二叠纪‒三叠纪之交火山活动及其环境效应和生物响应
Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition
当今人类面临着大规模人为碳排放所导致的全球变暖,以及由此引发的一系列全球气候变化和生态危机.地质历史时期曾发生过多次大规模火山活动所导致的极热事件,并伴随着生物大灭绝,这为当前全球变暖问题提供了历史借鉴.约2.52亿年前的二叠纪‒三叠纪之交,发生了显生宙以来最大规模的生物灭绝事件,这一事件被广泛认为与大规模火山活动及其引发的环境变化密切相关.本文重点围绕近年来有关二叠纪‒三叠纪之交火山活动的研究进展,总结了岩浆脱气组分及其排放规模,包括二氧化碳、甲烷、二氧化硫、卤素和重金属,归纳了岩浆脱气直接引发的全球变暖、海洋酸化、火山冬天、酸雨、臭氧层破坏和重金属毒化等环境效应,评估了这些环境变化对海洋和陆地生物灭绝的具体贡献,这些讨论可加深对火山活动和生物灭绝关系的综合理解.此外,本文将二叠纪‒三叠纪之交的碳排放与现代工业碳排放进行了对比,发现现代碳排放速率和升温速率可能处于过去2.52亿年以来的最高值.
Humanity is facing global warming driven by large-scale anthropogenic carbon emissions, alongside a series of global climate changes and ecological crises. Throughout geological history, several hyperthermal events triggered by massive volcanic activity have occurred, often accompanied by mass extinctions. These geological events provide important analogs for modern global warming. The Permian-Triassic mass extinction (~252 Ma), the largest mass extinction event of the Phanerozoic, is widely attributed to massive volcanisms and the resulting environmental changes. This review examines recent research on volcanism during the Permian-Triassic mass extinction and summarizes the types and magnitudes of volcanic degassing, including CO2, SO2, halogens, and metals. We also summarize the environmental impacts of global warming, ocean acidification, volcanic winter, acid rain, ozone depletion, and metal poisoning directly triggered by volcanic degassing, and assess how these changes drove mass extinctions in both marine and terrestrial ecosystems. This review aims to provide a comprehensive understanding of the relationship between volcanism and mass extinction. A comparison of Permian-Triassic carbon emissions with modern anthropogenic carbon emissions reveals that modern carbon emission and warming rates may be unprecedented in the past 252 million years.
岩浆脱气 / 大火成岩省 / 极热事件 / 碳排放 / 大灭绝 / 气候变化.
magmatic degassing / large igneous province / hyperthermal event / carbon emissions / mass extinction / climate change
| [1] |
Beerling, D. J., Harfoot, M., Lomax, B., et al., 2007. The Stability of the Stratospheric Ozone Layer during the End⁃Permian Eruption of the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 365(1856): 1843-1866. https://doi.org/10.1098/rsta.2007.2046 |
| [2] |
Benca, J. P., Duijnstee, I. A. P., Looy, C. V., 2018. UV⁃B⁃Induced Forest Sterility: Implications of Ozone Shield Failure in Earth’s Largest Extinction. Science Advances, 4(2): e1700618. https://doi.org/10.1126/sciadv.1700618 |
| [3] |
Benton, M. J., 2003. When Life nearly Died: The Greatest Mass Extinction of All Time. Thames & Hudson, London. |
| [4] |
Benton, M. J., 2018. Hyperthermal⁃Driven Mass Extinctions: Killing Models during the Permian⁃Triassic Mass Extinction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170076. https://doi.org/10.1098/rsta.2017.0076 |
| [5] |
Berner, R. A., 2002. Examination of Hypotheses for the Permo⁃Triassic Boundary Extinction by Carbon Cycle Modeling. Proceedings of the National Academy of Sciences, 99(7): 4172-4177. https://doi.org/10.1073/pnas.032095199 |
| [6] |
Black, B. A., Elkins⁃Tanton, L. T., Rowe, M. C., et al., 2012. Magnitude and Consequences of Volatile Release from the Siberian Traps. Earth and Planetary Science Letters, 317-318: 363-373. https://doi.org/10.1016/j.epsl.2011.12.001 |
| [7] |
Black, B. A., Lamarque, J. F., Shields, C. A., et al., 2014. Acid Rain and Ozone Depletion from Pulsed Siberian Traps Magmatism. Geology, 42(1): 67-70. https://doi.org/10.1130/g34875.1 |
| [8] |
Black, B. A., Neely, R. R., Lamarque, J. F., et al., 2018. Systemic Swings in End⁃Permian Climate from Siberian Traps Carbon and Sulfur Outgassing. Nature Geoscience, 11: 949-954. https://doi.org/10.1038/s41561⁃018⁃0261⁃y |
| [9] |
Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005 |
| [10] |
Bowring, S. A., Erwin, D. H., Jin, Y. G., et al., 1998. U/Pb Zircon Geochronology and Tempo of the End⁃Permian Mass Extinction. Science, 280(5366): 1039-1045. https://doi.org/10.1126/science.280.5366.1039 |
| [11] |
Broadley, M. W., Barry, P. H., Ballentine, C. J., et al., 2018. End⁃Permian Extinction Amplified by Plume⁃Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11: 682-687. https://doi.org/10.1038/s41561⁃018⁃0215⁃4 |
| [12] |
Burgess, S. D., Bowring, S. A., 2015. High⁃Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth’s Most Severe Extinction. Science Advances, 1(7): e1500470. https://doi.org/10.1126/sciadv.1500470 |
| [13] |
Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High⁃Precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111 |
| [14] |
Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End⁃Permian Mass Extinction. Nature Communications, 8(1): 164. https://doi.org/10.1038/s41467⁃017⁃00083⁃9 |
| [15] |
Cai, Y. F., Zhang, H., Cao, C. Q., et al., 2021. Wildfires and Deforestation during the Permian⁃Triassic Transition in the Southern Junggar Basin, Northwest China. Earth⁃Science Reviews, 218: 103670. https://doi.org/10.1016/j.earscirev.2021.103670 |
| [16] |
Chapman, T., Milan, L. A., Metcalfe, I., et al., 2022. Pulses in Silicic Arc Magmatism Initiate End⁃Permian Climate Instability and Extinction. Nature Geoscience, 15: 411-416. https://doi.org/10.1038/s41561⁃022⁃00934⁃1 |
| [17] |
Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007 |
| [18] |
Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo⁃Tethys Ocean during the Permian⁃Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534 |
| [19] |
Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High⁃Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025 |
| [20] |
Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475 |
| [21] |
Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1 |
| [22] |
Chu, D. L., Grasby, S. E., Song, H. J., et al., 2020. Ecological Disturbance in Tropical Peatlands Prior to Marine Permian⁃Triassic Mass Extinction. Geology, 48(3): 288-292. https://doi.org/10.1130/g46631.1 |
| [23] |
Chu, D. L., Song, H. J., Dal Corso, J., et al., 2025. Diachronous End⁃Permian Terrestrial Crises in North and South China. Geology, 53(1): 55-60. https://doi.org/10.1130/g52655.1 |
| [24] |
Clapham, M. E., Payne, J. L., 2011. Acidification, Anoxia, and Extinction: A Multiple Logistic Regression Analysis of Extinction Selectivity during the Middle and Late Permian. Geology, 39(11): 1059-1062. https://doi.org/10.1130/G32230.1 |
| [25] |
Clapham, M. E., Renne, P. R., 2019. Flood Basalts and Mass Extinctions. Annual Review of Earth and Planetary Sciences, 47: 275-303. https://doi.org/10.1146/annurev⁃earth⁃053018⁃060136 |
| [26] |
Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa0193 |
| [27] |
Cui, Y., Kump, L. R., Ridgwell, A., 2013. Initial Assessment of the Carbon Emission Rate and Climatic Consequences during the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 128-136. https://doi.org/10.1016/j.palaeo.2013.09.001 |
| [28] |
Cui, Y., Li, M. S., van Soelen, E. E., et al., 2021. Massive and Rapid Predominantly Volcanic CO2 Emission during the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 118(37): e2014701118. https://doi.org/10.1073/pnas.2014701118 |
| [29] |
Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2020. Permo⁃Triassic Boundary Carbon and Mercury Cycling Linked to Terrestrial Ecosystem Collapse. Nature Communications, 11(1): 2962. https://doi.org/10.1038/s41467⁃020⁃16725⁃4 |
| [30] |
Dal Corso, J., Newton, R. J., Zerkle, A. L., et al., 2024. Repeated Pulses of Volcanism Drove the End⁃Permian Terrestrial Crisis in Northwest China. Nature Communications, 15(1): 7628. https://doi.org/10.1038/s41467⁃024⁃51671⁃5 |
| [31] |
Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian⁃Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017⁃021⁃00259⁃4 |
| [32] |
Damon Matthews, H., Wynes, S., 2022. Current Global Efforts Are Insufficient to Limit Warming to 1.5 ℃. Science, 376(6600): 1404-1409. https://doi.org/10.1126/science.abo3378 |
| [33] |
Davydov, V. I., 2021. Tunguska Сoals, Siberian Sills and the Permian⁃Triassic Extinction. Earth⁃Science Reviews, 212: 103438. https://doi.org/10.1016/j.earscirev.2020.103438 |
| [34] |
Davydov, V. I., Karasev, E. V., 2021. The Influence of the Permian⁃Triassic Magmatism in the Tunguska Basin, Siberia on the Regional Floristic Biota of the Permian⁃Triassic Transition in the Region. Frontiers in Earth Science, 9: 635179. https://doi.org/10.3389/feart.2021.635179 |
| [35] |
Ekart, D. D., Cerling, T. E., Montanez, I. P., 1999. A 400 Million Year Carbon Isotope Record of Pedogenic Carbonate; Implications for Paleoatomospheric Carbon Dioxide. American Journal of Science, 299(10): 805-827. https://doi.org/10.2475/ajs.299.10.805 |
| [36] |
Elkins⁃Tanton, L. T., Grasby, S. E., Black, B. A., et al., 2020. Field Evidence for Coal Combustion Links the 252 Ma Siberian Traps with Global Carbon Disruption. Geology, 48(10): 986-991. https://doi.org/10.1130/g47365.1 |
| [37] |
Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, Sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014 |
| [38] |
Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High⁃Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953 |
| [39] |
Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High⁃Latitude Continental End⁃Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10(1): 385. https://doi.org/10.1038/s41467⁃018⁃07934⁃z |
| [40] |
Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nature Communications, 8: 14845. https://doi.org/10.1038/ncomms14845 |
| [41] |
Foster, W. J., Hirtz, J. A., Farrell, C., et al., 2022. Bioindicators of Severe Ocean Acidification Are Absent from the End⁃Permian Mass Extinction. Scientific Reports, 12(1): 1202. https://doi.org/10.1038/s41598⁃022⁃04991⁃9 |
| [42] |
Franks, P. J., Royer, D. L., Beerling, D. J., et al., 2014. New Constraints on Atmospheric CO2 Concentration for the Phanerozoic. Geophysical Research Letters, 41(13): 4685-4694. https://doi.org/10.1002/2014gl060457 |
| [43] |
Friedlingstein, P., O’Sullivan, M., Jones, M. W., et al., 2020. Global Carbon Budget 2020. Earth System Science Data, 12(4): 3269-3340. https://doi.org/10.5194/essd⁃12⁃3269⁃2020 |
| [44] |
Gales, E., Black, B., Elkins⁃Tanton, L. T., 2020. Carbonatites as a Record of the Carbon Isotope Composition of Large Igneous Province Outgassing. Earth and Planetary Science Letters, 535: 116076. https://doi.org/10.1016/j.epsl.2020.116076 |
| [45] |
Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012 |
| [46] |
Garbelli, C., Angiolini, L., Shen, S. Z., 2017. Biomineralization and Global Change: A New Perspective for Understanding the End⁃Permian Extinction. Geology, 45(1): 19-22. https://doi.org/10.1130/g38430.1 |
| [47] |
Gastaldo, R. A., Kamo, S. L., Neveling, J., et al., 2020. The Base of the Lystrosaurus Assemblage Zone, Karoo Basin, Predates the End⁃Permian Marine Extinction. Nature Communications, 11(1): 1428. https://doi.org/10.1038/s41467⁃020⁃15243⁃7 |
| [48] |
Gastaldo, R. A., Knight, C. L., Neveling, J., et al., 2014. Latest Permian Paleosols from Wapadsberg Pass, South Africa: Implications for Changhsingian Climate. Geological Society of America Bulletin, 126(5-6): 665-679. https://doi.org/10.1130/b30887.1 |
| [49] |
Gliwa, J., Wiedenbeck, M., Schobben, M., et al., 2022. Gradual Warming Prior to the End⁃Permian Mass Extinction. Palaeontology, 65(5): e12621. https://doi.org/10.1111/pala.12621 |
| [50] |
Grard, A., François, L. M., Dessert, C., et al., 2005. Basaltic Volcanism and Mass Extinction at the Permo⁃Triassic Boundary: Environmental Impact and Modeling of the Global Carbon Cycle. Earth and Planetary Science Letters, 234(1-2): 207-221. https://doi.org/10.1016/j.epsl.2005.02.027 |
| [51] |
Grasby, S. E., Beauchamp, B., Bond, D. P. G., et al., 2015. Progressive Environmental Deterioration in Northwestern Pangea Leading to the Latest Permian Extinction. Geological Society of America Bulletin, 127(9-10): 1331-1347. https://doi.org/10.1130/b31197.1 |
| [52] |
Grasby, S. E., Beauchamp, B., Embry, A., et al., 2013. Recurrent Early Triassic Ocean Anoxia. Geology, 41(2): 175-178. https://doi.org/10.1130/g33599.1 |
| [53] |
Grasby, S. E., Bond, D. P. G., 2023. How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times. Elements, 19(5): 276-281. https://doi.org/10.2138/gselements.19.5.276 |
| [54] |
Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1 |
| [55] |
Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/g38487.1 |
| [56] |
He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo⁃Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo⁃Tethys Ignimbrite Flare⁃Up? Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011 |
| [57] |
Hochuli, P. A., Schneebeli⁃Hermann, E., Mangerud, G., et al., 2017. Evidence for Atmospheric Pollution across the Permian⁃Triassic Transition. Geology, 45(12): 1123-1126. https://doi.org/10.1130/g39496.1 |
| [58] |
Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058-1063. https://doi.org/10.1126/science.1208277 |
| [59] |
Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic⁃Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science in China (Series D), 50(8): 1023-1043 (in Chinese). |
| [60] |
Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End⁃Permian Marine Extinction Due to Temperature⁃Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561⁃021⁃00829⁃7 |
| [61] |
Ivanov, A. V., He, H., Yan, L. K., et al., 2013. Siberian Traps Large Igneous Province: Evidence for Two Flood Basalt Pulses around the Permo⁃Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth⁃Science Reviews, 122: 58-76. https://doi.org/10.1016/j.earscirev.2013.04.001 |
| [62] |
Jiao, Y., Zhou, L., Algeo, T. J., et al., 2023. Zirconium and Neodymium Isotopes Record Intensive Felsic Volcanism in South China Region during the Permian⁃Triassic Boundary Crisis. Chemical Geology, 636: 121653. https://doi.org/10.1016/j.chemgeo.2023.121653 |
| [63] |
Joachimski, M. M., Alekseev, A. S., Grigoryan, A., et al., 2020. Siberian Trap Volcanism, Global Warming and the Permian⁃Triassic Mass Extinction: New Insights from Armenian Permian⁃Triassic Sections. GSA Bulletin, 132(1-2): 427-443. https://doi.org/10.1130/b35108.1 |
| [64] |
Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1 |
| [65] |
Joachimski, M. M., Müller, J., Gallagher, T. M., et al., 2022. Five Million Years of High Atmospheric CO2 in the Aftermath of the Permian⁃Triassic Mass Extinction. Geology, 50(6): 650-654. https://doi.org/10.1130/g49714.1 |
| [66] |
Jurikova, H., Gutjahr, M., Wallmann, K., et al., 2020. Permian⁃Triassic Mass Extinction Pulses Driven by Major Marine Carbon Cycle Perturbations. Nature Geoscience, 13: 745-750. https://doi.org/10.1038/s41561⁃020⁃00646⁃4 |
| [67] |
Komar, N., Zeebe, R. E., 2016. Calcium and Calcium Isotope Changes during Carbon Cycle Perturbations at the End⁃Permian. Paleoceanography, 31(1): 115-130. https://doi.org/10.1002/2015pa002834 |
| [68] |
Li, H., Yu, J. X., McElwain, J. C., et al., 2019. Reconstruction of Atmospheric CO2 Concentration during the Late Changhsingian Based on Fossil Conifers from the Dalong Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 37-48. https://doi.org/10.1016/j.palaeo.2018.09.006 |
| [69] |
Li, M. H., Frank, T. D., Xu, Y. L., et al., 2022. Sulfur Isotopes Link Atmospheric Sulfate Aerosols from the Siberian Traps Outgassing to the End⁃Permian Extinction on Land. Earth and Planetary Science Letters, 592: 117634. https://doi.org/10.1016/j.epsl.2022.117634 |
| [70] |
Li, R. C., Wu, N. P., Shen, S. Z., et al., 2023. A Rapid Onset of Ocean Acidification Associated with the End⁃Permian Mass Extinction. Global and Planetary Change, 225: 104130. https://doi.org/10.1016/j.gloplacha.2023.104130 |
| [71] |
Liu, F., Peng, H. P., Marshall, J. E. A., et al., 2023. Dying in the Sun: Direct Evidence for Elevated UV⁃B Radiation at the End⁃Permian Mass Extinction. Science Advances, 9(1): eabo6102. https://doi.org/10.1126/sciadv.abo6102 |
| [72] |
Maruoka, T., Koeberl, C., Hancox, P. J., et al., 2003. Sulfur Geochemistry across a Terrestrial Permian⁃Triassic Boundary Section in the Karoo Basin, South Africa. Earth and Planetary Science Letters, 206(1-2): 101-117. https://doi.org/10.1016/S0012⁃821X(02)01087⁃7 |
| [73] |
Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M., 2010. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environmental Chemistry Letters, 8(3): 199-216. https://doi.org/10.1007/s10311⁃010⁃0297⁃8 |
| [74] |
Nelson, D. A., Cottle, J. M., 2019. Tracking Voluminous Permian Volcanism of the Choiyoi Province into Central Antarctica. Lithosphere, 11(3): 386-398. https://doi.org/10.1130/l1015.1 |
| [75] |
Payne, J. L., Kump, L. R., 2007. Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations. Earth and Planetary Science Letters, 256(1-2): 264-277. https://doi.org/10.1016/j.epsl.2007.01.034 |
| [76] |
Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events. Geological Society of America Bulletin, 119(7-8): 771-784. https://doi.org/10.1130/b26091.1 |
| [77] |
Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548. https://doi.org/10.1073/pnas.0914065107 |
| [78] |
Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature⁃Dependent Hypoxia Explains Biogeography and Severity of End⁃Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327 |
| [79] |
Rampino, M. R., Rodriguez, S., Baransky, E., et al., 2017. Global Nickel Anomaly Links Siberian Traps Eruptions and the Latest Permian Mass Extinction. Scientific Reports, 7(1): 12416. https://doi.org/10.1038/s41598⁃017⁃12759⁃9 |
| [80] |
Renne, P. R., Basu, A. R., 1991. Rapid Eruption of the Siberian Traps Flood Basalts at the Permo⁃Triassic Boundary. Science, 253(5016): 176-179. https://doi.org/10.1126/science.253.5016.176 |
| [81] |
Retallack, G. J., 2009. Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 121(9-10): 1441-1455. https://doi.org/10.1130/b26341.1 |
| [82] |
Retallack, G. J., 2013. Permian and Triassic Greenhouse Crises. Gondwana Research, 24(1): 90-103. https://doi.org/10.1016/j.gr.2012.03.003 |
| [83] |
Retallack, G. J., Jahren, A. H., 2008. Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events. The Journal of Geology, 116(1): 1-20. https://doi.org/10.1086/524120 |
| [84] |
Ridgwell, A., Schmidt, D. N., 2010. Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. Nature Geoscience, 3: 196-200. https://doi.org/10.1038/ngeo755 |
| [85] |
Rong, J. Y., Huang, B., 2014. Study of Mass Extinction over the Past Thirty Years: A Synopsis. Science in China (Series D), 44(3): 377-404 (in Chinese). |
| [86] |
Schmidt, A., Skeffington, R. A., Thordarson, T., et al., 2016. Selective Environmental Stress from Sulphur Emitted by Continental Flood Basalt Eruptions. Nature Geoscience, 9: 77-82. https://doi.org/10.1038/ngeo2588 |
| [87] |
Schneebeli⁃Hermann, E., Kurschner, W. M., Hochuli, P. A., et al., 2013. Evidence for Atmospheric Carbon Injection during the End⁃Permian Extinction. Geology, 41(5): 579-582. https://doi.org/10.1130/g34047.1 |
| [88] |
Schobben, M., Joachimski, M. M., Korn, D., et al., 2014. Palaeotethys Seawater Temperature Rise and an Intensified Hydrological Cycle Following the End⁃Permian Mass Extinction. Gondwana Research, 26(2): 675-683. https://doi.org/10.1016/j.gr.2013.07.019 |
| [89] |
Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev⁃earth⁃081320⁃064052 |
| [90] |
Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/g36227.1 |
| [91] |
Shen, J. H., Zhang, Y. G., Yang, H., et al., 2022. Early and Late Phases of the Permian⁃Triassic Mass Extinction Marked by Different Atmospheric CO2 Regimes. Nature Geoscience, 15: 839-844. https://doi.org/10.1038/s41561⁃022⁃01034⁃w |
| [92] |
Shen, J., Chen, J. B., Algeo, T. J., et al., 2019a. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0 |
| [93] |
Shen, J., Chen, J. B., Algeo, T. J., et al., 2021. Mercury Fluxes Record Regional Volcanism in the South China Craton Prior to the End⁃Permian Mass Extinction. Geology, 49(4): 452-456. https://doi.org/10.1130/g48501.1 |
| [94] |
Shen, J., Chen, J. B., Yu, J. X., et al., 2023. Mercury Evidence from Southern Pangea Terrestrial Sections for End⁃Permian Global Volcanic Effects. Nature Communications, 14(1): 6. https://doi.org/10.1038/s41467⁃022⁃35272⁃8 |
| [95] |
Shen, J., Yu, J. X., Chen, J. B., et al., 2019b. Mercury Evidence of Intense Volcanic Effects on Land during the Permian⁃Triassic Transition. Geology, 47(12): 1117-1121. https://doi.org/10.1130/g46679.1 |
| [96] |
Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454 |
| [97] |
Shen, S. Z., Ramezani, J., Chen, J., et al., 2019c. A Sudden End⁃Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1 |
| [98] |
Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events Versus Global Changes: Progresses and Challenges. Chinese Science Bulletin, 69(2): 268-285 (in Chinese). |
| [99] |
Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions. Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese). |
| [100] |
Sial, A. N., Chen, J. B., Lacerda, L. D., et al., 2020. Globally Enhanced Hg Deposition and Hg Isotopes in Sections Straddling the Permian⁃Triassic Boundary: Link to Volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109537. https://doi.org/10.1016/j.palaeo.2019.109537 |
| [101] |
Silva⁃Tamayo, J. C., Lau, K. V., Jost, A. B., et al., 2018. Global Perturbation of the Marine Calcium Cycle during the Permian⁃Triassic Transition. GSA Bulletin, 130(7/8): 1323-1338. https://doi.org/10.1130/b31818.1 |
| [102] |
Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312-316. https://doi.org/10.1038/nature10385 |
| [103] |
Song, H. C., Song, H. J., Zhang, Z. S., et al., 2023. Evolution and Driving Mechanisms of Water Circulation During the Late Paleozoic to Early Mesozoic. Chinese Science Bulletin, 68(12): 1501-1516 (in Chinese). |
| [104] |
Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian⁃Triassic Mass Extinction. Proceedings of the National Academy of Sciences, 117(30): 17578-17583. https://doi.org/10.1073/pnas.1918953117 |
| [105] |
Song, H. J., Scotese, C. R., 2023. The End⁃Paleozoic Great Warming. Science Bulletin, 68(21): 2523-2526. https://doi.org/10.1016/j.scib.2023.09.009 |
| [106] |
Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038 |
| [107] |
Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian⁃Triassic Crisis. Earth Science, 41(6): 901-918 (in Chinese with English abstract). |
| [108] |
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio⁃Apatite for Multiple Oceanic Anoxic Events during Permian⁃Triassic Transition and the Link with End⁃Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005 |
| [109] |
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649 |
| [110] |
Song, H. J., Wu, Y. Y., Dai, X., et al., 2024. Respiratory Protein⁃Driven Selectivity during the Permian⁃Triassic Mass Extinction. The Innovation, 5(3): 100618. https://doi.org/10.1016/j.xinn.2024.100618 |
| [111] |
Sun, Y. D., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End⁃Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030 |
| [112] |
Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126 |
| [113] |
Svensen, H. H., Frolov, S., Akhmanov, G. G., et al., 2018. Sills and Gas Generation in the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170080. https://doi.org/10.1098/rsta.2017.0080 |
| [114] |
Svensen, H., Planke, S., Polozov, A. G., et al., 2009. Siberian Gas Venting and the End⁃Permian Environmental Crisis. Earth and Planetary Science Letters, 277(3-4): 490-500. https://doi.org/10.1016/j.epsl.2008.11.015 |
| [115] |
Tong, J. N., Yin, H. F., 2009. Advance in the Study of Early Triassic Life and Environment. Acta Palaeontologica Sinica, 48(3): 497-508 (in Chinese with English abstract). |
| [116] |
Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End⁃Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875 |
| [117] |
Visscher, H., Looy, C. V., Collinson, M. E., et al., 2004. Environmental Mutagenesis during the End⁃Permian Ecological Crisis. Proceedings of the National Academy of Sciences, 101(35): 12952-12956. https://doi.org/10.1073/pnas.0404472101 |
| [118] |
Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian⁃Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract). |
| [119] |
Wang, W. Q., Garbelli, C., Zhang, F. F., et al., 2020. A High⁃Resolution Middle to Late Permian Paleotemperature Curve Reconstructed Using Oxygen Isotopes of Well⁃Preserved Brachiopod Shells. Earth and Planetary Science Letters, 540: 116245. https://doi.org/10.1016/j.epsl.2020.116245 |
| [120] |
Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044 |
| [121] |
Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth⁃Science Reviews, 53(1-2): 1-33. https://doi.org/10.1016/S0012⁃8252(00)00037⁃4 |
| [122] |
Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5-6): 954-956. https://doi.org/10.1130/b26424.1 |
| [123] |
Witkowski, C. R., Weijers, J. W. H., Blais, B., et al., 2018. Molecular Fossils from Phytoplankton Reveal Secular Pco2 Trend over the Phanerozoic. Science Advances, 4(11): eaat4556. https://doi.org/10.1126/sciadv.aat4556 |
| [124] |
Wu, Q., Zhang, H., Ramezani, J., et al., 2024a. The Terrestrial End⁃Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284 |
| [125] |
Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six⁃Fold Increase of Atmospheric pCO2 during the Permian⁃ Triassic Mass Extinction. Nature Communications, 12(1): 2137. https://doi.org/10.1038/s41467⁃021⁃22298⁃7 |
| [126] |
Wu, Y. Y., Cui, Y., Chu, D. L., et al., 2023. Volcanic CO2 Degassing Postdates Thermogenic Carbon Emission during the End⁃Permian Mass Extinction. Science Advances, 9(7): eabq4082. https://doi.org/10.1126/sciadv.abq4082 |
| [127] |
Wu, Y. Y., Pohl, A., Tian, L., et al., 2024b. Recurrent Marine Anoxia in the Paleo⁃Tethys Linked to Constriction of Seaways during the Early Triassic. Earth and Planetary Science Letters, 643: 118882. https://doi.org/10.1016/j.epsl.2024.118882 |
| [128] |
Wu, Y. Y., Tong, J. N., Algeo, T. J., et al., 2020. Organic Carbon Isotopes in Terrestrial Permian⁃Triassic Boundary Sections of North China: Implications for Global Carbon Cycle Perturbations. GSA Bulletin, 132(5-6): 1106-1118. https://doi.org/10.1130/b35228.1 |
| [129] |
Xie, S. C., Pancost, R. D., Wang, Y. B., et al., 2010. Cyanobacterial Blooms Tied to Volcanism during the 5 M.Y. Permo⁃Triassic Biotic Crisis. Geology, 38(5): 447-450. https://doi.org/10.1130/g30769.1 |
| [130] |
Yang, L. R., Dai, X., Liu, X. K., et al., 2024. Foraminiferal Extinction and Size Reduction during the Permian⁃ Triassic Transition in Southern Tibet. Journal of Earth Science, 35(6): 1799-1809. https://doi.org/10.1007/s12583⁃023⁃1847⁃x |
| [131] |
Yang, Z. Y., Wu, S. B., Yin, H. F., 1991. Permo⁃Triassic Events of South China. Geological Publishing House, Beijing (in Chinese). |
| [132] |
Yin, H. F., Feng, Q. L., Lai, X. L., et al., 2007. The Protracted Permo⁃Triassic Crisis and Multi⁃Episode Extinction around the Permian⁃Triassic Boundary. Global and Planetary Change, 55(1-3): 1-20. https://doi.org/10.1016/j.gloplacha.2006.06.005 |
| [133] |
Yin, H. F., Huang, S. J., Zhang, K., et al., 1992. The Effects of Volcanism on the Permo⁃Triassic Mass Extinction in South China. In: Sweet, W. C., Yang, Z., Dickins, J. M., eds., Permo⁃Triassic Events in the Eastern Tethys. Cambridge University Press, Cambridge, 146-157. |
| [134] |
Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End⁃Permian Regression in South China and Its Implication on Mass Extinction. Earth⁃Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003 |
| [135] |
Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian⁃Triassic Boundary of the GSSP Section Meishan. Earth⁃Science Reviews, 115(3): 163-172. https://doi.org/10.1016/j.earscirev.2012.08.006 |
| [136] |
Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004 |
| [137] |
Yin, H. F., Huang, S. J., Zhang, K. X., et al., 1989. Volcanism at the Permian⁃Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 63(2): 169-180 (in Chinese with English abstract). |
| [138] |
Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic⁃Mesozoic Transition. Science in China (Series D), 43(10): 1539-1552 (in Chinese). |
| [139] |
Zeebe, R. E., Ridgwell, A., Zachos, J. C., 2016. Anthropogenic Carbon Release Rate Unprecedented during the Past 66 Million Years. Nature Geoscience, 9: 325-329. https://doi.org/10.1038/ngeo2681 |
| [140] |
Zhang, F. F., Romaniello, S. J., Algeo, T. J., et al., 2018. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921 |
| [141] |
Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract). |
| [142] |
Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390 |
国家重点研发计划项目(2023YFF0804000)
国家自然科学基金项目(42202002)
/
| 〈 |
|
〉 |