二叠纪‒三叠纪之交火山活动及其环境效应和生物响应

吴玉样 ,  宋海军 ,  楚道亮 ,  宋虎跃 ,  田力

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 964 -982.

PDF (1933KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 964 -982. DOI: 10.3799/dqkx.2024.156

二叠纪‒三叠纪之交火山活动及其环境效应和生物响应

作者信息 +

Environmental Impacts and Biotic Responses to Volcanism during the Permian⁃Triassic Transition

Author information +
文章历史 +
PDF (1978K)

摘要

当今人类面临着大规模人为碳排放所导致的全球变暖,以及由此引发的一系列全球气候变化和生态危机.地质历史时期曾发生过多次大规模火山活动所导致的极热事件,并伴随着生物大灭绝,这为当前全球变暖问题提供了历史借鉴.约2.52亿年前的二叠纪‒三叠纪之交,发生了显生宙以来最大规模的生物灭绝事件,这一事件被广泛认为与大规模火山活动及其引发的环境变化密切相关.本文重点围绕近年来有关二叠纪‒三叠纪之交火山活动的研究进展,总结了岩浆脱气组分及其排放规模,包括二氧化碳、甲烷、二氧化硫、卤素和重金属,归纳了岩浆脱气直接引发的全球变暖、海洋酸化、火山冬天、酸雨、臭氧层破坏和重金属毒化等环境效应,评估了这些环境变化对海洋和陆地生物灭绝的具体贡献,这些讨论可加深对火山活动和生物灭绝关系的综合理解.此外,本文将二叠纪‒三叠纪之交的碳排放与现代工业碳排放进行了对比,发现现代碳排放速率和升温速率可能处于过去2.52亿年以来的最高值.

Abstract

Humanity is facing global warming driven by large-scale anthropogenic carbon emissions, alongside a series of global climate changes and ecological crises. Throughout geological history, several hyperthermal events triggered by massive volcanic activity have occurred, often accompanied by mass extinctions. These geological events provide important analogs for modern global warming. The Permian-Triassic mass extinction (~252 Ma), the largest mass extinction event of the Phanerozoic, is widely attributed to massive volcanisms and the resulting environmental changes. This review examines recent research on volcanism during the Permian-Triassic mass extinction and summarizes the types and magnitudes of volcanic degassing, including CO2, SO2, halogens, and metals. We also summarize the environmental impacts of global warming, ocean acidification, volcanic winter, acid rain, ozone depletion, and metal poisoning directly triggered by volcanic degassing, and assess how these changes drove mass extinctions in both marine and terrestrial ecosystems. This review aims to provide a comprehensive understanding of the relationship between volcanism and mass extinction. A comparison of Permian-Triassic carbon emissions with modern anthropogenic carbon emissions reveals that modern carbon emission and warming rates may be unprecedented in the past 252 million years.

Graphical abstract

关键词

岩浆脱气 / 大火成岩省 / 极热事件 / 碳排放 / 大灭绝 / 气候变化.

Key words

magmatic degassing / large igneous province / hyperthermal event / carbon emissions / mass extinction / climate change

引用本文

引用格式 ▾
吴玉样,宋海军,楚道亮,宋虎跃,田力. 二叠纪‒三叠纪之交火山活动及其环境效应和生物响应[J]. 地球科学, 2025, 50(03): 964-982 DOI:10.3799/dqkx.2024.156

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

二叠纪‒三叠纪之交发生了显生宙以来最大规模的生物灭绝事件,导致超过80%的海洋生物和70%的陆生脊椎动物灭绝(Benton, 2003Song et al., 2013; 戎嘉余和黄冰, 2014; 沈树忠和张华, 2017; Fan et al., 2020).直到约500万年后的中三叠世,生物多样性水平才恢复到接近灭绝前的水平(Chen and Benton, 2012Song et al., 2020).这一灭绝事件被普遍认为与大规模的火山活动密切相关,包括西伯利亚大火成岩省的火山活动(Svensen et al., 2009Burgess and Bowring, 2015Burgess et al., 2017)以及环特提斯洋和泛大陆周缘的大陆岩浆弧火山活动(殷鸿福等, 1989; 殷鸿福和宋海军, 2013; Zhang et al., 2021Chapman et al., 2022).这些火山活动释放了大量的二氧化碳(CO2)、甲烷(CH4)、二氧化硫(SO2)、卤素及重金属等物质,直接导致全球变暖、海洋酸化、火山冬天、酸雨、臭氧层破坏以及重金属毒化等环境效应,给海洋和陆地生物带来极大生存压力(童金南和殷鸿福, 2009; Sun et al., 2012Black et al., 2014Grasby et al., 2017Benca et al., 2018; 胡修棉等, 2020; Jurikova et al., 2020Wu et al., 2021; 沈树忠等, 2024; 张华等, 2024).

近年来,借助高精度放射性同位素定年技术和高分辨率的环境指标数据,人们对二叠纪‒三叠纪之交火山活动的细节及其对环境和生物影响的理解有了显著提升(如Burgess et al., 2017Zhang et al., 2021Dal Corso et al., 2022).本文旨在综合当前研究成果,总结火山排放物质的种类、排放量及其对大气和海洋环境的直接影响,并评估相关环境变化对生物灭绝的贡献.探讨二叠纪‒三叠纪之交火山活动的环境效应与生物灭绝的关系,提供对火山活动引发的环境效应和生物大灭绝事件之间相互关系的综合理解.最后,本文将二叠纪‒三叠纪之交火山碳排放与现代工业碳排放对比,为未来应对全球变化提供历史借鉴.

1 二叠纪‒三叠纪之交火山活动类型

二叠纪‒三叠纪之交记录了显生宙以来最大规模的大陆溢流玄武岩,即西伯利亚大火成岩省(Wignall, 2001Bond and Grasby, 2017Ernst and Youbi, 2017Clapham and Renne, 2019)和环特提斯洋及泛大陆周边的酸性大陆岩浆弧火山活动(殷鸿福等, 1989; Zhang et al., 2021; Chapman et al., 2022).二者可能都是二叠纪‒三叠纪之交生物灭绝的重要驱动力,下面具体介绍这两种火山活动的基础信息.

1.1 西伯利亚大火成岩省

西伯利亚大火成岩省位于现今俄罗斯西伯利亚地区(图1),岩石类型从超基性到长英质,包括喷出岩、侵入岩和火山碎屑岩,但主要为低钛玄武岩及其侵入体(Ivanov et al., 2013).该大火成岩省规模巨大,覆盖面积约7×106 km2,体积约4×106 km3,是规模最大的大陆型大火成岩省(Ivanov et al., 2013).随着测年技术的进步,关于西伯利亚大火成岩省及生物灭绝层位的Ar⁃Ar和U⁃Pb测年工作不断推进(Renne and Basu, 1991Bowring et al., 1998Shen et al., 2011Burgess et al., 2014Burgess and Bowring, 2015Wu et al., 2024a).两者的绝对年龄一致性是支持西伯利亚大火成岩省作为生物灭绝驱动力的重要依据.前人通过CA⁃TIMS的U⁃Pb测年方法,分别对金钉子煤山剖面生物灭绝层位的火山灰和西伯利亚火山岩样品进行分析,获得了高精度绝对年龄数据(Burgess et al., 2014Burgess and Bowring, 2015),并据此将西伯利亚火山作用划分为3个阶段:(1)阶段1始于(252.24±0.1) Ma,以初期的火山碎屑喷出作用为特征,随后伴随熔岩喷发,约占西伯利亚火山作用总量的三分之二;(2)阶段2始于(251.907±0.067) Ma,喷出作用暂停,伴随大规模岩床侵入体的形成;(3)阶段3始于(251.483±0.088) Ma,熔岩喷出再次出现,期间继续发生喷出性和侵入性岩浆活动,至少持续至(250.2±0.3) Ma.阶段1火山喷出作用的起始时间比金钉子煤山剖面的二叠纪末第一幕灭绝层位年龄((251.941±0.037) Ma)早近30万年,而两幕式生物灭绝时间((251.941±0.037) Ma和(251.880±0.031) Ma)主要对应阶段2的侵入作用(Burgess et al., 2017).因此,Burgess et al. (2017) 提出西伯利亚岩浆侵入作用使西伯利亚地区内富含挥发分的沉积物发生热变质,释放大量温室气体,从而驱动了灭绝事件.西伯利亚地区的沉积地层包含碳酸盐岩、蒸发岩、石油、天然气和煤层等富含挥发分沉积物(Svensen et al., 2018).尤其是厚达百米的石炭系至二叠系的煤层,其热变质与燃烧将产生大量的CO2和CH4(Retallack and Jahren, 2008; Svensen et al., 2009).野外岩石样品保留了岩浆侵入作用燃烧富有机物岩层的证据(Elkins⁃Tanton et al., 2020).然而,近年来也有学者对西伯利亚大火成岩省与生物灭绝的直接关系提出质疑(Davydov, 2021).Davydov (2021) 总结了西伯利亚地区煤层的空间和时间分布,认为侵入作用引起的热变质煤层释放CO2的量较少,且释放时间主要发生在灭绝事件之后,因此不足以推动二叠纪‒三叠纪之交的生物大灭绝.尤其是对于西伯利亚地区的植物群,侵入作用似乎并未导致其灭绝,植物多样性在早三叠世印度期反而有所增加(Davydov and Karasev, 2021).

1.2 大陆岩浆弧火山

除了西伯利亚大火成岩省,环特提斯洋及泛大陆周边的大陆岩浆弧火山与生物大灭绝之间的关系也日益受到关注(图1).早在20世纪80年代,殷鸿福等(1989)根据广泛分布于华南地区的二叠系‒三叠系界线火山灰,前瞻性地提出华南地区可能存在大规模的酸性火山活动,这些火山可能是二叠纪‒三叠纪之交生物大灭绝的关键驱动力之一.金钉子煤山剖面二叠系‒三叠系界线附近的第25层和28层分别为两层火山灰(杨遵仪等, 1991; Yin et al., 2001)(图2),对应于两幕式灭绝层位(Yin et al., 2007Song et al., 2013),这些火山灰广泛分布于华南各地(图1Yin et al., 1992Xie et al., 2010).华南界线火山灰的厚度和数量向西南方向增加,锆石的碳同位素和微量元素等指标进一步证实,华南地区的火山灰成分为酸性长英质,很可能来自华南板块西南缘的大陆岩浆弧,与西伯利亚的基性玄武岩有显著区别(He et al., 2014; 王曼等,2018; Jiao et al., 2023).Zhang et al. (2021)在华南地区二叠系‒三叠系界线的陆相地层中观察到大量的硫化铜矿物和Cu含量富集现象,并与铜同位素的负偏和汞(Hg)浓度激增相耦合,表明来自古特提斯洋周缘的酸性火山活动释放了大量富硫蒸气和重金属.

大陆岩浆弧火山不仅在古特提斯洋华南地区有记录,还广泛发育在环特提斯洋及泛大陆周边,包括澳大利亚东部、冈瓦纳西南缘、华北以及泛大陆西北缘(Yin et al., 1992Nelson and Cottle, 2019Vajda et al., 2020Chapman et al., 2022).例如在澳大利亚东部,锆石U⁃Pb测年揭示了该地区晚二叠世喷发了39 000~150 000 km3的长英质岩浆(Chapman et al., 2022).环特提斯洋及泛大陆周边多条火山弧在252~260 Ma之间同步喷发,因此被认为是二叠纪‒三叠纪之交温室效应危机和生态系统压力的重要诱因(Chapman et al., 2022).

2 岩浆脱气及其产物

岩浆脱气包括喷出和侵入两个过程,喷出作用直接向地表喷出大量气体,而侵入作用主要通过热变质围岩途径向地表释放气体.二者都向大气排放大量碳,但是碳源在碳同位素组成上存在显著差异,定量计算碳源的碳同位素组成不仅有助于推测脱气过程,还为计算碳释放速率和总量提供了基础.除了碳物质,岩浆脱气还会向大气排放大量的SO2、卤素(如Cl、F、Br)和重金属元素(如Hg、Cu).定量计算这些物质的排放规模和变化过程是评估火山作用对环境及生物灭绝影响的重要环节.下面将详细介绍碳源类型以及每种脱气产物的排放规模.

2.1 碳排放过程的数值模拟

火山喷出作用直接释放幔源CO2(δ13C=‒6‰) (Sobolev et al., 2011Gales et al., 2020),而富有机质岩层(如煤层)在受到侵入作用时会释放热变质成因的CO2和CH4 (δ13C= ‒25‰至‒40‰) (Payne and Kump, 2007Svensen et al., 2009).目前主要有3类数值模型可以直接或间接计算碳源的碳同位素组成,从而评估大规模碳排放来源于侵入作用还是喷出作用.这些模型的复杂程度从低到高依次为:简单的碳同位素质量平衡公式(Payne et al., 2010; Schneebeli⁃Hermann et al., 2013Wu et al., 2021)、不同类型的箱式模型(Berner, 2002Grard et al., 2005Payne and Kump, 2007)以及中等复杂程度的地球系统模型(Cui et al., 2013Cui et al., 2021Wu et al., 2023).碳同位素质量平衡公式不考虑碳循环过程,将碳释放简化为瞬时过程(Payne et al., 2010);箱式模型的正演方法和cGENIE(Carbon⁃centric Grid Enabled Integrated Earth system model)地球系统模型的单参数反演方法均需要对碳源类型进行人为假设.这些方法的局限性和采用的碳同位素负偏程度的差异导致了火山碳源类型一直存在较大争议(表1).例如Jurikova et al. (2020)利用生物地球化学的箱式模型,结合腕足类化石硼同位素记录的pH值,正演推测先释放富集13C的幔源CO2(-6‰),随后在大灭绝关键层位释放碳同位素组成较低的碳物质(-18‰),揭示生物灭绝与热变质成因碳密切相关.另一方面,Clarkson et al. (2015)得出了相反的结论,先释放碳同位素组成较低的碳 (<-12.5‰),随后释放碳同位素组成接近0‰的碳源.通过海相藻类来源的单体碳同位素结合cGENIE的单参数反演方法,Cui et al.(2021)评估了二叠纪末的碳排放过程,碳排放总量约为 36 000 Gt C(Gt=1015g),速率高达~5 Gt C/a.在温度和pH指标数据的约束下,Cui et al. (2021)认为碳来源是混合的(~-15%),但是以幔源CO2为主.

相较于箱式模型的正演和cGENIE的单参数反演方法,cGENIE模型的“双参数反演”无需假设轻碳来源,能够直接计算碳源的连续演变过程(Wu et al., 2023).模拟结果揭示了二叠纪末生物灭绝期间碳排放的两阶段特征:碳排放一期(251.994~251.942 Ma)以岩浆侵入富有机质岩层为主,缓慢释放碳同位素值偏低的热变质成因CO2和甲烷(-25‰~-40‰),速率为0.05~0.20 Gt C/a,持续了近50 ka;碳排放二期(251.942~251.902 Ma)火山喷出作用加强,快速排放大量幔源CO2(-6‰),峰值可达到0.7 Gt C/a.此期间碳排放总量的最佳估计为26 000 Gt C(范围为15 500~55 700 Gt C).数值模拟的碳排放过程聚焦于二叠纪末碳同位素快速下降的关键时段,也是西伯利亚大火成岩省阶段1和阶段2的交界处(图1).该交界处存在两个先后的U⁃Pb测年数据,侵入岩为(251.907±0.067) Ma、喷出岩为(251.901±0.061) Ma(Burgess and Bowring, 2015),可能反映了西伯利亚岩浆在这期间存在侵入作用向喷出作用转变的过程.这进一步支持了先释放热变质碳后排放大规模幔源CO2的模拟结果.地球系统模型cGENIE的双参数反演实验揭示了这段时间内火山排气的两阶段模式,并建立了与二叠纪末碳同位素负偏、全球变暖、海洋酸化等环境事件与二叠纪末第一幕生物灭绝之间的关系(Wu et al., 2023).

2.2 二氧化碳浓度

总体而言,这些模拟结果表明,幔源CO2和热变质成因碳的混合很可能是二叠纪末大规模碳释放的主要来源,在0.1~1.0 Ma内104~105 Gt数量级的碳被释放到大气(表1).如此大规模碳排放将导致大气中温室气体CO2浓度(pCO2)激增.那么,二叠纪‒三叠纪之交pCO2究竟升高了多少?早期研究主要集中于显生宙长尺度和晚二叠世的pCO2变化,其时间分辨率较低(大于1 Ma)且缺少可靠的早三叠世初期数据.前人利用古土壤次生碳酸盐指标重建了400 Ma以来的大气CO2浓度变化,其中在晚二叠世只有一个CO2数据点,浓度约1 000×10-6(10-6 = 1 ppm),后续重新计算修订为约400×10-6Ekart et al., 1999Foster et al., 2017).南非卡鲁盆地晚二叠世的古土壤次生碳酸盐碳同位素记录了相对较高的晚二叠世pCO2(883×10-6~1 325×10-6)(Gastaldo et al., 2014).基于植烷有机碳同位素指标的显生宙pCO2变化趋势显示,晚二叠世长兴阶的pCO2达到873×10-6~1 085×10-6,早三叠世初期pCO2升高至约1 600×10-6Witkowski et al., 2018).冈瓦纳地区银杏叶气孔指数表明,晚二叠世大气CO2水平达到300×10-6~500×10-6,到了早三叠世升高至7 832×10-6 (Retallack, 2009, 2013).但是这些植物的时代归属和属种鉴定存在一定争议,影响了CO2估计值的可靠性(Li et al., 2019).而来自华南长兴期大隆组的松柏类化石分类和时代明确,利用其气孔指数重建的晚二叠世pCO2范围达300×10-6~520×10-6Li et al., 2019).

近年来的几项古大气CO2浓度研究提供了相对高分辨率的CO2变化趋势,有效限定了二叠纪‒三叠纪之交大气CO2浓度升高幅度.Wu et al. (2021)利用C3植物有机碳同位素新指标,通过提取层位连续的微米级植物化石碎屑,解决了常规pCO2指标材料(如植物气孔和古土壤等)在该时期稀少的难点.通过高分辨率的植物有机碳同位素记录,定量重建了古‒中生代之交pCO2的高时间分辨率连续变化趋势.结果显示,大气CO2浓度由晚二叠世晚期的420×10-6快速升高到灭绝期间的约2 500×10-6图3),揭示了6倍pCO2的升高与地质记录的海水表层温度升高趋势相耦合,这为显生宙以来最大升温事件提供了新证据(Wu et al., 2021).华南上寺剖面的植烷有机同位素指标显示,pCO2从晚二叠世的300×10-6~500×10-6上升到早三叠世早期的峰值2 600×10-6,与植物有机碳同位素的估计值相似(Shen et al., 2022).然而,植烷数据还记录了二叠纪末生物灭绝层位的pCO2下降,最低至270×10-6,与该层位的高温指标记录相矛盾,有待未来进一步验证.基于古土壤钙结壳的碳同位素重建的早三叠世以来pCO2变化趋势显示,pCO2从晚二叠世的412×10-6~919×10-6上升至早三叠世早期的2 181×10-6~2 610×10-6Joachimski et al., 2022).总体来看,这几项不同指标均记录了相似的CO2升高峰值,峰值达到2 500×10-6~2 600×10-6.这不仅为理解显生宙最大升温事件的驱动机制提供了直接证据,同时对定量研究地质历史时期升温背景下的地球气候敏感性有着重要科学价值.

2.3 二氧化硫和卤素

二氧化硫和卤素(如Cl、F、Br)也是岩浆脱气过程中释放到大气中的关键挥发性成分(Svensen et al., 2009).基于西伯利亚地幔玄武岩包裹体中硫、氯和氟的含量,估算的侵入和喷出作用的总脱气量约为6 300~7 800 Gt S, 3 400~8 700 Gt Cl和7 100~13 600 Gt F(Black et al., 2012).另一项研究显示西伯利亚岩石圈富含大量卤素,其中约70%被地幔柱吸收后于侵入过程中释放到大气中.基于西伯利亚大火成岩省的熔体包裹体估算的Cl释放总量约为8 700 Gt,同时释放了相应的Br和I(Broadley et al., 2018).如果西伯利亚大火成岩省以喷出作用为主,而非热变质成因,估算的HCl释放总量接近18 000 Gt(Sobolev et al., 2011).除西伯利亚大火成岩省外,华南地区二叠系‒三叠系界线陆相地层中发现的大量硫化铜矿物表明,华南周缘的酸性火山也释放SO2,其释放规模估算为2.4~47.1 Gt S,相当于现代每年SO2释放量的10~200倍(Zhang et al., 2021).

2.4 重金属元素

火山活动脱气过程不仅释放挥发性物质,还释放金属物质,如Hg、Cu、Ni、Pb和Zn等,这些金属在沉积物中形成富集层位.二叠纪‒三叠纪之交的沉积物中Hg(或Hg/TOC)显著增加,这一现象在全球海相和陆相地层中广泛存在,包括古特提斯洋(Wang et al., 2018Shen et al., 2019a,2021)、新特提斯洋(Sial et al., 2020Chen et al., 2024)、泛大洋(Shen et al., 2019a)和泛大陆北部海域(Grasby et al., 2017),以及陆相盆地华南黔西滇东(Shen et al., 2019bChu et al., 2020)、华北地区(Chu et al., 2025)、新疆准噶尔盆地(Dal Corso et al., 2024)、悉尼盆地以及卡鲁盆地(Shen et al., 2023).不同水深和陆相盆地中汞含量峰值层位的差异可能由多种因素共同造成,包括沉积环境的差异、汞吸附载体差异以及地层对比的不确定性(Shen et al., 2019aChu et al., 2020; Chen et al., 2024).尽管如此,全球范围内的海相汞数据汇总表明,汞富集层位基本与二叠纪末的第一幕灭绝事件相耦合(图3)(Dal Corso et al., 2022).与背景时期的Hg/TOC低值(<50 10-9/%,TOC为质量百分含量)相比,富集层位的Hg/TOC峰值可超过300 10-9/%.除了Hg富集,二叠系‒三叠系界线地层还记录了Cu(Chu et al., 2021Zhang et al., 2021)、Zn(Jiao et al., 2023)、Ni(Rampino et al., 2017)以及Pb(Grasby et al., 2015)等金属元素的大量富集.Δ199Hg的正向偏移表明,这些Hg和其他金属元素来自火山,通常认为来源于西伯利亚大火成岩省的释放,释放速率是每年0.8~10.0 Gg,累计释放量达到 0.4 Gt(Grasby et al., 2015),并通过大气远距离输送至全球范围(Grasby et al., 2017).华南黔西滇东地区的硫化铜沉积物表明,华南周缘火山活动同样释放了大量重金属.据估算约1 m厚的硫化铜沉积层反映出华南酸性火山释放的铜量超过1.9 Gt.另一方面,陆地生态系统崩溃后,大量陆地有机质和土壤的氧化可能进一步向环境中释放大量Hg和Cu,二叠纪‒三叠纪之交富集的重金属很可能具有多源性(Chu et al., 2020Dal Corso et al., 2020).

3 火山活动的环境效应与生物响应

火山活动释放的大量CO2、CH4、SO2、卤素及重金属引发了多种环境效应.这些效应包括由温室气体CO2浓度激增引起的长期全球升温和海洋酸化,SO2可能导致的短暂降温(火山冬天),CO2和SO2共同引发的酸雨,卤素释放引起的潜在臭氧层破坏,以及重金属富集的毒化作用(图4图5).这些环境效应对海洋和陆地生物产生了不同的影响,并最终共同导致了二叠纪‒三叠纪之交的生物大灭绝.

3.1 全球变暖

显著的CO2浓度增加导致了氧同位素所记录的二叠纪‒三叠纪之交极端高温.特提斯洋低纬度地区的牙形石氧同位素记录了近10 ℃的异常升温,包括华南地区(Joachimski et al., 2012Sun et al., 2012Chen et al., 2013,2016)、伊朗地区(Schobben et al., 2014)和亚美尼亚地区(Joachimski et al., 2020).此外,秦岭和西藏地区的腕足类和介形虫壳体氧同位素出现显著负偏,反映了超过10 ℃的升温(Garbelli et al., 2016Wang et al., 2020Gliwa et al., 2022).二叠纪‒三叠纪之交的快速升温显著加速了古生代晚期的长期升温趋势,最终导致了显生宙最为剧烈的一次变暖事件,即古生代末大变暖事件(Song and Scotese, 2023).

二叠纪‒三叠纪之交的升温呈现出两阶段变化模式,从晚二叠世牙形石C. changxingensis带顶部到C. yini带顶部(对应251.994~251.942 Ma),小幅度缓慢增温1~2 ℃;随后从C. meishanensis带至二叠系‒三叠系界线(对应251.942~251.902 Ma),大幅度升温7~8 ℃(图3Joachimski et al., 2012Sun et al., 2012).这一变化与先释放少量热变质碳,随后大量排放幔源CO2的火山碳排放模式相耦合(Wu et al., 2023).尽管最初升温幅度较小,数值模拟表明,当CO2浓度升至约800×10-6时,升温能够引起显著的厄尔尼诺效应(Sun et al., 2024).这一效应可能导致降水的季节性增强与显著干旱(Franks et al., 2014Benton, 2018; 宋汉宸等,2023; Sun et al., 2024),进一步促进野火频发并引发陆地去森林化(Chu et al., 2020Vajda et al., 2020).例如,华南黔西滇东、新疆准噶尔盆地和悉尼盆地的陆相沉积物中记录了高丰度的炭屑,这一现象发生在二叠纪末海相主幕灭绝之前,反映出小幅升温已引发的热带和中纬度陆地生态系统的提前崩溃(Chu et al., 2020Vajda et al., 2020Cai et al., 2021).更多的陆相地层高精度测年数据和化学地层证据表明,陆相生态系统的扰动可能比二叠纪末的海相主幕灭绝提前60~ 370 ka(Fielding et al., 2019Chu et al., 2020Gastaldo et al., 2020Wu et al., 2020).近年来有学者提出,不同陆相盆地的生物危机也存在不同步(Chu et al., 2025),甚至认为部分陆相盆地的生物灭绝反而晚于海相灭绝,可能反映了不同纬度地区对升温响应的差异性(Wu et al., 2024a).

致命高温引发了不同纬度的海洋动物的选择性灭绝,并促使它们向极地迁移 (Penn et al., 2018Song et al., 2020).然而,上述研究报道了两种相反的灭绝模式:一种认为高纬度地区的灭绝率最高(Penn et al., 2018),另一种则指出热带地区的灭绝率最高(Song et al., 2020).这一差异可能归因于统计方法和数据来源的不同.第一种模式仅考虑了二叠纪末的第一幕灭绝数据,忽略了早三叠世早期的第二幕灭绝数据(Penn et al., 2018);第二种模式则综合分析了两幕式灭绝的数据(Song et al., 2020).与此同时,升温引发的大陆风化显著加强,增加了营养盐(如磷酸盐)向海洋的输送,进而促进了海洋富营养化,最终导致缺氧和硫化(Song et al., 2012Yin et al., 2012Grasby et al., 2013Zhang et al., 2018Hülse et al., 2021Wu et al., 2024b).海洋缺氧导致生物的灭绝具有选择性,携氧能力较低的类群(如有孔虫、腕足类)相比具有较高效率携氧蛋白的类群(如双壳类、腹足类、鱼类、牙形石等)经历了更高的灭绝率,并表现出更显著的小型化特征(Song et al., 2024Yang et al., 2024).

3.2 海洋酸化

大气CO2浓度升高会使更多二氧化碳溶解于海水中,导致pH值下降并引发海洋酸化(Hönisch et al., 2012).二叠纪‒三叠纪之交海洋酸化的早期证据包括大贵州滩微生物岩底部的溶蚀面(Payne et al., 2007).然而Wignall et al. (2009)提出质疑,认为该溶蚀面是由海退导致的暴露面,牙形石生物地层证据则进一步支持了这一观点 (Yin et al., 2014).二叠纪‒三叠纪之交碳酸盐岩和牙形石的δ44Ca显示出显著负偏,这一现象被解释为海洋酸化的结果(Payne et al., 2010; Silva⁃Tamayo et al., 2018Song et al., 2021).但是钙同位素数据模型显示,海水δ⁴⁴Ca的变化不仅反映海洋酸化,还受到多种因素的共同影响,包括大陆架碳酸盐岩风化增强、碳酸盐沉积减少、矿物学变化以及海水饱和状态的改变 (Komar and Zeebe, 2016).在华南地区,第一幕生物灭绝层位附近记录了大量仅在酸性条件下形成的白铁矿沉积,其含量急剧增加,且δ34S显著下降,这可能指示海水发生了快速酸化(Li et al., 2023).海相碳酸盐岩硼同位素的负偏揭示了显著的pH值下降(~0.7),但这一变化出现在早三叠世初期的第二幕灭绝层位(Clarkson et al., 2015),晚于二叠纪末大气CO2浓度上升和碳同位素负偏,因而该记录是否能够作为海洋酸化的有力证据存在争议(Dal Corso et al., 2022).目前,最直接且可靠的海洋酸化证据来自意大利和我国华南腕足类化石的硼同位素负偏.这些数据揭示海水pH值下降与二叠纪末碳同位素负偏相耦合,在二叠系‒三叠系界线附近达到最低值,pH值的下降幅度约为0.6个单位(Jurikova et al., 2020).这与中等复杂程度地球系统模型cGENIE计算的约0.7个单位的pH值下降幅度基本一致(Wu et al., 2023).目前仍亟需其他地区的地球化学指标记录,以支持意大利和我国华南腕足类化石硼同位素负偏所揭示的海洋酸化.

海洋酸化引发了生物的选择性灭绝,生理上无缓冲机制的生物(如珊瑚、腕足类和有孔虫)由于代谢率较低且生成碳酸钙骨骼需耗费大量能量,因而更容易灭绝;而生理上具备缓冲机制的生物(如双壳类、腹足类、菊石和牙形石)在危机中则能够较好地存活(Clapham and Payne, 2011Song et al., 2013; 宋海军和童金南, 2016).Garbelli et al. (2017) 对腕足外壳的生物成矿进行了深入研究,发现有机质含量较高的腕足类型能够有效保护钙质外壳免于溶解,从而更容易在二叠纪末的海洋酸化中避免灭绝.对现生软体动物的观察与实验研究表明,海水酸化会引起壳体出现畸变特征(Foster et al., 2022).然而,斯瓦尔巴群岛早三叠世早期双壳化石未记录畸变特征,这至少表明海洋酸化对高纬度地区早三叠世早期斯瓦尔巴群岛的影响较小 (Foster et al., 2022).

3.3 火山冬天

不同于温室气体CO2,火山排放的SO2会迅速转化为硫酸盐气溶胶,遮挡光照并降低气温,从而引发“火山冬天”效应(Schmidt et al., 2016).全耦合地球系统模型CESM的模拟结果显示,若西伯利亚火山以每年喷发2 000 Tg二氧化硫的规模持续 10 a,全球平均气温将下降1.5~3.0 °C,而北半球陆地年均气温的下降幅度更为显著,可达5~15 °C(Black et al., 2018).这是由于西伯利亚地幔玄武岩省位于北半球中高纬度地区,导致大部分硫酸盐气溶胶滞留在北半球(Black et al., 2018).然而,几乎所有温度指标都未显示显著的降温,仅在华南蓬莱滩剖面的牙形石氧同位素数据中,在快速升温之前记录到一个可能的降温数据点(Shen et al., 2019c).此外,利用植烷指标重建的CO2浓度在二叠纪末生物灭绝层位出现下降,最低达到270×10-6Shen et al., 2022),但这一趋势未被其他CO2指标记录.火山冬天引起的光照下降在理论上会抑制植物光合作用(图5).然而,现有温度指标的时间分辨率最高约为10 ka,难以捕捉“火山冬天”现象及其对生物短期响应的影响,有待未来更高分辨率的温度指标和化石记录进行验证.

3.4 酸雨

全耦合地球系统模型CESM的模拟结果表明,CO2浓度增加十倍会导致全球雨水的pH值显著下降,降至约4(Black et al., 2014).火山碎屑喷发将SO2注入平流层,使雨水的pH值进一步降低至2~3,北半球尤为明显(Black et al., 2014).酸雨的可能证据来自在意大利北部发现的生标化合物香草醛(这种物质是土壤有机物在酸性条件下分解的产物),其丰度表现为脉冲式增加(Sephton et al., 2015).南非卡鲁盆地地层中的硫含量及其同位素提供了酸雨的其他地球化学证据,其中硫化物的增多被解释为酸雨向淡水环境输送大量硫酸盐的结果(Maruoka et al., 2003).然而,卡鲁盆地的陆地灭绝事件发生在硫含量及其同位素变化之前,这降低了该结论的可靠性.新疆准噶尔盆地和悉尼盆地的陆相沉积物记录了显著的硫同位素负偏,这与陆相碳同位素负偏和生物灭绝层位相耦合,为火山SO2释放引发的酸雨事件提供了相对可靠的证据(Li et al., 2022Dal Corso et al., 2024).目前关于酸雨的记录较少,缺乏确凿证据来揭示二叠纪‒三叠纪之交酸雨的强度、分布等具体细节,同时也缺少酸雨对生物影响的化石证据.

3.5 臭氧层破坏

火山活动释放的卤素及其形成的卤代烃化合物进入平流层后,与臭氧发生化学反应,消耗臭氧并破坏臭氧层,从而增强了UV⁃B辐射(Beerling et al., 2007).全耦合地球系统模型CESM的模拟结果显示,西伯利亚大火成岩省喷出作用释放的HCl导致臭氧耗损达5%~30%,而热变质煤层和蒸发岩所释放的HCl使臭氧耗损进一步提升至55%~67%(Black et al., 2014).由于溴的臭氧消耗效能约为氯的45倍,西伯利亚大火成岩省释放的大量溴进入平流层后,可能进一步加剧臭氧耗损,比例达20%,(Sobolev et al., 2011).上述卤素脱气规模足以在二叠纪末危机期间引发全球臭氧几乎完全耗损,但由于大气臭氧在10 a内快速恢复,全球臭氧层长期受损的可能性较低(图4)(Black et al., 2014).现代实验模拟表明,在高UV⁃B强度下,现生松柏类花粉的畸形频率增加了5倍.尽管所有树木在增强的UV⁃B环境下能够存活,但均失去了生殖能力(Benca et al., 2018).二叠系‒三叠系界线的海相和陆相地层中,均发现高丰度的畸形孢子和花粉(Visscher et al., 2004Hochuli et al., 2017Chu et al., 2021),这一发现支持了二叠纪‒三叠纪之交臭氧层被破坏导致UV⁃B辐射增强的推测.藏南海相地层中的孢粉外壁记录了高水平的UV⁃B吸收化合物,这是植物为抵抗UV⁃B辐射的产物(Liu et al., 2023).这一现象与汞富集和显著碳同位素负偏的层位一致,表明臭氧层破坏与陆地生物灭绝之间存在密切联系(Liu et al., 2023).

3.6 重金属毒化作用

沉积记录中高浓度的重金属(如Hg、Cu、Ni)在被生物体大量吸收后,会引发大量活性氧的产生,从而破坏蛋白质和DNA,最终干扰生物的生理活动,甚至导致死亡(Nagajyoti et al., 2010).数值模拟结果显示,西伯利亚大火成岩省喷发向大气中释放的汞浓度比正常背景水平高出若干数量级(Grasby et al., 2020).这些汞沉积到全球环境中后,引发了一系列持续超过1 ka的金属毒化作用,最终对海洋生物和陆地动植物造成毒害(图4).金属毒化作用同样影响了热带地区灭绝后的幸存植物.华南黔西滇东地区,在大羽羊齿植物群灭绝层之上的地层中,石松孢子四分体显著增加,与汞和铜富集峰值相一致,表明幸存植物可能面临较高金属浓度的环境压力,从而导致畸变(Chu et al., 2021).然而,畸变的孢粉不仅与金属毒化作用密切相关,臭氧层破坏引起的UV⁃B辐射增强同样可能带来环境压力,从而引发孢粉畸变(Benca et al., 2018).因此,孢粉畸变可能是多种环境压力共同作用的结果(图5).

4 二叠纪‒三叠纪之交火山与现代工业碳排放的对比

二叠纪‒三叠纪之交的火山活动及其引发的环境效应与生物响应,为当前全球变化问题提供了重要的历史借鉴.特别是对深时火山碳排放过程的研究,揭示了导致全球生态系统剧变的碳排放规模和速率,这为评估现代工业碳排放的严重性提供了重要参考.在二叠纪末的碳同位素负偏启动阶段(251.994~251.902 Ma),碳排放总量估算为26 000 Gt,范围在15 500~55 700 Gt之间(Wu et al., 2023).然而,该模拟实验没有涉及碳同位素启动阶段前后时间存在的火山作用(Burgess et al., 2017),因此二叠纪‒三叠纪之交的碳释放总量很可能高于26 000 Gt.例如,地球生物化学箱式模型模拟了二叠纪‒三叠纪之交前后1 Ma的火山碳排放过程,计算得到105 600 Gt的碳排放(Jurikova et al., 2020).尽管碳同位素负偏启动阶段只持续了近90 ka,但其碳排放量占1 Ma火山碳排放总量的15%~53%,这一阶段是碳快速排放的关键时期,碳排放峰值速率高达0.7 Gt/a,范围在0.4~2 Gt/a(Wu et al., 2023).

尽管二叠纪‒三叠纪之交发生了显生宙中规模最大的碳排放事件,其排放速率仍比现代工业碳排放速率低一个数量级.2010年至2019年,人类工业碳排放平均速率为9.6 Gt/a (Friedlingstein et al., 2020),远高于二叠纪‒三叠纪之交的火山碳排放速率.从1850年到2019年,工业碳排放累计约2 400 Gt,导致全球大气CO2浓度从工业革命前的~280×10-6上升至当前的~420×10-6.与1850年至1900年的平均温度相比,截至2022年6月,全球气温已上升1.25 °C(Damon Matthews and Wynes, 2022).尽管当前的pCO2浓度和温度升高幅度远低于二叠纪‒三叠纪之交的变化水平(pCO2变化2 000×10-6以上,温度变化~10 ℃),但升温平均速率高达7.3 ℃/ka,比二叠纪‒三叠纪之交(0.08~0.1 ℃/ka)高出1至2个数量级(图6).因此,人类碳排放速率和升温速率很可能不仅在过去6 600万年内(Zeebe et al., 2016),甚至在过去2.52亿年中都是前所未有的.未来地球表层海水的温度和pH值变化可能超过地质历史时期的变化幅度,对人类社会的可持续发展构成威胁(Ridgwell and Schmidt, 2010).然而,由于测年数据、温度指标和碳排放数值模拟参数都存在误差和局限,使得深时温度变化速率和碳排放速率的计算存在较大不确定性,这为古今对比增加了复杂性(图6).

5 总结与展望

综上所述,近年来的高精度测年数据和高分辨率地质记录表明,西伯利亚大火成岩省和环特提斯洋及泛大陆周边的酸性大陆岩浆弧火山活动,可能都是二叠纪‒三叠纪之交生物灭绝的关键驱动力.数值模拟和地质指标的综合分析逐步揭示了二叠纪‒三叠纪之交的岩浆脱气产物种类繁多(CO2、SO2、卤素和重金属元素等)且排放规模巨大(如碳排放达104~105 Gt数量级).这些规模庞大的脱气产物释放到地表系统中,诱发了一系列显著的环境效应,包括长期全球升温、海洋酸化、短期降温(火山冬天)、酸雨、臭氧层破坏以及重金属毒化等.这些环境效应在几个月到105年的不同时间尺度上,对海洋和陆地生态系统造成了严重破坏.高温、海洋缺氧与酸化等因素导致海洋生物的选择性灭绝,而陆地生态系统则面临臭氧层破坏、重金属毒化、火山冬天、酸雨及高温诱发的野火增多等多重环境压力.二叠纪‒三叠纪之交火山活动及其引发的环境效应与生物响应,为当前全球变化问题提供了重要的历史借鉴,揭示了现代碳排放与升温速率可能已达到过去2.52亿年的最高水平.尽管近年来的研究显著加强了二叠纪‒三叠纪之交火山活动与生物大灭绝之间联系的认识,但许多研究的不足仍限制了对二者关系的综合理解.以下几个方面仍需深入研究.

(1)提高碳排放过程定量估算的可靠性.一方面,建立更高分辨率的时间框架,减少CO2地化数据和数值模拟边界条件的误差,以此进一步约束二叠纪‒三叠纪之交碳排放的估算;另一方面,目前尚无法定量评估西伯利亚大火成岩省与酸性大陆岩浆弧火山活动在碳排放过程中的相对贡献大小.

(2)加强对岩浆脱气产物的研究.相较于CO2和重金属,卤素和SO2等脱气产物的地质证据十分薄弱,这导致部分环境效应与生物响应仍停留于理论推测中.未来需建立卤素和SO2等脱气产物的新指标,用来探究二叠纪‒三叠纪之交臭氧层破坏、酸雨及火山冬天等环境效应,并寻找相关生物响应的化石记录.

(3)深入研究环境效应与生物响应的空间与时间差异性.一方面,火山活动位置影响岩浆脱气产物的全球分布不均(如西伯利亚大火成岩省位于北半球),使短时间尺度的环境效应(如火山冬天、臭氧层破坏等)在火山活动周缘更为严重,可能导致不同地区生物灭绝强度或时间的差异;另一方面,长时间尺度的环境效应在不同地区也表现出差异(如高纬度升温更显著,陆地生态系统对升温响应比海洋更敏感),进一步导致灭绝强度或时间的区域差异.未来需整合全球数据并结合海陆耦合地球系统模拟以剖析具体机制.

参考文献

[1]

Beerling, D. J., Harfoot, M., Lomax, B., et al., 2007. The Stability of the Stratospheric Ozone Layer during the End⁃Permian Eruption of the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 365(1856): 1843-1866. https://doi.org/10.1098/rsta.2007.2046

[2]

Benca, J. P., Duijnstee, I. A. P., Looy, C. V., 2018. UV⁃B⁃Induced Forest Sterility: Implications of Ozone Shield Failure in Earth’s Largest Extinction. Science Advances, 4(2): e1700618. https://doi.org/10.1126/sciadv.1700618

[3]

Benton, M. J., 2003. When Life nearly Died: The Greatest Mass Extinction of All Time. Thames & Hudson, London.

[4]

Benton, M. J., 2018. Hyperthermal⁃Driven Mass Extinctions: Killing Models during the Permian⁃Triassic Mass Extinction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170076. https://doi.org/10.1098/rsta.2017.0076

[5]

Berner, R. A., 2002. Examination of Hypotheses for the Permo⁃Triassic Boundary Extinction by Carbon Cycle Modeling. Proceedings of the National Academy of Sciences, 99(7): 4172-4177. https://doi.org/10.1073/pnas.032095199

[6]

Black, B. A., Elkins⁃Tanton, L. T., Rowe, M. C., et al., 2012. Magnitude and Consequences of Volatile Release from the Siberian Traps. Earth and Planetary Science Letters, 317-318: 363-373. https://doi.org/10.1016/j.epsl.2011.12.001

[7]

Black, B. A., Lamarque, J. F., Shields, C. A., et al., 2014. Acid Rain and Ozone Depletion from Pulsed Siberian Traps Magmatism. Geology, 42(1): 67-70. https://doi.org/10.1130/g34875.1

[8]

Black, B. A., Neely, R. R., Lamarque, J. F., et al., 2018. Systemic Swings in End⁃Permian Climate from Siberian Traps Carbon and Sulfur Outgassing. Nature Geoscience, 11: 949-954. https://doi.org/10.1038/s41561⁃018⁃0261⁃y

[9]

Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005

[10]

Bowring, S. A., Erwin, D. H., Jin, Y. G., et al., 1998. U/Pb Zircon Geochronology and Tempo of the End⁃Permian Mass Extinction. Science, 280(5366): 1039-1045. https://doi.org/10.1126/science.280.5366.1039

[11]

Broadley, M. W., Barry, P. H., Ballentine, C. J., et al., 2018. End⁃Permian Extinction Amplified by Plume⁃Induced Release of Recycled Lithospheric Volatiles. Nature Geoscience, 11: 682-687. https://doi.org/10.1038/s41561⁃018⁃0215⁃4

[12]

Burgess, S. D., Bowring, S. A., 2015. High⁃Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth’s Most Severe Extinction. Science Advances, 1(7): e1500470. https://doi.org/10.1126/sciadv.1500470

[13]

Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High⁃Precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111

[14]

Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End⁃Permian Mass Extinction. Nature Communications, 8(1): 164. https://doi.org/10.1038/s41467⁃017⁃00083⁃9

[15]

Cai, Y. F., Zhang, H., Cao, C. Q., et al., 2021. Wildfires and Deforestation during the Permian⁃Triassic Transition in the Southern Junggar Basin, Northwest China. Earth⁃Science Reviews, 218: 103670. https://doi.org/10.1016/j.earscirev.2021.103670

[16]

Chapman, T., Milan, L. A., Metcalfe, I., et al., 2022. Pulses in Silicic Arc Magmatism Initiate End⁃Permian Climate Instability and Extinction. Nature Geoscience, 15: 411-416. https://doi.org/10.1038/s41561⁃022⁃00934⁃1

[17]

Chen, B., Joachimski, M. M., Shen, S. Z., et al., 2013. Permian Ice Volume and Palaeoclimate History: Oxygen Isotope Proxies Revisited. Gondwana Research, 24(1): 77-89. https://doi.org/10.1016/j.gr.2012.07.007

[18]

Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo⁃Tethys Ocean during the Permian⁃Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534

[19]

Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High⁃Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025

[20]

Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475

[21]

Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1

[22]

Chu, D. L., Grasby, S. E., Song, H. J., et al., 2020. Ecological Disturbance in Tropical Peatlands Prior to Marine Permian⁃Triassic Mass Extinction. Geology, 48(3): 288-292. https://doi.org/10.1130/g46631.1

[23]

Chu, D. L., Song, H. J., Dal Corso, J., et al., 2025. Diachronous End⁃Permian Terrestrial Crises in North and South China. Geology, 53(1): 55-60. https://doi.org/10.1130/g52655.1

[24]

Clapham, M. E., Payne, J. L., 2011. Acidification, Anoxia, and Extinction: A Multiple Logistic Regression Analysis of Extinction Selectivity during the Middle and Late Permian. Geology, 39(11): 1059-1062. https://doi.org/10.1130/G32230.1

[25]

Clapham, M. E., Renne, P. R., 2019. Flood Basalts and Mass Extinctions. Annual Review of Earth and Planetary Sciences, 47: 275-303. https://doi.org/10.1146/annurev⁃earth⁃053018⁃060136

[26]

Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa0193

[27]

Cui, Y., Kump, L. R., Ridgwell, A., 2013. Initial Assessment of the Carbon Emission Rate and Climatic Consequences during the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 389: 128-136. https://doi.org/10.1016/j.palaeo.2013.09.001

[28]

Cui, Y., Li, M. S., van Soelen, E. E., et al., 2021. Massive and Rapid Predominantly Volcanic CO2 Emission during the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 118(37): e2014701118. https://doi.org/10.1073/pnas.2014701118

[29]

Dal Corso, J., Mills, B. J. W., Chu, D. L., et al., 2020. Permo⁃Triassic Boundary Carbon and Mercury Cycling Linked to Terrestrial Ecosystem Collapse. Nature Communications, 11(1): 2962. https://doi.org/10.1038/s41467⁃020⁃16725⁃4

[30]

Dal Corso, J., Newton, R. J., Zerkle, A. L., et al., 2024. Repeated Pulses of Volcanism Drove the End⁃Permian Terrestrial Crisis in Northwest China. Nature Communications, 15(1): 7628. https://doi.org/10.1038/s41467⁃024⁃51671⁃5

[31]

Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian⁃Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017⁃021⁃00259⁃4

[32]

Damon Matthews, H., Wynes, S., 2022. Current Global Efforts Are Insufficient to Limit Warming to 1.5 ℃. Science, 376(6600): 1404-1409. https://doi.org/10.1126/science.abo3378

[33]

Davydov, V. I., 2021. Tunguska Сoals, Siberian Sills and the Permian⁃Triassic Extinction. Earth⁃Science Reviews, 212: 103438. https://doi.org/10.1016/j.earscirev.2020.103438

[34]

Davydov, V. I., Karasev, E. V., 2021. The Influence of the Permian⁃Triassic Magmatism in the Tunguska Basin, Siberia on the Regional Floristic Biota of the Permian⁃Triassic Transition in the Region. Frontiers in Earth Science, 9: 635179. https://doi.org/10.3389/feart.2021.635179

[35]

Ekart, D. D., Cerling, T. E., Montanez, I. P., 1999. A 400 Million Year Carbon Isotope Record of Pedogenic Carbonate; Implications for Paleoatomospheric Carbon Dioxide. American Journal of Science, 299(10): 805-827. https://doi.org/10.2475/ajs.299.10.805

[36]

Elkins⁃Tanton, L. T., Grasby, S. E., Black, B. A., et al., 2020. Field Evidence for Coal Combustion Links the 252 Ma Siberian Traps with Global Carbon Disruption. Geology, 48(10): 986-991. https://doi.org/10.1130/g47365.1

[37]

Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, Sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 30-52. https://doi.org/10.1016/j.palaeo.2017.03.014

[38]

Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High⁃Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953

[39]

Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High⁃Latitude Continental End⁃Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10(1): 385. https://doi.org/10.1038/s41467⁃018⁃07934⁃z

[40]

Foster, G. L., Royer, D. L., Lunt, D. J., 2017. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nature Communications, 8: 14845. https://doi.org/10.1038/ncomms14845

[41]

Foster, W. J., Hirtz, J. A., Farrell, C., et al., 2022. Bioindicators of Severe Ocean Acidification Are Absent from the End⁃Permian Mass Extinction. Scientific Reports, 12(1): 1202. https://doi.org/10.1038/s41598⁃022⁃04991⁃9

[42]

Franks, P. J., Royer, D. L., Beerling, D. J., et al., 2014. New Constraints on Atmospheric CO2 Concentration for the Phanerozoic. Geophysical Research Letters, 41(13): 4685-4694. https://doi.org/10.1002/2014gl060457

[43]

Friedlingstein, P., O’Sullivan, M., Jones, M. W., et al., 2020. Global Carbon Budget 2020. Earth System Science Data, 12(4): 3269-3340. https://doi.org/10.5194/essd⁃12⁃3269⁃2020

[44]

Gales, E., Black, B., Elkins⁃Tanton, L. T., 2020. Carbonatites as a Record of the Carbon Isotope Composition of Large Igneous Province Outgassing. Earth and Planetary Science Letters, 535: 116076. https://doi.org/10.1016/j.epsl.2020.116076

[45]

Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012

[46]

Garbelli, C., Angiolini, L., Shen, S. Z., 2017. Biomineralization and Global Change: A New Perspective for Understanding the End⁃Permian Extinction. Geology, 45(1): 19-22. https://doi.org/10.1130/g38430.1

[47]

Gastaldo, R. A., Kamo, S. L., Neveling, J., et al., 2020. The Base of the Lystrosaurus Assemblage Zone, Karoo Basin, Predates the End⁃Permian Marine Extinction. Nature Communications, 11(1): 1428. https://doi.org/10.1038/s41467⁃020⁃15243⁃7

[48]

Gastaldo, R. A., Knight, C. L., Neveling, J., et al., 2014. Latest Permian Paleosols from Wapadsberg Pass, South Africa: Implications for Changhsingian Climate. Geological Society of America Bulletin, 126(5-6): 665-679. https://doi.org/10.1130/b30887.1

[49]

Gliwa, J., Wiedenbeck, M., Schobben, M., et al., 2022. Gradual Warming Prior to the End⁃Permian Mass Extinction. Palaeontology, 65(5): e12621. https://doi.org/10.1111/pala.12621

[50]

Grard, A., François, L. M., Dessert, C., et al., 2005. Basaltic Volcanism and Mass Extinction at the Permo⁃Triassic Boundary: Environmental Impact and Modeling of the Global Carbon Cycle. Earth and Planetary Science Letters, 234(1-2): 207-221. https://doi.org/10.1016/j.epsl.2005.02.027

[51]

Grasby, S. E., Beauchamp, B., Bond, D. P. G., et al., 2015. Progressive Environmental Deterioration in Northwestern Pangea Leading to the Latest Permian Extinction. Geological Society of America Bulletin, 127(9-10): 1331-1347. https://doi.org/10.1130/b31197.1

[52]

Grasby, S. E., Beauchamp, B., Embry, A., et al., 2013. Recurrent Early Triassic Ocean Anoxia. Geology, 41(2): 175-178. https://doi.org/10.1130/g33599.1

[53]

Grasby, S. E., Bond, D. P. G., 2023. How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times. Elements, 19(5): 276-281. https://doi.org/10.2138/gselements.19.5.276

[54]

Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1

[55]

Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/g38487.1

[56]

He, B., Zhong, Y. T., Xu, Y. G., et al., 2014. Triggers of Permo⁃Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo⁃Tethys Ignimbrite Flare⁃Up? Lithos, 204: 258-267. https://doi.org/10.1016/j.lithos.2014.05.011

[57]

Hochuli, P. A., Schneebeli⁃Hermann, E., Mangerud, G., et al., 2017. Evidence for Atmospheric Pollution across the Permian⁃Triassic Transition. Geology, 45(12): 1123-1126. https://doi.org/10.1130/g39496.1

[58]

Hönisch, B., Ridgwell, A., Schmidt, D. N., et al., 2012. The Geological Record of Ocean Acidification. Science, 335(6072): 1058-1063. https://doi.org/10.1126/science.1208277

[59]

Hu, X. M., Li, J., Han, Z., et al., 2020. Two Types of Hyperthermal Events in the Mesozoic⁃Cenozoic: Environmental Impacts, Biotic Effects, and Driving Mechanisms. Science in China (Series D), 50(8): 1023-1043 (in Chinese).

[60]

Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End⁃Permian Marine Extinction Due to Temperature⁃Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561⁃021⁃00829⁃7

[61]

Ivanov, A. V., He, H., Yan, L. K., et al., 2013. Siberian Traps Large Igneous Province: Evidence for Two Flood Basalt Pulses around the Permo⁃Triassic Boundary and in the Middle Triassic, and Contemporaneous Granitic Magmatism. Earth⁃Science Reviews, 122: 58-76. https://doi.org/10.1016/j.earscirev.2013.04.001

[62]

Jiao, Y., Zhou, L., Algeo, T. J., et al., 2023. Zirconium and Neodymium Isotopes Record Intensive Felsic Volcanism in South China Region during the Permian⁃Triassic Boundary Crisis. Chemical Geology, 636: 121653. https://doi.org/10.1016/j.chemgeo.2023.121653

[63]

Joachimski, M. M., Alekseev, A. S., Grigoryan, A., et al., 2020. Siberian Trap Volcanism, Global Warming and the Permian⁃Triassic Mass Extinction: New Insights from Armenian Permian⁃Triassic Sections. GSA Bulletin, 132(1-2): 427-443. https://doi.org/10.1130/b35108.1

[64]

Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1

[65]

Joachimski, M. M., Müller, J., Gallagher, T. M., et al., 2022. Five Million Years of High Atmospheric CO2 in the Aftermath of the Permian⁃Triassic Mass Extinction. Geology, 50(6): 650-654. https://doi.org/10.1130/g49714.1

[66]

Jurikova, H., Gutjahr, M., Wallmann, K., et al., 2020. Permian⁃Triassic Mass Extinction Pulses Driven by Major Marine Carbon Cycle Perturbations. Nature Geoscience, 13: 745-750. https://doi.org/10.1038/s41561⁃020⁃00646⁃4

[67]

Komar, N., Zeebe, R. E., 2016. Calcium and Calcium Isotope Changes during Carbon Cycle Perturbations at the End⁃Permian. Paleoceanography, 31(1): 115-130. https://doi.org/10.1002/2015pa002834

[68]

Li, H., Yu, J. X., McElwain, J. C., et al., 2019. Reconstruction of Atmospheric CO2 Concentration during the Late Changhsingian Based on Fossil Conifers from the Dalong Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 37-48. https://doi.org/10.1016/j.palaeo.2018.09.006

[69]

Li, M. H., Frank, T. D., Xu, Y. L., et al., 2022. Sulfur Isotopes Link Atmospheric Sulfate Aerosols from the Siberian Traps Outgassing to the End⁃Permian Extinction on Land. Earth and Planetary Science Letters, 592: 117634. https://doi.org/10.1016/j.epsl.2022.117634

[70]

Li, R. C., Wu, N. P., Shen, S. Z., et al., 2023. A Rapid Onset of Ocean Acidification Associated with the End⁃Permian Mass Extinction. Global and Planetary Change, 225: 104130. https://doi.org/10.1016/j.gloplacha.2023.104130

[71]

Liu, F., Peng, H. P., Marshall, J. E. A., et al., 2023. Dying in the Sun: Direct Evidence for Elevated UV⁃B Radiation at the End⁃Permian Mass Extinction. Science Advances, 9(1): eabo6102. https://doi.org/10.1126/sciadv.abo6102

[72]

Maruoka, T., Koeberl, C., Hancox, P. J., et al., 2003. Sulfur Geochemistry across a Terrestrial Permian⁃Triassic Boundary Section in the Karoo Basin, South Africa. Earth and Planetary Science Letters, 206(1-2): 101-117. https://doi.org/10.1016/S0012⁃821X(02)01087⁃7

[73]

Nagajyoti, P. C., Lee, K. D., Sreekanth, T. V. M., 2010. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environmental Chemistry Letters, 8(3): 199-216. https://doi.org/10.1007/s10311⁃010⁃0297⁃8

[74]

Nelson, D. A., Cottle, J. M., 2019. Tracking Voluminous Permian Volcanism of the Choiyoi Province into Central Antarctica. Lithosphere, 11(3): 386-398. https://doi.org/10.1130/l1015.1

[75]

Payne, J. L., Kump, L. R., 2007. Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations. Earth and Planetary Science Letters, 256(1-2): 264-277. https://doi.org/10.1016/j.epsl.2007.01.034

[76]

Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events. Geological Society of America Bulletin, 119(7-8): 771-784. https://doi.org/10.1130/b26091.1

[77]

Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548. https://doi.org/10.1073/pnas.0914065107

[78]

Penn, J. L., Deutsch, C., Payne, J. L., et al., 2018. Temperature⁃Dependent Hypoxia Explains Biogeography and Severity of End⁃Permian Marine Mass Extinction. Science, 362(6419): eaat1327. https://doi.org/10.1126/science.aat1327

[79]

Rampino, M. R., Rodriguez, S., Baransky, E., et al., 2017. Global Nickel Anomaly Links Siberian Traps Eruptions and the Latest Permian Mass Extinction. Scientific Reports, 7(1): 12416. https://doi.org/10.1038/s41598⁃017⁃12759⁃9

[80]

Renne, P. R., Basu, A. R., 1991. Rapid Eruption of the Siberian Traps Flood Basalts at the Permo⁃Triassic Boundary. Science, 253(5016): 176-179. https://doi.org/10.1126/science.253.5016.176

[81]

Retallack, G. J., 2009. Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 121(9-10): 1441-1455. https://doi.org/10.1130/b26341.1

[82]

Retallack, G. J., 2013. Permian and Triassic Greenhouse Crises. Gondwana Research, 24(1): 90-103. https://doi.org/10.1016/j.gr.2012.03.003

[83]

Retallack, G. J., Jahren, A. H., 2008. Methane Release from Igneous Intrusion of Coal during Late Permian Extinction Events. The Journal of Geology, 116(1): 1-20. https://doi.org/10.1086/524120

[84]

Ridgwell, A., Schmidt, D. N., 2010. Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. Nature Geoscience, 3: 196-200. https://doi.org/10.1038/ngeo755

[85]

Rong, J. Y., Huang, B., 2014. Study of Mass Extinction over the Past Thirty Years: A Synopsis. Science in China (Series D), 44(3): 377-404 (in Chinese).

[86]

Schmidt, A., Skeffington, R. A., Thordarson, T., et al., 2016. Selective Environmental Stress from Sulphur Emitted by Continental Flood Basalt Eruptions. Nature Geoscience, 9: 77-82. https://doi.org/10.1038/ngeo2588

[87]

Schneebeli⁃Hermann, E., Kurschner, W. M., Hochuli, P. A., et al., 2013. Evidence for Atmospheric Carbon Injection during the End⁃Permian Extinction. Geology, 41(5): 579-582. https://doi.org/10.1130/g34047.1

[88]

Schobben, M., Joachimski, M. M., Korn, D., et al., 2014. Palaeotethys Seawater Temperature Rise and an Intensified Hydrological Cycle Following the End⁃Permian Mass Extinction. Gondwana Research, 26(2): 675-683. https://doi.org/10.1016/j.gr.2013.07.019

[89]

Scotese, C. R., 2021. An Atlas of Phanerozoic Paleogeographic Maps: The Seas Come in and the Seas Go out. Annual Review of Earth and Planetary Sciences, 49: 679-728. https://doi.org/10.1146/annurev⁃earth⁃081320⁃064052

[90]

Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/g36227.1

[91]

Shen, J. H., Zhang, Y. G., Yang, H., et al., 2022. Early and Late Phases of the Permian⁃Triassic Mass Extinction Marked by Different Atmospheric CO2 Regimes. Nature Geoscience, 15: 839-844. https://doi.org/10.1038/s41561⁃022⁃01034⁃w

[92]

Shen, J., Chen, J. B., Algeo, T. J., et al., 2019a. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0

[93]

Shen, J., Chen, J. B., Algeo, T. J., et al., 2021. Mercury Fluxes Record Regional Volcanism in the South China Craton Prior to the End⁃Permian Mass Extinction. Geology, 49(4): 452-456. https://doi.org/10.1130/g48501.1

[94]

Shen, J., Chen, J. B., Yu, J. X., et al., 2023. Mercury Evidence from Southern Pangea Terrestrial Sections for End⁃Permian Global Volcanic Effects. Nature Communications, 14(1): 6. https://doi.org/10.1038/s41467⁃022⁃35272⁃8

[95]

Shen, J., Yu, J. X., Chen, J. B., et al., 2019b. Mercury Evidence of Intense Volcanic Effects on Land during the Permian⁃Triassic Transition. Geology, 47(12): 1117-1121. https://doi.org/10.1130/g46679.1

[96]

Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454

[97]

Shen, S. Z., Ramezani, J., Chen, J., et al., 2019c. A Sudden End⁃Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1

[98]

Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events Versus Global Changes: Progresses and Challenges. Chinese Science Bulletin, 69(2): 268-285 (in Chinese).

[99]

Shen, S. Z., Zhang, H., 2017. What Caused the Five Mass Extinctions. Chinese Science Bulletin, 62(11): 1119-1135 (in Chinese).

[100]

Sial, A. N., Chen, J. B., Lacerda, L. D., et al., 2020. Globally Enhanced Hg Deposition and Hg Isotopes in Sections Straddling the Permian⁃Triassic Boundary: Link to Volcanism. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109537. https://doi.org/10.1016/j.palaeo.2019.109537

[101]

Silva⁃Tamayo, J. C., Lau, K. V., Jost, A. B., et al., 2018. Global Perturbation of the Marine Calcium Cycle during the Permian⁃Triassic Transition. GSA Bulletin, 130(7/8): 1323-1338. https://doi.org/10.1130/b31818.1

[102]

Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364): 312-316. https://doi.org/10.1038/nature10385

[103]

Song, H. C., Song, H. J., Zhang, Z. S., et al., 2023. Evolution and Driving Mechanisms of Water Circulation During the Late Paleozoic to Early Mesozoic. Chinese Science Bulletin, 68(12): 1501-1516 (in Chinese).

[104]

Song, H. J., Huang, S., Jia, E. H., et al., 2020. Flat Latitudinal Diversity Gradient Caused by the Permian⁃Triassic Mass Extinction. Proceedings of the National Academy of Sciences, 117(30): 17578-17583. https://doi.org/10.1073/pnas.1918953117

[105]

Song, H. J., Scotese, C. R., 2023. The End⁃Paleozoic Great Warming. Science Bulletin, 68(21): 2523-2526. https://doi.org/10.1016/j.scib.2023.09.009

[106]

Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038

[107]

Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian⁃Triassic Crisis. Earth Science, 41(6): 901-918 (in Chinese with English abstract).

[108]

Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio⁃Apatite for Multiple Oceanic Anoxic Events during Permian⁃Triassic Transition and the Link with End⁃Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005

[109]

Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649

[110]

Song, H. J., Wu, Y. Y., Dai, X., et al., 2024. Respiratory Protein⁃Driven Selectivity during the Permian⁃Triassic Mass Extinction. The Innovation, 5(3): 100618. https://doi.org/10.1016/j.xinn.2024.100618

[111]

Sun, Y. D., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End⁃Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030

[112]

Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126

[113]

Svensen, H. H., Frolov, S., Akhmanov, G. G., et al., 2018. Sills and Gas Generation in the Siberian Traps. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170080. https://doi.org/10.1098/rsta.2017.0080

[114]

Svensen, H., Planke, S., Polozov, A. G., et al., 2009. Siberian Gas Venting and the End⁃Permian Environmental Crisis. Earth and Planetary Science Letters, 277(3-4): 490-500. https://doi.org/10.1016/j.epsl.2008.11.015

[115]

Tong, J. N., Yin, H. F., 2009. Advance in the Study of Early Triassic Life and Environment. Acta Palaeontologica Sinica, 48(3): 497-508 (in Chinese with English abstract).

[116]

Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End⁃Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875

[117]

Visscher, H., Looy, C. V., Collinson, M. E., et al., 2004. Environmental Mutagenesis during the End⁃Permian Ecological Crisis. Proceedings of the National Academy of Sciences, 101(35): 12952-12956. https://doi.org/10.1073/pnas.0404472101

[118]

Wang, M., Zhong, Y. T., Hou, Y. L., et al., 2018. Source and Extent of the Felsic Volcanic Ashes at the Permian⁃Triassic Boundary in South China. Acta Petrologica Sinica, 34(1): 36-48 (in Chinese with English abstract).

[119]

Wang, W. Q., Garbelli, C., Zhang, F. F., et al., 2020. A High⁃Resolution Middle to Late Permian Paleotemperature Curve Reconstructed Using Oxygen Isotopes of Well⁃Preserved Brachiopod Shells. Earth and Planetary Science Letters, 540: 116245. https://doi.org/10.1016/j.epsl.2020.116245

[120]

Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044

[121]

Wignall, P. B., 2001. Large Igneous Provinces and Mass Extinctions. Earth⁃Science Reviews, 53(1-2): 1-33. https://doi.org/10.1016/S0012⁃8252(00)00037⁃4

[122]

Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow⁃Marine Carbonates and Implications for Permian⁃Triassic Boundary Events: Comment. Geological Society of America Bulletin, 121(5-6): 954-956. https://doi.org/10.1130/b26424.1

[123]

Witkowski, C. R., Weijers, J. W. H., Blais, B., et al., 2018. Molecular Fossils from Phytoplankton Reveal Secular Pco2 Trend over the Phanerozoic. Science Advances, 4(11): eaat4556. https://doi.org/10.1126/sciadv.aat4556

[124]

Wu, Q., Zhang, H., Ramezani, J., et al., 2024a. The Terrestrial End⁃Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284

[125]

Wu, Y. Y., Chu, D. L., Tong, J. N., et al., 2021. Six⁃Fold Increase of Atmospheric pCO2 during the Permian⁃ Triassic Mass Extinction. Nature Communications, 12(1): 2137. https://doi.org/10.1038/s41467⁃021⁃22298⁃7

[126]

Wu, Y. Y., Cui, Y., Chu, D. L., et al., 2023. Volcanic CO2 Degassing Postdates Thermogenic Carbon Emission during the End⁃Permian Mass Extinction. Science Advances, 9(7): eabq4082. https://doi.org/10.1126/sciadv.abq4082

[127]

Wu, Y. Y., Pohl, A., Tian, L., et al., 2024b. Recurrent Marine Anoxia in the Paleo⁃Tethys Linked to Constriction of Seaways during the Early Triassic. Earth and Planetary Science Letters, 643: 118882. https://doi.org/10.1016/j.epsl.2024.118882

[128]

Wu, Y. Y., Tong, J. N., Algeo, T. J., et al., 2020. Organic Carbon Isotopes in Terrestrial Permian⁃Triassic Boundary Sections of North China: Implications for Global Carbon Cycle Perturbations. GSA Bulletin, 132(5-6): 1106-1118. https://doi.org/10.1130/b35228.1

[129]

Xie, S. C., Pancost, R. D., Wang, Y. B., et al., 2010. Cyanobacterial Blooms Tied to Volcanism during the 5 M.Y. Permo⁃Triassic Biotic Crisis. Geology, 38(5): 447-450. https://doi.org/10.1130/g30769.1

[130]

Yang, L. R., Dai, X., Liu, X. K., et al., 2024. Foraminiferal Extinction and Size Reduction during the Permian⁃ Triassic Transition in Southern Tibet. Journal of Earth Science, 35(6): 1799-1809. https://doi.org/10.1007/s12583⁃023⁃1847⁃x

[131]

Yang, Z. Y., Wu, S. B., Yin, H. F., 1991. Permo⁃Triassic Events of South China. Geological Publishing House, Beijing (in Chinese).

[132]

Yin, H. F., Feng, Q. L., Lai, X. L., et al., 2007. The Protracted Permo⁃Triassic Crisis and Multi⁃Episode Extinction around the Permian⁃Triassic Boundary. Global and Planetary Change, 55(1-3): 1-20. https://doi.org/10.1016/j.gloplacha.2006.06.005

[133]

Yin, H. F., Huang, S. J., Zhang, K., et al., 1992. The Effects of Volcanism on the Permo⁃Triassic Mass Extinction in South China. In: Sweet, W. C., Yang, Z., Dickins, J. M., eds., Permo⁃Triassic Events in the Eastern Tethys. Cambridge University Press, Cambridge, 146-157.

[134]

Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End⁃Permian Regression in South China and Its Implication on Mass Extinction. Earth⁃Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003

[135]

Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian⁃Triassic Boundary of the GSSP Section Meishan. Earth⁃Science Reviews, 115(3): 163-172. https://doi.org/10.1016/j.earscirev.2012.08.006

[136]

Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004

[137]

Yin, H. F., Huang, S. J., Zhang, K. X., et al., 1989. Volcanism at the Permian⁃Triassic Boundary in South China and Its Effects on Mass Extinction. Acta Geologica Sinica, 63(2): 169-180 (in Chinese with English abstract).

[138]

Yin, H. F., Song, H. J., 2013. Mass Extinction and Pangea Integration during the Paleozoic⁃Mesozoic Transition. Science in China (Series D), 43(10): 1539-1552 (in Chinese).

[139]

Zeebe, R. E., Ridgwell, A., Zachos, J. C., 2016. Anthropogenic Carbon Release Rate Unprecedented during the Past 66 Million Years. Nature Geoscience, 9: 325-329. https://doi.org/10.1038/ngeo2681

[140]

Zhang, F. F., Romaniello, S. J., Algeo, T. J., et al., 2018. Multiple Episodes of Extensive Marine Anoxia Linked to Global Warming and Continental Weathering Following the Latest Permian Mass Extinction. Science Advances, 4(4): e1602921. https://doi.org/10.1126/sciadv.1602921

[141]

Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract).

[142]

Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390

基金资助

国家重点研发计划项目(2023YFF0804000)

国家自然科学基金项目(42202002)

AI Summary AI Mindmap
PDF (1933KB)

125

访问

0

被引

详细

导航
相关文章

AI思维导图

/