现代植物培养实验探索二叠纪‒三叠纪大灭绝事件后陆地植被演替的微生物驱动力
徐珍 , 喻建新 , 彭念 , 迟鸿飞 , 韩明贤 , 林雯洁 , 蒋宏忱
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 934 -950.
现代植物培养实验探索二叠纪‒三叠纪大灭绝事件后陆地植被演替的微生物驱动力
Modern Climate⁃Controlled Plant Growth Experiments Exploring the Microbial Drivers of Terrestrial Vegetation Succession after the Permian⁃Triassic Mass Extinction
,
植物通过与微生物共生(如菌根真菌与固氮细菌),增强自身对矿物质营养元素与水分的吸收能力,提高对极端气候的耐受性.尽管植物‒微生物共生作用的意义重大,但由于化石难以保存,地球历史关键气候转折期中有关植物与微生物共生关系的直接证据较为稀缺.以二叠纪‒三叠纪生物大灭绝期间残存植物的现代亲缘种为研究对象(异叶南洋杉Araucaria heterophylla、福建苏铁Cycas revoluta和银杏Ginkgo biloba),通过设置人工气候植物培养箱组的温度,进行一年的培养,通过高通量扩增子测序分析这些植物根系微生物的群落组成和相对丰度变化,与化石记录的植物演化过程对比,探索三叠纪极端温室气候下微生物与植物相互作用关系对植物生存的影响.初步结果表明,在常温25 ℃的基础上升高10 ℃后,南洋杉根际微生物中有益和有害微生物的相对丰度比例高于苏铁和银杏,这可能是南洋杉这类松柏类植物能在早三叠世极端高温环境中成为主要类群的原因之一.然而,随着培养温度降低至30 ℃和25 ℃,苏铁和银杏根际微生物的表现更为优越,分别在稍冷的晚三叠世及之后的群落中占据优势地位.本研究从微生物的角度揭示了二叠纪‒三叠纪大灭绝后植物适应极端温室气候的机制,为理解深时植物‒微生物‒环境相互作用提供了重要数据支撑.
Plants enhance their nutrient and water uptake and improve resilience to extreme climates through mutualism with microorganisms, including mycorrhizal fungi and nitrogen-fixing bacteria. Despite the ecological significance of plant-microbe interactions, direct evidence of such symbioses during critical climate transitions in Earth’s history remains limited due to the lack of relevant fossil records. This study adopts a modern-analogue approach, focusing on extant relatives of plants that survived the Permian-Triassic mass extinction, including Araucaria heterophylla, Cycas revoluta, and Ginkgo biloba. Using artificial climate chambers with temperature gradients, these plants were cultivated for one year, and high-throughput amplicon sequencing was employed to analyse the composition and relative abundance of root-associated microbial communities. The findings were then compared to plant fossil evidence to explore the impact of plant-microbe symbioses on plant survival under the extreme greenhouse climates of the Triassic. Preliminary results indicate that increasing the temperature by 10 °C above 25 °C resulted in a higher relative abundance ratio of beneficial and harmful microorganisms in the rhizosphere of Araucaria compared to Cycas and Ginkgo. This may explain why coniferous plants like Araucaria became dominant during the high-temperature conditions of the Early Triassic. However, at lower temperatures (30 °C and 25 °C), the microbial communities associated with Cycas and Ginkgo exhibited greater adaptive advantages, consistent with their later dominance in cooler Late Triassic and post-Triassic ecosystems. This study provides microbial-based insights into the mechanisms by which plants adapted to extreme greenhouse climates following the Permian-Triassic mass extinction and contributes valuable data for understanding deep-time plant-microbe-environment interactions.
丛枝菌根 / 外生菌根 / 植物化石记录 / 南洋杉 / 银杏 / 苏铁 / 高通量扩增子测序 / 温室效应 / 气候变化.
arbuscular mycorrhiza (AM) / ectotrophic mycorrhiza (EcM) / plant fossil records / Araucaria heterophylla / Cycas revolute / Ginkgo biloba / high throughput sequencing technology / greenhouse effect / climate change
| [1] |
Angus, A. A., Agapakis, C. M., Fong, S., et al., 2014. Plant⁃Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis. PLoS One, 9(1): e83779. https://doi.org/10.1371/journal.pone.0083779 |
| [2] |
Arun Kumar, T. K., Manimohan, P., 2009. The Genera Leucoagaricus and Leucocoprinus (Agaricales, Basidiomycota) in Kerala State, India. Mycotaxon, 108(1): 385-428. https://doi.org/10.5248/108.385 |
| [3] |
Blackwell, M., 2000. Terrestrial Life: Fungal from the Start? Science, 289(5486): 1884-1885. https://doi.org/10.1126/science.289.5486.1884 |
| [4] |
Bunn, R., Lekberg, Y., Zabinski, C., 2009. Arbuscular Mycorrhizal Fungi Ameliorate Temperature Stress in Thermophilic Plants. Ecology, 90(5): 1378-1388. https://doi.org/10.1890/07⁃2080.1 |
| [5] |
Crous, P. W., Gams, W., Wingfield, M. J., et al., 1996. Phaeoacremonium gen. nov. Associated with Wilt and Decline Diseases of Woody Hosts and Human Infections. Mycologia, 88(5): 786-796. https://doi.org/10.1080/00275514.1996.12026716 |
| [6] |
Dal Corso, J., Song, H. J., Callegaro, S., et al., 2022. Environmental Crises at the Permian⁃Triassic Mass Extinction. Nature Reviews Earth & Environment, 3: 197-214. https://doi.org/10.1038/s43017⁃021⁃00259⁃4 |
| [7] |
Delavaux, C. S., Weigelt, P., Dawson, W., 2019. Mycorrhizal Fungi Influence Global Plant Biogeography. Nature Ecology & Evolution, 3(3): 424-429. https://doi.org/10.1038/s41559⁃019⁃0823⁃4 |
| [8] |
Dias, G. M., de Sousa Pires, A., Grilo, V. S., et al., 2019. Comparative Genomics of Paraburkholderia Kururiensis and Its Potential in Bioremediation, Biofertilization, and Biocontrol of Plant Pathogens. MicrobiologyOpen, 8(8): e00801. https://doi.org/10.1002/mbo3.801 |
| [9] |
Dotzler, N., Krings, M., Taylor, T. N., et al., 2006. Germination Shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 Million⁃ Year⁃Old Rhynie Chert. Mycological Progress, 5(3): 178-184. https://doi.org/10.1007/s11557⁃006⁃0511⁃z |
| [10] |
Dotzler, N., Walker, C., Krings, M., et al., 2009. Acaulosporoid Glomeromycotan Spores with a Germination Shield from the 400⁃Million⁃Year⁃Old Rhynie Chert. Mycological Progress, 8(1): 9-18. https://doi.org/10.1007/s11557⁃008⁃0573⁃1 |
| [11] |
Field, K. J., Daniell, T., Johnson, D., et al., 2020. Mycorrhizas for a Changing World: Sustainability, Conservation, and Society. Plants, People, Planet, 2(2): 98-103. https://doi.org/10.1002/ppp3.10092 |
| [12] |
Genre, A., Lanfranco, L., Perotto, S., et al., 2020. Unique and Common Traits in Mycorrhizal Symbioses. Nature Reviews Microbiology, 18: 649-660. https://doi.org/10.1038/s41579⁃020⁃0402⁃3 |
| [13] |
Hawkins, H. J., Cargill, R. I. M., Van Nuland, M. E., et al., 2023. Mycorrhizal Mycelium as a Global Carbon Pool. Current Biology, 33(11): R560-R573. https://doi.org/10.1016/j.cub.2023.02.027 |
| [14] |
Hoysted, G. A., Kowal, J., Jacob, A., et al., 2018. A Mycorrhizal Revolution. Current Opinion in Plant Biology, 44: 1-6. https://doi.org/10.1016/j.pbi.2017.12.004 |
| [15] |
Jia, M., Sun, X., Chen, M., et al., 2022. Deciphering the Microbial Diversity Associated with Healthy and Wilted Paeonia suffruticosa Rhizosphere Soil. Front Microbiol, 13: 967601. https://doi.org/10.3389/fmicb.2022.967601 |
| [16] |
Jian, P. Y., Zha, Q., Hui, X. R., et al., 2024. Research Progress of Arbuscular Mycorrhizal Fungi Improving Plant Resistance to Temperature Stress. Horticulturae, 10(8): 855. https://doi.org/10.3390/horticulturae10080855 |
| [17] |
Judd, E. J., Tierney, J. E., Lunt, D. J., et al., 2024. A 485⁃Million⁃Year History of Earth’s Surface Temperature. Science, 385(6715): eadk3705. https://doi.org/10.1126/science.adk3705 |
| [18] |
Kaur, C., Selvakumar, G., Ganeshamurthy, A. N., 2017. Burkholderia to Paraburkholderia: The Journey of a Plant⁃Beneficial⁃Environmental Bacterium. In: Shukla, P., ed., Recent Advances in Applied Microbiology. Springer, Singapore. https://doi.org/10.1007/978⁃981⁃10⁃5275⁃0_10 |
| [19] |
Krishnan, R., Menon, R. R., Likhitha, et al., 2017. Novosphingobium Pokkalii Sp Nov, a Novel Rhizosphere⁃Associated Bacterium with Plant Beneficial Properties Isolated from Saline⁃Tolerant Pokkali Rice. Research in Microbiology, 168(2): 113-121. https://doi.org/10.1016/j.resmic.2016.09.001 |
| [20] |
Loskutov, I. G., Shelenga, T. V., Konarev, A. V., et al., 2019. Biochemical Aspects of Interactions between Fungi and Plants: A Case Study of Fusarium in Oats. Agricultural Biology, 54:575-588. https://doi.org/10.15389/agrobiology.2019.3.575rus |
| [21] |
Lu, M. Z., 2020. Plant⁃Microbe Mutualism: Evolutionary Mechanisms and Ecological Functions. Biodiversity Science, 28(11): 1311-1323 (in Chinese with English abstract). |
| [22] |
Ma, Z. Q., Guo, D. L., Xu, X. L., et al., 2018. Evolutionary History Resolves Global Organization of Root Functional Traits. Nature, 555: 94-97. https://doi.org/10.1038/nature25783 |
| [23] |
Maheshwari, D. K., 2011. Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin. https://doi.org/10.1007/978⁃3⁃642⁃20332⁃9 |
| [24] |
Maloy, S., Hughes, K., 2013. Brenner’s Encyclopedia of Genetics. Academic Press, New York. |
| [25] |
Mills, B. J. W., Batterman, S. A., Field, K. J., 2018. Nutrient Acquisition by Symbiotic Fungi Governs Palaeozoic Climate Transition. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 373(1739): 20160503. https://doi.org/10.1098/rstb.2016.0503 |
| [26] |
Morris, J. L., Puttick, M. N., Clark, J. W., et al., 2018. The Timescale of Early Land Plant Evolution. Proceedings of the National Academy of Sciences of the United States of America, 115(10): E2274-E2283. https://doi.org/10.1073/pnas.1719588115 |
| [27] |
Pirozynski, K. A., Malloch, D. W., 1975. The Origin of Land Plants: A Matter of Mycotrophism. Biosystems, 6(3): 153-164. https://doi.org/10.1016/0303⁃2647(75)90023⁃4 |
| [28] |
Preston, G. M., 2004. Plant Perceptions of Plant Growth⁃Promoting Pseudomonas. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 359(1446): 907-918. https://doi.org/10.1098/rstb.2003.1384 |
| [29] |
Quirk, J., Beerling, D. J., Banwart, S. A., et al., 2012. Evolution of Trees and Mycorrhizal Fungi Intensifies Silicate Mineral Weathering. Biology Letters, 8(6): 1006-1011.https://doi.org/10.1098/rsbl.2012.0503 |
| [30] |
Redecker, D., Kodner, R., Graham, L. E., 2000. Glomalean Fungi from the Ordovician. Science, 289(5486): 1920-1921. https://doi.org/10.1126/science.289.5486.1920 |
| [31] |
Remy, W., Taylor, T. N., Hass, H., et al., 1994. Four Hundred⁃Million⁃Year⁃Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences, 91(25): 11841-11843. https://doi.org/10.1073/pnas.91.25.11841 |
| [32] |
Rippon, J. W., Conway, T. P., Domes, A. L., 1965. Pathogenic Potential of Aspergillus and Penicillium Species. The Journal of Infectious Diseases, 115(1): 27-32. https://doi.org/10.1093/infdis/115.1.27 |
| [33] |
Rivera⁃Vega, L. J., Grunseich, J. M., Aguirre, N. M., et al., 2022. A Beneficial Plant⁃Associated Fungus Shifts the Balance Toward Plant Growth over Resistance, Increasing Cucumber Tolerance to Root Herbivory. Plants (Basel, Switzerland), 11(3): 282. https://doi.org/10.3390/plants11030282 |
| [34] |
Ruiz⁃Lozano, J. M., Azcon, R., Gomez, M., 1995. Effects of Arbuscular⁃Mycorrhizal Glomus Species on Drought Tolerance: Physiological and Nutritional Plant Responses. Applied and Environmental Microbiology, 61(2): 456-460. https://doi.org/10.1128/aem.61.2.456⁃460.1995 |
| [35] |
Scotese, C. R., Song, H. J., Mills, B. J. W., et al., 2021. Phanerozoic Paleotemperatures: The Earth’s Changing Climate during the last 540 Million Years. Earth⁃Science Reviews, 215: 103503. https://doi.org/10.1016/j.earscirev.2021.103503 |
| [36] |
Shu, W., Tong, J., Yu, J., et al., 2023. Permian⁃Middle Triassic Floral Succession in North China and Implications for the Great Transition of Continental Ecosystems. GSA Bulletin, 135(7-8):1747-1767. https://doi.org/10.1130/B36316.1 |
| [37] |
Song, H. B., Bau, T., 2023. Conocybe Section Pilosellae in China: Reconciliation of Taxonomy and Phylogeny Reveals Seven New Species and a New Record. Journal of Fungi, 9(9): 924. https://doi.org/10.3390/jof9090924 |
| [38] |
Strullu⁃Derrien, C., Kenrick, P., Pressel, S., et al., 2014. Fungal Associations in Horneophyton Ligneri from the Rhynie Chert (C. 407 Million Year Old) Closely Resemble those in Extant Lower Land Plants: Novel Insights into Ancestral Plant⁃Fungus Symbioses. New Phytologist, 203(3): 964-979.https://doi.org/10.1111/nph.12805 |
| [39] |
Sun, M., Shi, C., Huang, Y., et al., 2023. Effect of Disease Severity on the Structure and Diversity of the Phyllosphere Microbial Community in Tobacco. Frontiers in Microbiology, 13: 1081576. https://doi.org/10.3389/fmicb.2022.1081576 |
| [40] |
Sun, S. L., Yang, W. L., Fang, W. W., et al., 2018. The Plant Growth⁃Promoting Rhizobacterium Variovorax Boronicumulans CGMCC 4969 Regulates the Level of Indole⁃3⁃Acetic Acid Synthesized from Indole⁃3⁃Acetonitrile. Applied and Environmental Microbiology, 84(16): e00298-18. https://doi.org/10.1128/aem.00298⁃18 |
| [41] |
Sun, Y., Farnsworth, A., Joachimski, M. M., et al., 2024. Mega El Niño Instigated the End⁃Permian Mass Extinction. Science, 385(6714): 1189-1195. https://doi.org/10.1126/science.ado2030 |
| [42] |
Tao, X., Chen, S. L., 2020. Research Progress on Fungal Fossils. Mycosystema, 39(2): 211-222 (in Chinese with English abstract). |
| [43] |
Tarkka, M. T., Lehr, N. A., Hampp, R., et al., 2008. Plant Behavior Upon Contact with Streptomycetes. Plant Signaling & Behavior, 3(11): 917-919. https://doi.org/10.4161/psb.5996 |
| [44] |
Taylor, L. L., Banwart, S. A., Valdes, P. J., et al., 2012. Evaluating the Effects of Terrestrial Ecosystems, Climate and Carbon Dioxide on Weathering over Geological Time: A Global⁃Scale Process⁃Based Approach. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1588): 565-582. https://doi.org/10.1098/rstb.2011.0251 |
| [45] |
Taylor, L. L., Leake, J. R., Quirk, J., et al., 2009. Biological Weathering and the Long⁃Term Carbon Cycle: Integrating Mycorrhizal Evolution and Function into the Current Paradigm. Geobiology, 7(2): 171-191. https://doi.org/10.1111/j.1472⁃4669.2009.00194.x |
| [46] |
Tian, N., Wang, Y. D., Jiang, Z. K., 2021. A New Permineralized Osmundaceous Rhizome with Fungal Remains from the Jurassic of Western Liaoning, NE China. Review of Palaeobotany and Palynology, 290: 104414. https://doi.org/10.1016/j.revpalbo.2021.104414 |
| [47] |
Trappe, J. M., 1987. Phylogenetic and Ecologic Aspects of Mycotrophy in the Angiosperms from an Evolutionary Standpoint. Ecophysiology of VA Mycorrhizal Plants, 5-25. |
| [48] |
van der Heijden, M. G. A., Martin, F. M., Selosse, M. A., et al., 2015. Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. New Phytologist, 205(4): 1406-1423.https://doi.org/10.1111/nph.13288 |
| [49] |
Wang, B., Qiu, Y. L., 2006. Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza, 16(5): 299-363. https://doi.org/10.1007/s00572⁃005⁃0033⁃6 |
| [50] |
Wang, Y. Z., Pan, T. G., Ke, Y.Q., 2003. Study and Utilization on Symbiotic Relation between Microbes and Plants. Chinese Journal of Eco⁃Agriculture, 11(3): 95-98 (in Chinese with English abstract). |
| [51] |
Xia, Y., Wang, Y., Wang, Y., et al., 2016. Cellular Adhesiveness and Cellulolytic Capacity in Anaerolineae Revealed by Omics⁃Based Genome Interpretation. Biotechnology for Biofuels, 9: 111. https://doi.org/10.1186/s13068⁃016⁃0524⁃z |
| [52] |
Xie, S. C., Algeo, T. J., Zhou, W. F., et al., 2017. Contrasting Microbial Community Changes during Mass Extinctions at the Middle/Late Permian and Permian/Triassic Boundaries. Earth and Planetary Science Letters, 460: 180-191. https://doi.org/10.1016/j.epsl.2016.12.015 |
| [53] |
Xu, Z., Hilton, J., Yu, J. X., et al., 2022. End Permian to Middle Triassic Plant Species Richness and Abundance Patterns in South China: Coevolution of Plants and the Environment through the Permian⁃Triassic Transition. Earth⁃Science Reviews, 232: 104136. https://doi.org/10.1016/j.earscirev.2022.104136 |
| [54] |
Xue, H., Piao, C. G., Lin, Y. H., et al., 2022. Pinirhizobacter Soli gen. nov., sp. nov., a Novel Low Temperature Resistant Gammaproteobacterium in the Family Rhodanobacteraceae Isolated from Rhizospheric Soil of Larix Gmelinii. Archives of Microbiology, 204(5): 283. https://doi.org/10.1007/s00203⁃022⁃02867⁃0 |
| [55] |
Yu, J. X., Broutin, J., Lu, Z. S., 2022. Plants and Palynomorphs around the Permian⁃Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978⁃981⁃19⁃1492⁃8 |
| [56] |
Zakaria, L., 2024. An Overview of Aspergillus Species Associated with Plant Diseases. Pathogens (Basel, Switzerland), 13(9): 813. https://doi.org/10.3390/pathogens13090813 |
| [57] |
Zhang, K., Chen, X., Shi, X., et al., 2024. Endophytic Bacterial Community, Core Taxa, and Functional Variations within the Fruiting Bodies of Laccaria. Microorganisms, 12(11): 2296. https://doi.org/10.3390/microorganisms12112296 |
| [58] |
Zhao, Z. W., 1999. The Roles of Mycorrhizal Fungi in Terrestrial Ecosysytems. Biodiversity Science, 7(3): 240-244 (in Chinese with English abstract). |
| [59] |
Zhu, X. C., Song, F. B., Liu, F. L., 2017. Arbuscular Mycorrhizal Fungi and Tolerance of Temperature Stress in Plants. In: Wu, Q. S., ed., Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore. https://doi.org/10.1007/978⁃981⁃10⁃4115⁃0_8 |
国家自然基金重点项目(42430209)
国家自然基金重点项目(92055201)
/
| 〈 |
|
〉 |