青藏高原湖泊碳氮循环微生物作用
Microbial Role in Carbon and Nitrogen Cycling in Lakes on the Qinghai⁃Xizang Plateau
开展咸盐湖泊微生物调控碳氮循环机理及其对盐度的响应研究,对于理解全球碳氮循环具有重要的科学意义.针对与咸盐湖泊碳氮循环相关的前沿科学问题,围绕“有机质输入增加”、“温度增高”与“盐度降低”等气候环境条件变化对咸盐湖泊碳氮循环微生物作用的影响机理与环境效应开展了综合研究,取得了系列研究发现.最后对湖泊碳氮循环微生物作用提出总结,并对未来发展方向提出展望.
Exploring the mechanisms of microbial regulation of carbon and nitrogen cycling in saline lakes and their response to salinity is of great scientific importance for understanding the global carbon and nitrogen cycles. In response to cutting-edge scientific questions related to the carbon and nitrogen cycle in saline lakes, the authors conducted a comprehensive study on the impact mechanism and environmental effects of climate and environmental changes such as increased organic matter input, increased temperature, and reduced salinity on the microbial activity of the carbon and nitrogen cycles in saline lakes, and obtained a series of research findings. Finally, a summary of the microbial effects on carbon and nitrogen cycling in lakes is presented, and prospects for future development directions are proposed.
咸盐湖泊 / 微生物 / 碳循环 / 氮循环 / 气候变化.
saline lakes / microorganisms / carbon cycle / nitrogen cycle / climate change
| [1] |
Anderson, N. J., Stedmon, C. A., 2007. The Effect of Evapoconcentration on Dissolved Organic Carbon Concentration and Quality in Lakes of SW Greenland. Freshwater Biology, 52(2): 280-289. https://doi.org/10.1111/j.1365⁃2427.2006.01688.x |
| [2] |
Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., et al., 2011. Riverine Coupling of Biogeochemical Cycles between Land, Oceans, and Atmosphere. Frontiers in Ecology and the Environment, 9(1): 53-60. https://doi.org/10.1890/100014 |
| [3] |
Battin, T. J., Kaplan, L. A., Findlay, S., et al., 2008. Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks. Nature Geoscience, 1: 95-100. https://doi.org/10.1038/ngeo101 |
| [4] |
Battin, T. J., Luyssaert, S., Kaplan, L. A., et al., 2009. The Boundless Carbon Cycle. Nature Geoscience, 2: 598-600. https://doi.org/10.1038/ngeo618 |
| [5] |
Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost Is Warming at a Global Scale. Nature Communications, 10(1): 264. https://doi.org/10.1038/s41467⁃018⁃08240⁃4 |
| [6] |
Canadell, J. G., Le Quéré, C., Raupach, M. R., et al., 2007. Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47): 18866-18870. https://doi.org/10.1073/pnas.0702737104 |
| [7] |
Chen, Y. L., Liu, F. T., Kang, L. Y., et al., 2021. Large⁃Scale Evidence for Microbial Response and Associated Carbon Release after Permafrost Thaw. Global Change Biology, 27(14): 3218-3229. https://doi.org/10.1111/gcb.15487 |
| [8] |
Cleveland, C. C., Neff, J. C., Townsend, A. R., et al., 2004. Composition, Dynamics, and Fate of Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition Experiment. Ecosystems, 7(3): 175-285. https://doi.org/10.1007/s10021⁃003⁃0236⁃7 |
| [9] |
Cole, J. J., Prairie, Y. T., Caraco, N. F., et al., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10(1): 172-185. https://doi.org/10.1007/s10021⁃006⁃9013⁃8 |
| [10] |
Dobiński, W., 2020. Permafrost Active Layer. Earth⁃Science Reviews, 208: 103301. https://doi.org/10.1016/j.earscirev.2020.103301 |
| [11] |
Duarte, C. M., Prairie, Y. T., Montes, C., et al., 2008. CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux. Journal of Geophysical Research: Biogeosciences, 113(G4): G04041. https://doi.org/10.1029/2007JG000637 |
| [12] |
Fang, Y., Liu, J., Yang, J., et al., 2022. Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. mSystems, 7(4): e0033522. https://doi.org/10.1128/msystems.00335⁃22 |
| [13] |
Fang, Y., Yuan, Y., Liu, J., et al., 2021. Casting Light on the Adaptation Mechanisms and Evolutionary History of the Widespread Sumerlaeota. mBio, 12(2): e00350⁃21. https://doi.org/10.1128/mBio.00350⁃21 |
| [14] |
Fellman, J. B., D’Amore, D. V., Hood, E., et al., 2008. Fluorescence Characteristics and Biodegradability of Dissolved Organic Matter in Forest and Wetland Soils from Coastal Temperate Watersheds in Southeast Alaska. Biogeochemistry, 88(2): 169-184. https://doi.org/10.1007/s10533⁃008⁃9203⁃x |
| [15] |
Fellman, J. B., Hood, E., D’Amore, D. V., et al., 2009a. Seasonal Changes in the Chemical Quality and Biodegradability of Dissolved Organic Matter Exported from Soils to Streams in Coastal Temperate Rainforest Watersheds. Biogeochemistry, 95(2): 277-293. https://doi.org/10.1007/s10533⁃009⁃9336⁃6 |
| [16] |
Fellman, J. B., Hood, E., Edwards, R. T., et al., 2009b. Changes in the Concentration, Biodegradability, and Fluorescent Properties of Dissolved Organic Matter during Stormflows in Coastal Temperate Watersheds. Journal of Geophysical Research: Biogeosciences, 114(G1): G01021. https://doi.org/10.1029/2008JG000790 |
| [17] |
Feng, L., An, Y. Q., Xu, J. Z., et al., 2018. Characteristics and Sources of Dissolved Organic Matter in a Glacier in the Northern Tibetan Plateau: Differences between Different Snow Categories. Annals of Glaciology, 59(77): 31-40. https://doi.org/10.1017/aog.2018.20 |
| [18] |
Gudasz, C., Bastviken, D., Steger, K., et al., 2010. Temperature⁃Controlled Organic Carbon Mineralization in Lake Sediments. Nature, 466(7305): 478-481. https://doi.org/10.1038/nature09186 |
| [19] |
Hood, E., Battin, T. J., Fellman, J., et al., 2015. Storage and Release of Organic Carbon from Glaciers and Ice Sheets. Nature Geoscience, 8: 91-96. https://doi.org/10.1038/ngeo2331 |
| [20] |
Huang, J. R., Yang, J., Han, M. X., et al., 2023. Microbial Carbon Fixation and Its Influencing Factors in Saline Lake Water. Science of the Total Environment, 877: 162922. https://doi.org/10.1016/j.scitotenv.2023.162922 |
| [21] |
Huang, L. Q., Yu, Q., Liu, W., et al., 2021. Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF⁃SIMS Analysis. Environmental Science & Technology, 55(10): 7123-7134. https://doi.org/10.1021/acs.est.0c08407 |
| [22] |
Jiang, H. C., 2007. Geomicrobiological Studies of Saline Lakes on the Tibetan Plateau, NW China: Linking Geological and Microbial Processes (Dissertation). Miami University, Miami. |
| [23] |
Jiang, H. C., Huang, J. R., Yang, J., 2018. Halotolerant and Halophilic Microbes and Their Environmental Implications in Saline and Hypersaline Lakes in Qinghai Province, China. In: Egamberdieva, D., Birkeland, N. K., Panosyan, H., et al., eds. Microorganisms for Sustainability. Springer, Singapore, 299-316. https://doi.org/10.1007/978⁃981⁃13⁃0329⁃6_10 |
| [24] |
Jiang, H. C., Lü, Q. Y., Yang, J., et al., 2022. Molecular Composition of Dissolved Organic Matter in Saline Lakes of the Qing⁃Tibetan Plateau. Organic Geochemistry, 167: 104400. https://doi.org/10.1016/j.orggeochem.2022.104400 |
| [25] |
Keiluweit, M., Bougoure, J. J., Zeglin, L. H., et al., 2012. Nano⁃Scale Investigation of the Association of Microbial Nitrogen Residues with Iron (Hydr) Oxides in a Forest Soil O⁃Horizon. Geochimica et Cosmochimica Acta, 95: 213-226. https://doi.org/10.1016/j.gca.2012.07.001 |
| [26] |
Kleber, M., Eusterhues, K., Keiluweit, M., et al., 2015. Mineral⁃Organic Associations: Formation, Properties, and Relevance in Soil Environments. Advances in Agronomy. Elsevier,Amsterdam. https://doi.org/10.1016/bs.agron.2014.10.005 |
| [27] |
Kuang, X. X., Jiao, J. J., 2016. Review on Climate Change on the Tibetan Plateau during the Last Half Century. Journal of Geophysical Research: Atmospheres, 121(8): 3979-4007. https://doi.org/10.1002/2015jd024728 |
| [28] |
Liu, D., Shi, K., Chen, P., et al., 2024. Substantial Increase of Organic Carbon Storage in Chinese Lakes. Nature Communications, 15(1): 8049. https://doi.org/10.1038/s41467⁃024⁃52387⁃2 |
| [29] |
Liu, W., Jiang, H. C., Yang, J., et al., 2018. Gammaproteobacterial Diversity and Carbon Utilization in Response to Salinity in the Lakes on the Qinghai⁃Tibetan Plateau. Geomicrobiology Journal, 35(5): 392-403. https://doi.org/10.1080/01490451.2017.1378951 |
| [30] |
Liu, Y. M., Xu, J. Z., Kang, S. C., et al., 2016. Storage of Dissolved Organic Carbon in Chinese Glaciers. Journal of Glaciology, 62(232): 402-406. https://doi.org/10.1017/jog.2016.47 |
| [31] |
Mu, C. C., Abbott, B. W., Norris, A. J., et al., 2020. The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth⁃Science Reviews, 211: 103433. https://doi.org/10.1016/j.earscirev.2020.103433 |
| [32] |
Oren, A., 2011. Thermodynamic Limits to Microbial Life at High Salt Concentrations. Environmental Microbiology, 13(8): 1908-1923. https://doi.org/10.1111/j.1462⁃2920.2010.02365.x |
| [33] |
Raymond, P. A., Hartmann, J., Lauerwald, R., et al., 2013. Global Carbon Dioxide Emissions from Inland Waters. Nature, 503(7476): 355-359. https://doi.org/10.1038/nature12760 |
| [34] |
Schuur, E. A. G., Bockheim, J., Canadell, J. G., et al., 2008. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience, 58(8): 701-714. https://doi.org/10.1641/B580807 |
| [35] |
Sun, X. X., Tan, E. H., Wang, B. C., et al., 2023. Salinity Change Induces Distinct Climate Feedbacks of Nitrogen Removal in Saline Lakes. Water Research, 245: 120668. https://doi.org/10.1016/j.watres.2023.120668 |
| [36] |
Sun, X. X., Yang, J., Jiang, H. C., et al., 2022. Nitrite⁃ and N2O⁃Reducing Bacteria Respond Differently to Ecological Factors in Saline Lakes. FEMS Microbiology Ecology, 98(2): fiac007. https://doi.org/10.1093/femsec/fiac007 |
| [37] |
Tang, Y., Liu, Y. C., Yang, J., et al., 2018. Gene Diversity Involved in Kalvin Pathway of Carbon Fixation and Its Response to Environmental Variables in Surface Sediments of the Northern Qinghai⁃Tibetan Plateau Lakes. Earth Science, 43(S1): 31-41 (in Chinese with English abstract). |
| [38] |
Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54(6): 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298 |
| [39] |
Turetsky, M. R., Abbott, B. W., Jones, M. C., et al., 2020. Carbon Release through Abrupt Permafrost Thaw. Nature Geoscience, 13: 138-143. https://doi.org/10.1038/s41561⁃019⁃0526⁃0 |
| [40] |
Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High⁃Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396-6402. https://doi.org/10.1002/2014gl060641 |
| [41] |
Wan, W., Zhao, L., Xie, H., et al., 2018. Lake Surface Water Temperature Change over the Tibetan Plateau from 2001 to 2015: A Sensitive Indicator of the Warming Climate. Geophysical Research Letters, 45(20): 11177-111186. https://doi.org/10.1029/2018gl078601 |
| [42] |
Wang, B. C., Huang, J. R., Yang, J., et al., 2021. Bicarbonate Uptake Rates and Diversity of RuBisCO Genes in Saline Lake Sediments. FEMS Microbiology Ecology, 97(4): fiab037. https://doi.org/10.1093/femsec/fiab037 |
| [43] |
Wang, S. M., Dou, H. S., 1998. Chinese Lakes Records. Science Press, Beijing (in Chinese). |
| [44] |
Wang, Y. H., Spencer, R. G. M., Podgorski, D. C., et al., 2018. Spatiotemporal Transformation of Dissolved Organic Matter along an Alpine Stream Flow Path on the Qinghai⁃Tibet Plateau: Importance of Source and Permafrost Degradation. Biogeosciences, 15(21): 6637-6648. https://doi.org/10.5194/bg⁃15⁃6637⁃2018 |
| [45] |
Wickland, K. P., Neff, J. C., 2008. Decomposition of Soil Organic Matter from Boreal Black Spruce Forest: Environmental and Chemical Controls. Biogeochemistry, 87(1): 29-47. https://doi.org/10.1007/s10533⁃007⁃9166⁃3 |
| [46] |
Wurtsbaugh, W. A., Miller, C., Null, S. E., et al., 2017. Decline of the World’s Saline Lakes. Nature Geoscience, 10: 816-821. https://doi.org/10.1038/ngeo3052 |
| [47] |
Yang, J., Yao, B. F., Cai, M., et al., 2024. Salinity Change Overrides Nitrogen Increase in Affecting Microbial Abundance, Diversity, Community Composition and Organic Carbon Mineralization in Saline Lakes. Journal of Earth Science, Online. https://doi.org/10.1007/s12583⁃024⁃0139⁃4 |
| [48] |
Yang, J., Chen, Y., She, W. Y., et al., 2020a. Deciphering Linkages between Microbial Communities and Priming Effects in Lake Sediments with Different Salinity. Journal of Geophysical Research: Biogeosciences, 125(11): e2019JG005611. https://doi.org/10.1029/2019jg005611 |
| [49] |
Yang, J., Han, M. X., Wang, B. C., et al., 2023. Predominance of Positive Priming Effects Induced by Algal and Terrestrial Organic Matter Input in Saline Lake Sediments. Geochimica et Cosmochimica Acta, 349: 126-134. https://doi.org/10.1016/j.gca.2023.04.005 |
| [50] |
Yang, J., Han, M. X., Zhao, Z. L., et al., 2022. Positive Priming Effects Induced by Allochthonous and Autochthonous Organic Matter Input in the Lake Sediments with Different Salinity. Geophysical Research Letters, 49(5): e2021GL096133. https://doi.org/10.1029/2021GL096133 |
| [51] |
Yang, J., Jiang, H. C., Liu, W., et al., 2020b. Potential Utilization of Terrestrially Derived Dissolved Organic Matter by Aquatic Microbial Communities in Saline Lakes. The ISME Journal, 14(9): 2313-2324. https://doi.org/10.1038/s41396⁃020⁃0689⁃0 |
| [52] |
Yao, F. F., Livneh, B., Rajagopalan, B., et al., 2023. Satellites Reveal Widespread Decline in Global Lake Water Storage. Science, 380(6646): 743-749. https://doi.org/10.1126/science.abo2812 |
| [53] |
You, Q. L., Chen, D. L., Wu, F. Y., et al., 2020. Elevation Dependent Warming over the Tibetan Plateau: Patterns, Mechanisms and Perspectives. Earth⁃Science Reviews, 210: 103349. https://doi.org/10.1016/j.earscirev.2020.103349 |
| [54] |
Zhang, G. Q., Chen, W. F., Xie, H. J., 2019. Tibetan Plateau’s Lake Level and Volume Changes from NASA’s ICESat/ICESat⁃2 and Landsat Missions. Geophysical Research Letters, 46(22): 13107-13118. https://doi.org/10.1029/2019gl085032 |
| [55] |
Zhang, G. Q., Yao, T. D., Xie, H. J., et al., 2020. Response of Tibetan Plateau Lakes to Climate Change: Trends, Patterns, and Mechanisms. Earth⁃Science Reviews, 208: 103269. https://doi.org/10.1016/j.earscirev.2020.103269 |
| [56] |
Zhang, Y. L., Yin, Y., Liu, X. H., et al., 2011. Spatial⁃Seasonal Dynamics of Chromophoric Dissolved Organic Matter in Lake Taihu, a Large Eutrophic, Shallow Lake in China. Organic Geochemistry, 42(5): 510-519. https://doi.org/10.1016/j.orggeochem.2011.03.007 |
| [57] |
Zheng, M. P., 1997. An Introduction to Saline Lakes on the Qinghai⁃Tibet Plateau. Springer, Dordrecht. https://doi.org/10.1007/978⁃94⁃011⁃5458⁃1 |
| [58] |
Zhou, Y. Q., Zhou, L., He, X. T., et al., 2019. Variability in Dissolved Organic Matter Composition and Biolability across Gradients of Glacial Coverage and Distance from Glacial Terminus on the Tibetan Plateau. Environmental Science & Technology, 53(21): 12207-12217. https://doi.org/10.1021/acs.est.9b03348 |
| [59] |
Ziervogel, K., McKay, L., Rhodes, B., et al., 2012. Microbial Activities and Dissolved Organic Matter Dynamics in Oil⁃Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site. PLoS One, 7(4): e34816. https://doi.org/10.1371/journal.pone.0034816 |
国家自然科学基金项目(91751206)
国家自然科学基金项目(92251304)
/
| 〈 |
|
〉 |