecosystem Warmed Peatland. AGU Advances, 1(3): e2020AV000163. https://doi.org/10.1029/2020av000163 |
| [22] |
Hardie, S. M. L., Garnett, M. H., Fallick, A. E., et al., 2009. Bomb⁃14C Analysis of Ecosystem Respiration Reveals that Peatland Vegetation Facilitates Release of Old Carbon. Geoderma, 153: 393-401. https://doi.org/10.1016/j.geoderma.2009.09.002 |
| [23] |
Harris, L. I., Olefeldt, D., Pelletier, N., et al., 2023. Permafrost Thaw Causes Large Carbon Loss in Boreal Peatlands while Changes to Peat Quality Are Limited. Global Change Biology, 29(19): 5720-5735. https://doi.org/10.1111/gcb.16894 |
| [24] |
Hodgkins, S. B., Richardson, C. J., Dommain, R., et al., 2018. Tropical Peatland Carbon Storage Linked to Global Latitudinal Trends in Peat Recalcitrance. Nature Communications, 9(1): 3640. https://doi.org/10.1038/s41467⁃018⁃06050⁃2 |
| [25] |
Hopple, A. M., Wilson, R. M., Kolton, M., et al., 2020. Massive Peatland Carbon Banks Vulnerable to Rising Temperatures. Nature Communications, 11(1): 2373. https://doi.org/10.1038/s41467⁃020⁃16311⁃8 |
| [26] |
Hu, H., Chen, J., Zhou, F., et al., 2024. Relative Increases in CH4 and CO2 Emissions from Wetlands under Global Warming Dependent on Soil Carbon Substrates. Nature Geoscience, 17: 26-31. https://doi.org/10.1038/s41561⁃023⁃01345⁃6 |
| [27] |
Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. Response of Carbon Cycle to Drier Conditions in the Mid⁃Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467⁃018⁃03804⁃w |
| [28] |
Huang, X., Xue, J., Meyers, P. A., et al., 2014. Hydrologic influence on the δ13C variation in Long Chain n⁃Alkanes in the Dajiuhu Peatland, Central China. Organic Geochemistry, 69: 114-119. https://doi.org/10.1016/j.orggeochem.2014.01.016 |
| [29] |
Huang, X., Xue, J., Zhang, J., et al., 2012. Effect of Different Wetness Conditions on Sphagnum Lipid Composition in the Erxianyan Peatland, Central China. Organic Geochemistry, 44: 1-7. https://doi.org/10.1016/j.orggeochem.2011.12.005 |
| [30] |
IUCN, 2021. Peatlands and Climate Change. https://iucn.org/sites/default/files/2022⁃04/iucn_issues_brief_peatlands_and_climate_change_final_nov21.pdf |
| [31] |
Kilian, M. R., Van der Plicht, J., Van Geel, B., 1995. Dating Raised Bogs: New Aspects of AMS 14C Wiggle Matching, a Reservoir Effect and Climatic Change. Quaternary Science Reviews, 14(10): 959-966. https://doi.org/10.1016/0277⁃3791(95)00081⁃X |
| [32] |
Kip, N., van Winden, J. F., Pan, Y., et al., 2010. Global Prevalence of Methane Oxidation by Symbiotic Bacteria in Peat⁃Moss Ecosystems. Nature Geoscience, 3: 617-621. https://doi.org/10.1038/ngeo939 |
| [33] |
Krassovski, M. B., Riggs, J. S., Hook, L. A., et al., 2015. A Comprehensive Data Acquisition and Management System for an Ecosystem⁃Scale Peatland Warming and Elevated CO2 Experiment. Geoscientific Instrumentation, Methods and Data Systems, 4(2): 203-213. https://doi.org/10.5194/gi⁃4⁃203⁃2015 |
| [34] |
Laine, A. M., Mäkiranta, P., Laiho, R., et al., 2019. Warming Impacts on Boreal Fen CO2 Exchange under Wet and Dry Conditions. Global Change Biology, 25(6): 1995-2008. https://doi.org/10.1111/gcb.14617 |
| [35] |
Lamentowicz, M., Gałka, M., Marcisz, K., et al., 2019. Unveiling Tipping Points in Long⁃Term Ecological Records from Sphagnum⁃Dominated Peatlands. Biology Letters, 15(4): 20190043.https://doi.org/10.1098/rsbl.2019.0043[PubMed] |
| [36] |
Lamentowicz, M., Słowińska, S., Słowiński, M., et al., 2016. Combining Short⁃Term Manipulative Experiments with Long⁃Term Palaeoecological Investigations at High Resolution to Assess the Response of Sphagnum Peatlands to Drought, Fire and Warming. Mires and Peat, 18(20): 1-17 |
| [37] |
LaRowe, D. E., Van Cappellen, P., 2011. Degradation of Natural Organic Matter: A Thermodynamic Analysis. Geochimica et Cosmochimica Acta, 75(8): 2030-2042. https://doi.org/10.1016/j.gca.2011.01.020 |
| [38] |
Limpens, J., Berendse, F., Blodau, C., et al., 2008. Peatlands and the Carbon Cycle: From Local Processes to Global Implications: A Synthesis. Biogeosciences, 5(5): 1475-1491. https://doi.org/10.5194/bg⁃5⁃1475⁃2008 |
| [39] |
Lin, X. J., Tfaily, M. M., Steinweg, J. M., et al., 2014. Microbial Community Stratification Linked to Utilization of Carbohydrates and Phosphorus Limitation in a Boreal Peatland at Marcell Experimental Forest, Minnesota, USA. Applied and Environmental Microbiology, 80(11): 3518-3530. https://doi.org/10.1128/aem.00205⁃14 |
| [40] |
Liu, X. F., Wu, L., Wang, H., et al., 2020. Growth and Decomposition Characteristics of Sphagnum in a Subalpine Wetland, Southwestern Hubei, China. Chinese Journal of Plant Ecology, 44(3): 228-235 (in Chinese with English abstract). |
| [41] |
Loisel, J., Gallego⁃Sala, A. V., Amesbury, M. J., et al., 2021. Expert Assessment of Future Vulnerability of the Global Peatland Carbon Sink. Nature Climate Change, 11: 70-77. https://doi.org/10.1038/s41558⁃020⁃00944⁃0 |
| [42] |
Ma, X. Y., Xu, H., Cao, Z. Y., et al., 2022. Will Climate Change Cause the Global Peatland to Expand or Contract? Evidence from the Habitat Shift Pattern of Sphagnum Mosses. Global Change Biology, 28(21): 6419-6432. https://doi.org/10.1111/gcb.16354 |
| [43] |
Machmuller, M. B., Lynch, L. M., Mosier, S. L., et al., 2024. Arctic Soil Carbon Trajectories Shaped by Plant⁃Microbe Interactions. Nature Climate Change, 14: 1178-1185. https://doi.org/10.1038/s41558⁃024⁃02147⁃3 |
| [44] |
Malhotra, A., Brice, D. J., Childs, J., et al., 2020. Peatland Warming Strongly Increases Fine⁃Foot Growth. Proceedings of the National Academy of Sciences, 117 (30): 17627-17634. https://doi.org/10.1073/pnas.200336111 |
| [45] |
Melillo, J. M., Frey, S. D., DeAngelis, K. M., et al., 2017. Long⁃Term Pattern and Magnitude of Soil Carbon Feedback to the Climate System in a Warming World. Science, 358(6359): 101-105. https://doi.org/10.1126/science.aan2874 |
| [46] |
Nichols, J. E., Walcott, M., Bradley, R., et al., 2009. Quantitative Assessment of Precipitation Seasonality and Summer Surface Wetness Using Ombrotrophic Sediments from an Arctic Norwegian Peatland. Quaternary Research, 72: 443-451. https://doi.org/10.1016/j.yqres.2009.07.007 |
| [47] |
Page, S. E., Baird, A. J., 2016. Peatlands and Global Change: Response and Resilience. Annual Review of Environment and Resources, 41: 35-57. https://doi.org/10.1146/annurev⁃environ⁃110615⁃085520 |
| [48] |
Page, S. E., Siegert, F., Rieley, J. O., et al., 2002. The Amount of Carbon Released from Peat and Forest Fires in Indonesia during 1997. Nature, 420(6911): 61-65. https://doi.org/10.1038/nature01131 |
| [49] |
Pancost, R. D., 2024. Biomarker Carbon and Hydrogen Isotopes Reveal Changing Peatland Vegetation, Hydroclimate and Biogeochemical Tipping Points. Quaternary Science Reviews, 339: 108828. https://doi.org/10.1016/j.quascirev.2024.108828 |
| [50] |
Pancost, R. D., van Geel, B., Baas, M., et al., 2000. δ13C Values and Radiocarbon Dates of Microbial Biomarkers as Tracers for Carbon Recycling in Peat Deposits. Geology, 28(7): 663-666. https://doi.org/10.1130/0091⁃7613(2000)0280663: cvardo>2.3.co;2 |
| [51] |
Poirier, V., Roumet, C., Munson, A. D., 2018. The Root of the Matter: Linking Root Traits and Soil Organic Matter Stabilization Processes. Soil Biology and Biochemistry, 120: 246-259. https://doi.org/10.1016/j.soilbio.2018.02.016 |
| [52] |
Price, G. D., McKenzie, J. E., Pilcher, J. R., et al., 1997. Carbon⁃Isotope Variation in Sphagnum from Hummock⁃Hollow Complexes: Implications for Holocene Climate Reconstruction. The Holocene, 7(2): 229-233. https://doi.org/10.1177/095968369700700211 |
| [53] |
Raghoebarsing, A. A., Smolders, A. J. P., Schmid, M. C., et al., 2005. Methanotrophic Symbionts Provide Carbon for Photosynthesis in Peat Bogs. Nature, 436(7054): 1153-1156. https://doi.org/10.1038/nature03802 |
| [54] |
Roth, S. W., Griffiths, N. A., Kolka, R. K., et al., 2023. Elevated Temperature Alters Microbial Communities, but not Decomposition Rates, during 3 Years of in Situ peat Decomposition. mSystems, 8(5): e00337-23. https://doi.org/10.1128/msystems.00337⁃23 |
| [55] |
Salimi, S., Almuktar, S. A. A. A. N., Scholz, M., 2021. Impact of Climate Change on Wetland Ecosystems: A Critical Review of Experimental Wetlands. Journal of Environmental Management, 286: 112160. https://doi.org/10.1016/j.jenvman.2021.112160 |
| [56] |
Smolders, A. J. P., Tomassenm, H. B. M., Pijnappelm, H. W., et al., 2001. Substrate‐Derived CO2 is Important in the Development of Sphagnum spp. New Phytologist, 152: 325-332. https://doi.org/10.1046/j.0028⁃646X.2001.00261.x |
| [57] |
Stirling, E., Fitzpatrick, R. W., Mosley, L. M., 2020. Drought Effects on Wet Soils in Inland Wetlands and Peatlands. Earth⁃Science Reviews, 210: 103387. https://doi.org/10.1016/j.earscirev.2020.103387 |
| [58] |
Stuart, J. E. M., Tucker, C. L., Lilleskov, E. A., et al., 2023. Evidence for Older Carbon Loss with Lowered Water Tables and Changing Plant Functional Groups in Peatlands. Global Change Biology, 29(3): 780-793. https://doi.org/10.1111/gcb.16508 |
| [59] |
Taillardat, P., Bodmer, P., Deblois, C. P., et al., 2022. Carbon Dioxide and Methane Dynamics in a Peatland Headwater Stream: Origins, Processes and Implications. Journal of Geophysical Research: Biogeosciences, 127(7): e2022JG006855. https://doi.org/10.1029/2022jg006855 |
| [60] |
Turetsky, M. R., Benscoter, B., Page, S., et al., 2015. Global Vulnerability of Peatlands to Fire and Carbon Loss. Nature Geoscience, 8: 11-14. https://doi.org/10.1038/ngeo2325 |
| [61] |
Walker, T. N., Garnett, M. H., Ward, S. E., et al., 2016. Vascular Plants Promote Ancient Peatland Carbon Loss with Climate Warming. Global Change Biology, 22(5): 1880-1889. https://doi.org/10.1111/gcb.13213 |
| [62] |
Ward, S. E., Ostle, N. J., Oakley, S., et al., 2013. Warming Effects on Greenhouse Gas Fluxes in Peatlands Are Modulated by Vegetation Composition. Ecology Letters, 16(10): 1285-1293. https://doi.org/10.1111/ele.12167 |
| [63] |
White, J. R., Shannon, R. D., Weltzin, J. F., et al., 2008. Effects of Soil Warming and Drying on Methane Cycling in a Northern Peatland Mesocosm Study. Journal of Geophysical Research: Biogeosciences, 113(G3): G00A06. https://doi.org/10.1029/2007JG000609 |
| [64] |
Wiggins, E. B., Czimczik, C. I., Santos, G. M., et al., 2018. Smoke Radiocarbon Measurements from Indonesian Fires Provide Evidence for Burning of Millennia⁃Aged Peat. Proceedings of the National Academy of Sciences, 115(49): 12419-12424. https://doi.org/10.1073/pnas.1806003115 |
| [65] |
Wilson, R. M., Griffiths, N. A., Visser, A., et al., 2021a. Radiocarbon Analyses Quantify Peat Carbon Losses with Increasing Temperature in a Whole Ecosystem Warming Experiment. Journal of Geophysical Research: Biogeosciences, 126(11): e2021JG006511. https://doi.org/10.1029/2021JG006511 |
| [66] |
Wilson, R. M., Hopple, A. M., Tfaily, M. M., et al., 2016. Stability of Peatland Carbon to Rising Temperatures. Nature Communications, 7: 13723. https://doi.org/10.1038/ncomms13723 |
| [67] |
Wilson, R. M., Tfaily, M. M., Kolton, M., et al., 2021b. Soil Metabolome Response to Whole⁃Ecosystem Warming at the Spruce and Peatland Responses under Changing Environments Experiment. Proceedings of the National Academy of Sciences, 118(25): e2004192118. https://doi.org/10.1073/pnas.2004192118 |
| [68] |
Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon⁃Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1 |
| [69] |
Yang, G., Chen, H., Wu, N., et al., 2014. Effects of Soil Warming, Rainfall Reduction and Water Table Level on CH4 Emissions from the Zoigé Peatland in China. Soil Biology & Biochemistry, 78: 83-89. https://doi.org/10.1016/j.soilbio.2014.07.013 |
| [70] |
Yang, T., He, Q., Jiang, J., et al., 2022. Impact of Water Table on Methane Emission Dynamics in Terrestrial Wetlands and Implications on Strategies for Wetland Management and Restoration. Wetlands, 42(8): 120. https://doi.org/10.1007/s13157⁃022⁃01634⁃7 |
| [71] |
Yu, Z. C., 2011. Holocene Carbon Flux Histories of the World’s Peatlands. The Holocene, 21(5): 761-774. https://doi.org/10.1177/0959683610386982 |
| [72] |
Zhang, M. M., Huang, X. Y., Chen, X., 2021. Distribution Patterns and Controlling Factors of Peatlands in Subtropical Mountainous Areas of China. Wetland Science, 19(6): 753-761 (in Chinese with English abstract). |
| [73] |
Zhang, Y. M., Huang, X. Y., Xie, S. C., 2021. Compound⁃Specific Carbon Isotope Compositions of Microbial Phospholipid Fatty Acids Reveal Carbon Cycling Processes. Quaternary Sciences, 41(4): 877-892 (in Chinese with English abstract). |
| [74] |
Zhong, Y. H., Jiang, M., Middleton, B. A., 2020. Effects of Water Level Alteration on Carbon Cycling in Peatlands. Ecosystem Health and Sustainability, 6(1): 1806113. https://doi.org/10.1080/20964129.2020.1806113 |
| [75] |
Zhu, B., Chen, Y., 2020. Techniques and Methods for Field Warming Manipulation Experiments in Terrestrial Ecosystems. Chinese Journal of Plant Ecology, 44(4): 330-339 (in Chinese with English abstract). |
| [76] |
Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO⁃Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852-857. https://doi.org/10.1073/pnas.1610930114 |
国家自然科学基金项目(42472368)
湖北省地球科学基础学科研究中心重点项目(HRCES⁃202402)
/
| 〈 |
|
〉 |