青藏高原湖泊碳氮循环微生物作用

蒋宏忱 ,  王北辰

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 877 -886.

PDF (812KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 877 -886. DOI: 10.3799/dqkx.2024.138

青藏高原湖泊碳氮循环微生物作用

作者信息 +

Microbial Role in Carbon and Nitrogen Cycling in Lakes on the Qinghai⁃Xizang Plateau

Author information +
文章历史 +
PDF (831K)

摘要

开展咸盐湖泊微生物调控碳氮循环机理及其对盐度的响应研究,对于理解全球碳氮循环具有重要的科学意义.针对与咸盐湖泊碳氮循环相关的前沿科学问题,围绕“有机质输入增加”、“温度增高”与“盐度降低”等气候环境条件变化对咸盐湖泊碳氮循环微生物作用的影响机理与环境效应开展了综合研究,取得了系列研究发现.最后对湖泊碳氮循环微生物作用提出总结,并对未来发展方向提出展望.

Abstract

Exploring the mechanisms of microbial regulation of carbon and nitrogen cycling in saline lakes and their response to salinity is of great scientific importance for understanding the global carbon and nitrogen cycles. In response to cutting-edge scientific questions related to the carbon and nitrogen cycle in saline lakes, the authors conducted a comprehensive study on the impact mechanism and environmental effects of climate and environmental changes such as increased organic matter input, increased temperature, and reduced salinity on the microbial activity of the carbon and nitrogen cycles in saline lakes, and obtained a series of research findings. Finally, a summary of the microbial effects on carbon and nitrogen cycling in lakes is presented, and prospects for future development directions are proposed.

Graphical abstract

关键词

咸盐湖泊 / 微生物 / 碳循环 / 氮循环 / 气候变化.

Key words

saline lakes / microorganisms / carbon cycle / nitrogen cycle / climate change

引用本文

引用格式 ▾
蒋宏忱,王北辰. 青藏高原湖泊碳氮循环微生物作用[J]. 地球科学, 2025, 50(03): 877-886 DOI:10.3799/dqkx.2024.138

登录浏览全文

4963

注册一个新账户 忘记密码

内陆水生系统(如河流、水库、湖泊、湿地等)面积仅占地球表面的1%~2%,但其每年运移、矿化和埋藏的碳(~2.7 Pg C/a,1 Pg=1×1015g)大体上接近人类活动导致的碳排放总量(~2.8 Pg C/a)(Canadell et al., 2007)或陆地净生产力或海洋净吸收量(Battin et al., 2009Raymond et al., 2013).其中,全球内陆水生系统每年固定的有机碳多达海洋固定有机碳(0.12 Pg C/a)的一半左右(Cole et al., 2007),沉积物每年埋藏有机质(0.23 Pg C/a)也远高于海洋沉积物(0.12 Pg C/a)(Gudasz et al., 2010).因此研究内陆水生系统碳循环过程对于全面理解和正确评估全球碳循环具有重要的科学意义(Canadell et al., 2007Battin et al., 2008,2009Tranvik et al., 2009Aufdenkampe et al., 2011Raymond et al., 2013Verpoorter et al., 2014).
咸盐湖泊总面积与水体总量几乎占据了内陆水生系统的一半,对全球碳循环贡献十分重要(Duarte et al., 2008).在青藏高原,湖泊广泛分布,其中面积>1 km2的湖泊超过1 000个,约占我国湖泊总面积一半,并主要以咸湖和盐湖为主(Zheng, 1997; 王苏民和窦鸿身, 1998).这些湖泊具有广泛的盐度范围:从淡水至饱和盐度(Zheng, 1997; 王苏民和窦鸿身, 1998),这有利于我们研究盐度变化对微生物调控碳循环作用的影响;由于该区受人类活动影响较小,这里的湖泊代表了相对原始的自然环境,有利于我们研究自然状态下(不受或少受人类活动影响)的微生物碳循环作用对盐度等环境条件的响应 (Jiang, 2007).因此研究青藏高原湖泊微生物调控碳循环机理及其对盐度的响应可以为全球碳循环和环境变化研究提供数据基础和理论依据.
全球气候变化会导致咸盐湖泊水循环平衡发生巨大变化(Wurtsbaugh et al., 2017).在全球气候变化的背景下,湖泊的盐度、温度与营养盐(有机碳、氮)输入发生变化,主要表现为湖泊盐度升高(咸化)或降低(淡化)以及营养水平增高(Yao et al., 2023).其中,青藏高原是对气候变化最为敏感的区域之一(Kuang and Jiao, 2016).青藏高原升温速率远高于全球平均水平,降水增加,气候特点逐渐由冷干变为暖湿(Zhang et al., 2019).2000年以来,降雨与冰雪融水增加导致青藏高原中部及北部的湖泊水位升高、盐度降低(Zhang et al., 2020);气候变暖导致水温增高(Wan et al., 2018);同时,青藏高原冻土与冰川含有大量有机碳(Schuur et al., 2008Hood et al., 2015Liu et al., 2016Mu et al., 2020),气候变暖导致冻土退化和冰川消融(Biskaborn et al., 2019Dobiński, 2020You et al., 2020),释放大量有机碳进入湖泊(Feng et al., 2018Wang et al., 2018Zhou et al., 2019Turetsky et al., 2020Chen et al., 2021);青藏高原湖泊水体与表层沉积物微生物固碳作用增强,每年通过微生物作用产生的有机碳也在增加(Jiang et al., 2018Wang et al., 2021).所以,整体上看青藏高原湖泊有机质输入呈现出增高趋势.总之,青藏高原湖泊面临如下几个环境条件的强烈变化趋势:(1)温度增高;(2)水量增加、盐度降低;(3)外源有机质与内源有机质同步增加(Liu et al., 2024).

1 微生物是咸盐湖泊中固碳、分解、埋藏、转化循环有机质各过程的主要驱动者

咸(盐)湖通常具有高含量的溶解有机质和无机碳以及其他营养物质,从而维持高度活跃的微生物群落(Anderson and Stedmon, 2007).这些微生物群落通过光合及化能自养作用和异养作用等代谢活动参与碳循环,直接或间接地影响着水体中无机碳吸收或排放、以及有机碳的组成和转化(Cleveland et al., 2004Wickland and Neff, 2008Fellman et al., 2008,2009a2009bZhang et al., 2011Ziervogel et al., 2012).微生物参与的碳氮循环过程如何响应上述湖泊环境变化?并因此会产生何种生态效应?针对这些问题,笔者开展了详细研究,取得了系列研究发现:

1.1 外源有机质输入会促进咸盐湖泊沉积物现存的有机质矿化降解

全球变暖导致青藏高原冰川消融与冻土退化,其中储存的溶解有机碳被大量释放至附近湖泊.如此大量的有机碳输入会如何影响湖泊微生物参与的碳循环?针对这一科学问题,模拟实验研究表明:湖泊有机碳降解矿化过程会受到外源有机质输入与环境条件(如盐度)的影响.外源有机质输入会促进青藏高原湖泊沉积物现存的有机质降解矿化(即:沉积物碳的正激发效应)(Yang et al., 2020a).发生正激发效应早期主要为化学计量式分解:由于新的有机质添加打破原有营养元素平衡,促进某些微生物的大量繁殖,并产生大量额外的降解酶促进了本地有机质矿化;发生正激发效应晚期主要为营养挖掘式:微生物种群通过共代谢方式攫取营养物质(如:氮)促进有机质降解矿化.这种不同机理导致激发效应在早期与晚期与盐度变化的相关性相反:激发效应强度在早期(第1周)随盐度增加而降低,晚期(第6周)则相反(Yang et al., 2020a).正激发效应强度受湖泊盐度限制(Yang et al., 2020a).外源有机质输入导致的正激发效应强于内源有机质产生的正激发效应(Yang et al., 2022).内源有机质增加诱导的激发效应对温度变化(气候变暖)比外源有机质增加诱导的更敏感(Yang et al., 2023).与淡水/咸湖相比,高盐湖泊的沉积物中更容易出现且具有更高的正向激发效应(Yang et al., 2023).在影响盐湖正向激发效应方面,盐度变化的作用超过了氮增加(Yang et al., 2024).

在促进正激发效应过程中,真菌通过与原核微生物共代谢方式发挥作用:高盐湖泊中真菌节点数量和连结度均高于淡水湖泊;网络节点数量随盐度增加而降低,但是节点间的连结数量在增加,且与真菌节点相关联的连结数量随盐度增加而增加(Yang et al., 2020a).真菌共代谢作用在湖泊有机质矿化过程起到了重要作用.微生物降解矿化溶解有机质主要通过多种微生物相互协同作用来实现,针对不同有机质种类,形成不同的微生物共生网络(Yang et al., 2020a).优势微生物类群(丰度高的微生物)和富营养微生物类群(具有高养分需求的微生物)在外源有机质降解矿化过程中作用至关重要(Liu et al., 2018).

1.2 盐度变化会引起盐湖氮移除过程不同的气候反馈效应

全球气候变化导致区域降水格局发生改变,由此使得咸盐湖泊盐度发生变化.在冰雪融水增加、雨水冲刷、地下水汇入和氮沉降持续增长的影响下,湖泊氮输入日益增加.氮循环微生物(如反硝化、厌氧氨氧化和硝化微生物)能够以沉积物为热点反应区域,将活性氮(硝态氮、铵态氮)转化为N2O或N2,从而发生氮移除作用.然而,不同盐度湖泊的氮移除微生物作用对气候变化的反馈作用及其对高原脆弱生态系统的影响如何?仍没有统一的定论.模拟研究表明:高盐环境导致的不完全脱氮会导致系统中N2O排放的增加.与Nor(一氧化氮还原酶,产N2O)相比,盐度对Nos(一氧化二氮还原酶,产N2)的抑制作用更大,导致N2O的产生量高于消耗量(Sun et al., 2022,2023).在盐湖生境中,厌氧氨氧化作用对氮移除速率的贡献明显低于反硝化作用.这可能是由于在同条件下的反应中反硝化细菌比厌氧氨氧化细菌产生更多的能量,从而在消耗大量能量抵御盐度压力后仍具有更高的能量盈余用于生长和代谢,从而使反硝化细菌在超高盐度环境中更有利和更活跃.高盐湖泊中反硝化速率较低,产物主要为N2O;随着盐度降低,盐湖氮移除速率增加,其产物以N2为主,氮移除过程向环境友好型方向发展,形成气候负反馈;反之,随着盐度升高,盐湖氮移除速率降低,其产物以N2O为主,氮移除过程形成了气候正反馈(Sun et al., 2023).这一发现证明盐度是决定咸盐湖泊氮移除和氮载荷命运的关键因素.由此可见,为了提高全球湖泊N2O通量评估的准确性,盐度变化是一个不可忽视的因素.因此,由于全球气候环境变化所致的盐度变化与营养盐(碳、氮)输入增加,会对咸盐湖泊碳氮循环过程及其环境效应产生关键影响,在未来湖泊碳氮收支评估时,应全面考虑这种动态变化.

1.3 微生物对湖泊中有机质组分构成的变化具有决定性影响

有机碳化学组分与其生物可利用性息息相关.而以往的湖泊碳收支研究多关注有机碳的总量,而忽视了有机碳的化学组分构成差异.这种认知空白不利于评估气候环境变化情景下的湖泊碳收支状态.针对这一认知空白,通过野外检测与模拟实验,Jiang et al. (2022)研究了微生物矿化降解有机质过程对湖泊有机质组分构成影响机制,发现:微生物对湖泊中有机质组分构成的变化具有决定性影响.微生物降解矿化有机质具有选择性,会影响有机质成分构成:在高盐生境中的微生物菌群(例如广泛分布的苏美拉门细菌Sumerlaeota)可与难降解的高碳数与高复杂度有机物(如纤维素)作用,并产生易被利用的小分子有机碳,供与之伴生的异养微生物类群生长和代谢(Fang et al., 2021).由此导致高盐湖泊中的高碳数与高复杂度的有机质分子被差异化利用,即:高盐度湖泊的微生物群落对高碳数与高复杂度的陆源溶解有机质(terrestrial dissolved matter,简称tDOM)的利用能力强于低盐度湖泊(Yang et al., 2020b),使高盐度湖泊中溶解有机质分子的分子量和含碳数降低(Jiang et al., 2022).

除溶解有机碳以外,以固体形式留存的颗粒有机碳(particulate organic carbon,简称POC)以及与矿物紧密结合的矿物结合态有机碳(mineral⁃associated organic carbon,简称MAOC)同样是湖泊有机碳库的重要组成部分,对湖泊沉积物有机碳库的贡献可达70%~90%(Yang et al., 2023).尽管有机碳来源、微生物群落等方面的区别极有可能导致不同盐度湖泊在固态有机碳的分子构成及循环模式方面具有显著差异,但受限于分析手段,固态有机碳在湖泊环境中的分布、周转规律一直不够明晰.

近年来,飞行时间‒二次离子质谱仪(TOF⁃SIMS)、纳米二次离子质谱仪(Nano⁃SIMS)等固体原位微区分析技术的长足进步为进一步解析湖泊生态系统中的固态有机碳特征提供了条件.这些技术具有检测极限低、分辨率高等优点.且能够对土壤、沉积物等固体表面进行直接分析,避免了提取过程中对有机质的损耗和改造,因此正在被越来越广泛地应用于POC和MAOC的研究领域(Keiluweit et al., 2012Kleber et al., 2015,Huang et al., 2021).本团队使用飞行时间二级离子质谱仪(ToF⁃SIMS)(IONTOF,GmbH,Münster,Germany)对6个青藏高原湖泊沉积物进行了检测,结果显示,不同盐度湖泊沉积物的固态有机碳组成具有显著差异(图1).为了深入了解这种差异的成因和调控因素,笔者筛选出不同盐度湖泊沉积物中差异最大的有机碳官能团,并基于官能团特征将其分为顽固有机碳分子(如含有烷基、芳香基等基团的角质、叶蜡等分子)及活跃有机碳分子(如含有炔基、甲氧基等基团的多糖、氨基酸等分子),分析了两种组分在不同盐度湖泊环境中的分布规律和调控因素.结果显示,顽固有机碳分子的比例随着盐度的增加先降低再升高,而活跃有机碳分子在高盐湖泊沉积物中的分布比例相较于低盐湖泊具有显著优势(图2a、2b),这可能是因为低盐湖泊中丰富的水生植物与旺盛的微生物代谢活动促进了顽固有机碳积累以及活跃有机碳的分解矿化,而顽固、活跃有机碳在高盐湖泊中同时积累可能与高盐度对微生物活动的抑制有关(Oren, 2011).冗余分析(redundancy analysis,简称RDA)结果显示,不同有机碳分子分布规律的调控因素也有明显区别.矿物组成、理化参数、湖泊盐度和微生物群落均无法有效解释顽固有机碳在不同湖泊间分布的差异(图2c,样本在沿降维坐标图的分布较为集中),但盐度、微生物群落、矿物组分构成能够显著调控活跃有机碳组分的分布规律(图2d,不同样本沿解释度85.2%的RDA1轴分离),这有可能是因为易分解有机碳的代谢过程相对活跃,能够敏感地响应生物及非生物因素的调控,而顽固底物在盐湖这一厌氧、高盐环境中的微生物代谢过程较弱,其在沉积物中的分布可能更多地受到内、外源有机碳输入、径流长度等非生物因素的影响(Jiang et al., 2022).

此外,低盐湖泊微生物对有机碳的利用能力与可降解有机碳种类高于高盐湖泊微生物(Liu et al., 2018).这种微生物矿化降解差异使得不同盐度湖泊形成了独特的有机质分子指纹特征.

1.4 矿物组分构成对不同类型有机质差异吸附的机理

有机质经过微生物降解矿化之后,其在沉积物埋藏过程中的保存程度受矿物调控.湖泊沉积物有丰富的富铁矿物,微生物氧化和还原富铁矿物的过程广泛存在于不同盐度的湖泊中.但微生物‒富铁矿物的相互作用对影响湖泊沉积物有机碳的保存机理不清,严重限制了人们对湖泊沉积物有机质稳定性的认识.微生物还原湖泊沉积物中富铁粘土矿物蒙脱石模拟实验表明:被微生物还原的蒙脱石矿物表面能形成富铝层,含有丰富的活性位点,可以对微生物碳展现出较强的差异吸附作用,从分子层面成功识别了蒙脱石对不同类型有机质差异吸附的机理,比前人认为的矿物类型等因素更重要.通过进一步分析不同盐度湖泊中的沉积物有机质的化学组成与沉积物矿物成分构成之间的关联,证明了湖泊沉积物矿物组分构成对有机质组分构成的影响作用(Huang et al., 2021).相关研究成果说明,微生物作用下矿物选择性吸附有机质是将来精准预测湖泊沉积物(土壤)有机碳变化需要考虑的重要因素之一.

1.5 青藏高原湖泊微生物固碳形成CO2负排放(碳汇)效应

前人计算咸盐湖泊碳收支时大多依赖于湖泊水体CO2化学平衡,普遍认为咸盐湖泊为碳源(即CO2正排放),忽略了微生物作用.原位模拟实验与现场监测研究表明:微生物是咸盐湖泊中固碳作用的主要贡献者(Huang et al., 2023).不同盐度环境中的有机碳固定途径不同,即低盐环境中,微生物固碳主要以卡尔文循环(CBB, Calvin⁃Benson⁃Basshamcycle,即光合途径)途径为主;而在高盐环境中,微生物固碳主要以还原性乙酰辅酶A途径(W⁃L循环,即化能自养途径)为主.随着盐度升高,卡尔文循环途径变弱,而还原性乙酰辅酶A途径增强(Fang et al., 2022).青藏高原湖泊具有丰富的固碳微生物类群,不同盐度的青藏高原咸盐湖泊中固碳微生物类群构成差异显著(唐阳等, 2018),其固碳速率与盐度成负相关(Jiang et al., 2018; Wang et al., 2021).

为了进一步对青藏高原湖泊的碳汇潜力进行评估,笔者选择了6个青藏高原湖泊(洱海EHL、青海湖QHL、托素湖TSL、尕海GHL、小柴旦湖XCDL及茶卡湖CKL),对其原位固碳速率及水气界面的CO2通量进行了测量.所选湖泊涵盖了较为宽泛的地理参数(如湖泊规模为5.0~ 462.6 km2,最大水深为0.5~28.7 m等)和地球化学梯度(如湖泊盐度涵盖0.8~371.1 g/L,pH范围为7.0~9.1,溶解有机碳浓度为27.2~306.0 mg/L等),能够在一定程度上反映青藏高原湖泊的整体情况.

调查结果显示,盐度是青藏高原湖泊固碳过程最为重要的影响因素之一.因此,基于原位水体/沉积物固碳速率与盐度的回归关系(Jiang et al., 2018)及湖泊水文(面积、蓄水量、水深、盐度等)信息(Zheng, 1997),笔者将水体、沉积物固碳速率外推至青藏高原湖泊生态系统尺度(计算包含、不包含冰封期两种情况,一年分别计270、365 d;每天固碳时间计12 h),得到了青藏高原湖泊生态系统(水体+表层沉积物)微生物固碳年际通量(表1).

为了进一步刻画青藏高原湖泊生态系统的碳收支情况,笔者在不同季节对这些湖泊进行了原位漂浮气箱CO2通量监测,结果显示,青藏高原湖泊的CO2排放速率介于-4 791.0 μg C m-2 min-1到 7 957.0 μg C m-2 min-1之间,且表现出了十分复杂的模式.这具体体现在两个方面.一是同一季节下,不同湖泊的CO2排放具有明显差异,例如2015及2016年的排放数据都显示,淡水湖(EHL)及咸湖(QHL及TSL)在5月份的CO2排放均为负值(或接近于0),表现出了碳汇的潜力,而同时期的盐湖(GHL、XCDL、CKL)则相反.二是同一湖泊在不同季节中的CO2排放也往往不同.例如QHL在秋季(9~10月)为明显的CO2源,但在春季及夏季(5~7月)则为CO2汇.而XCDL在不同季节的排放模式则与QHL相反(图3).以上两点意味着在测定、估算青藏高原湖泊生态系统CO2通量或厘定其碳源汇角色的时候应当尽量将具有不同理化性质的湖泊囊括进来,同时需要考虑湖泊CO2排放的季节性差异.

基于上述6个湖泊的原位监测数据,本研究在去掉负值(CO2吸收)后对其单位面积的最大、最小、平均及中位CO2排放速率进行了计算.并根据青藏高原湖泊总面积(50 911.8 km2,)(Zheng, 1997),估算了(计算包含、不包含冰封期两种情况,一年分别计270、365 d;每天CO2交换时间计24 h)青藏高原湖泊生态系统年际CO2通量的最大值VMAX、最小值VMIN、平均值VAVERAGE和中值VMEDIAN表2).

综合CO2排放通量与微生物固碳水平可以看出,青藏高原湖泊的固碳水平远高于其CO2排放通量,具有巨大的碳捕获能力.在同一估算规则下(如考虑冰封期),即使在最高排放速率(32.6 Tg C/a)及最低固碳速率(92.7 Tg C/a)的条件下,每年仅凭微生物作用就可产生至少60 Tg(百万吨)有机碳碳汇作用(相当于2 200万吨标煤燃烧释放所产生的CO2).这一发现为青藏高原湖泊CO2负排放(碳汇)提供了新证据,增加了碳交易的话语权.

2 总结及展望

有机质输入增加改变青藏高原微生物群落构成与功能,会促进发生正激发效应,激发效应与盐度相关;外源有机质产生的激发效应大于内源有机质;相比而言,内源有机质增加诱导的激发效应对温度升高的响应更为敏感.微生物作用导致不同咸盐湖泊有机质化学组成差异明显.随着盐度升高,湖泊有机碳分子组成平均分子量与含碳数趋于降低.从微生物作用的角度看,青藏高原湖泊属于CO2净收入.随着盐度降低,微生物作用导致的CO2净收入作用会增强.

湖泊有机质的稳定性直接决定了湖泊沉积物碳汇有效性与持久性.因此,研究湖泊沉积物有机质稳定性对气候环境变化的响应,对于理解湖泊碳汇作用具有重要科学意义.沉积物有机碳组分构成和赋存状态是影响其稳定性的两个内在决定性因素.不同来源与不同组分构成的沉积物有机碳稳定性亦有所差别,对气候环境变化等环境影响也表现出了不同的响应模式.因此,沉积物有机碳整体稳定性是不同有机碳组分比例和特征的综合体现.为应对气候环境条件的变化(即:盐度降低、温度升高、有机质输入增加),不同盐度湖泊表层沉积物的有机质来源构成如何响应?湖泊表层沉积物有机质矿化降解过程(及环境效应)与有机质埋藏效率如何响应?沉积物有机质稳定性如何响应?对于这些问题,目前认知十分有限,有待于进一步开展研究.

参考文献

[1]

Anderson, N. J., Stedmon, C. A., 2007. The Effect of Evapoconcentration on Dissolved Organic Carbon Concentration and Quality in Lakes of SW Greenland. Freshwater Biology, 52(2): 280-289. https://doi.org/10.1111/j.1365⁃2427.2006.01688.x

[2]

Aufdenkampe, A. K., Mayorga, E., Raymond, P. A., et al., 2011. Riverine Coupling of Biogeochemical Cycles between Land, Oceans, and Atmosphere. Frontiers in Ecology and the Environment, 9(1): 53-60. https://doi.org/10.1890/100014

[3]

Battin, T. J., Kaplan, L. A., Findlay, S., et al., 2008. Biophysical Controls on Organic Carbon Fluxes in Fluvial Networks. Nature Geoscience, 1: 95-100. https://doi.org/10.1038/ngeo101

[4]

Battin, T. J., Luyssaert, S., Kaplan, L. A., et al., 2009. The Boundless Carbon Cycle. Nature Geoscience, 2: 598-600. https://doi.org/10.1038/ngeo618

[5]

Biskaborn, B. K., Smith, S. L., Noetzli, J., et al., 2019. Permafrost Is Warming at a Global Scale. Nature Communications, 10(1): 264. https://doi.org/10.1038/s41467⁃018⁃08240⁃4

[6]

Canadell, J. G., Le Quéré, C., Raupach, M. R., et al., 2007. Contributions to Accelerating Atmospheric CO2 Growth from Economic Activity, Carbon Intensity, and Efficiency of Natural Sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47): 18866-18870. https://doi.org/10.1073/pnas.0702737104

[7]

Chen, Y. L., Liu, F. T., Kang, L. Y., et al., 2021. Large⁃Scale Evidence for Microbial Response and Associated Carbon Release after Permafrost Thaw. Global Change Biology, 27(14): 3218-3229. https://doi.org/10.1111/gcb.15487

[8]

Cleveland, C. C., Neff, J. C., Townsend, A. R., et al., 2004. Composition, Dynamics, and Fate of Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition Experiment. Ecosystems, 7(3): 175-285. https://doi.org/10.1007/s10021⁃003⁃0236⁃7

[9]

Cole, J. J., Prairie, Y. T., Caraco, N. F., et al., 2007. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems, 10(1): 172-185. https://doi.org/10.1007/s10021⁃006⁃9013⁃8

[10]

Dobiński, W., 2020. Permafrost Active Layer. Earth⁃Science Reviews, 208: 103301. https://doi.org/10.1016/j.earscirev.2020.103301

[11]

Duarte, C. M., Prairie, Y. T., Montes, C., et al., 2008. CO2 Emissions from Saline Lakes: A Global Estimate of a Surprisingly Large Flux. Journal of Geophysical Research: Biogeosciences, 113(G4): G04041. https://doi.org/10.1029/2007JG000637

[12]

Fang, Y., Liu, J., Yang, J., et al., 2022. Compositional and Metabolic Responses of Autotrophic Microbial Community to Salinity in Lacustrine Environments. mSystems, 7(4): e0033522. https://doi.org/10.1128/msystems.00335⁃22

[13]

Fang, Y., Yuan, Y., Liu, J., et al., 2021. Casting Light on the Adaptation Mechanisms and Evolutionary History of the Widespread Sumerlaeota. mBio, 12(2): e00350⁃21. https://doi.org/10.1128/mBio.00350⁃21

[14]

Fellman, J. B., D’Amore, D. V., Hood, E., et al., 2008. Fluorescence Characteristics and Biodegradability of Dissolved Organic Matter in Forest and Wetland Soils from Coastal Temperate Watersheds in Southeast Alaska. Biogeochemistry, 88(2): 169-184. https://doi.org/10.1007/s10533⁃008⁃9203⁃x

[15]

Fellman, J. B., Hood, E., D’Amore, D. V., et al., 2009a. Seasonal Changes in the Chemical Quality and Biodegradability of Dissolved Organic Matter Exported from Soils to Streams in Coastal Temperate Rainforest Watersheds. Biogeochemistry, 95(2): 277-293. https://doi.org/10.1007/s10533⁃009⁃9336⁃6

[16]

Fellman, J. B., Hood, E., Edwards, R. T., et al., 2009b. Changes in the Concentration, Biodegradability, and Fluorescent Properties of Dissolved Organic Matter during Stormflows in Coastal Temperate Watersheds. Journal of Geophysical Research: Biogeosciences, 114(G1): G01021. https://doi.org/10.1029/2008JG000790

[17]

Feng, L., An, Y. Q., Xu, J. Z., et al., 2018. Characteristics and Sources of Dissolved Organic Matter in a Glacier in the Northern Tibetan Plateau: Differences between Different Snow Categories. Annals of Glaciology, 59(77): 31-40. https://doi.org/10.1017/aog.2018.20

[18]

Gudasz, C., Bastviken, D., Steger, K., et al., 2010. Temperature⁃Controlled Organic Carbon Mineralization in Lake Sediments. Nature, 466(7305): 478-481. https://doi.org/10.1038/nature09186

[19]

Hood, E., Battin, T. J., Fellman, J., et al., 2015. Storage and Release of Organic Carbon from Glaciers and Ice Sheets. Nature Geoscience, 8: 91-96. https://doi.org/10.1038/ngeo2331

[20]

Huang, J. R., Yang, J., Han, M. X., et al., 2023. Microbial Carbon Fixation and Its Influencing Factors in Saline Lake Water. Science of the Total Environment, 877: 162922. https://doi.org/10.1016/j.scitotenv.2023.162922

[21]

Huang, L. Q., Yu, Q., Liu, W., et al., 2021. Molecular Determination of Organic Adsorption Sites on Smectite during Fe Redox Processes Using ToF⁃SIMS Analysis. Environmental Science & Technology, 55(10): 7123-7134. https://doi.org/10.1021/acs.est.0c08407

[22]

Jiang, H. C., 2007. Geomicrobiological Studies of Saline Lakes on the Tibetan Plateau, NW China: Linking Geological and Microbial Processes (Dissertation). Miami University, Miami.

[23]

Jiang, H. C., Huang, J. R., Yang, J., 2018. Halotolerant and Halophilic Microbes and Their Environmental Implications in Saline and Hypersaline Lakes in Qinghai Province, China. In: Egamberdieva, D., Birkeland, N. K., Panosyan, H., et al., eds. Microorganisms for Sustainability. Springer, Singapore, 299-316. https://doi.org/10.1007/978⁃981⁃13⁃0329⁃6_10

[24]

Jiang, H. C., Lü, Q. Y., Yang, J., et al., 2022. Molecular Composition of Dissolved Organic Matter in Saline Lakes of the Qing⁃Tibetan Plateau. Organic Geochemistry, 167: 104400. https://doi.org/10.1016/j.orggeochem.2022.104400

[25]

Keiluweit, M., Bougoure, J. J., Zeglin, L. H., et al., 2012. Nano⁃Scale Investigation of the Association of Microbial Nitrogen Residues with Iron (Hydr) Oxides in a Forest Soil O⁃Horizon. Geochimica et Cosmochimica Acta, 95: 213-226. https://doi.org/10.1016/j.gca.2012.07.001

[26]

Kleber, M., Eusterhues, K., Keiluweit, M., et al., 2015. Mineral⁃Organic Associations: Formation, Properties, and Relevance in Soil Environments. Advances in Agronomy. Elsevier,Amsterdam. https://doi.org/10.1016/bs.agron.2014.10.005

[27]

Kuang, X. X., Jiao, J. J., 2016. Review on Climate Change on the Tibetan Plateau during the Last Half Century. Journal of Geophysical Research: Atmospheres, 121(8): 3979-4007. https://doi.org/10.1002/2015jd024728

[28]

Liu, D., Shi, K., Chen, P., et al., 2024. Substantial Increase of Organic Carbon Storage in Chinese Lakes. Nature Communications, 15(1): 8049. https://doi.org/10.1038/s41467⁃024⁃52387⁃2

[29]

Liu, W., Jiang, H. C., Yang, J., et al., 2018. Gammaproteobacterial Diversity and Carbon Utilization in Response to Salinity in the Lakes on the Qinghai⁃Tibetan Plateau. Geomicrobiology Journal, 35(5): 392-403. https://doi.org/10.1080/01490451.2017.1378951

[30]

Liu, Y. M., Xu, J. Z., Kang, S. C., et al., 2016. Storage of Dissolved Organic Carbon in Chinese Glaciers. Journal of Glaciology, 62(232): 402-406. https://doi.org/10.1017/jog.2016.47

[31]

Mu, C. C., Abbott, B. W., Norris, A. J., et al., 2020. The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth⁃Science Reviews, 211: 103433. https://doi.org/10.1016/j.earscirev.2020.103433

[32]

Oren, A., 2011. Thermodynamic Limits to Microbial Life at High Salt Concentrations. Environmental Microbiology, 13(8): 1908-1923. https://doi.org/10.1111/j.1462⁃2920.2010.02365.x

[33]

Raymond, P. A., Hartmann, J., Lauerwald, R., et al., 2013. Global Carbon Dioxide Emissions from Inland Waters. Nature, 503(7476): 355-359. https://doi.org/10.1038/nature12760

[34]

Schuur, E. A. G., Bockheim, J., Canadell, J. G., et al., 2008. Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle. BioScience, 58(8): 701-714. https://doi.org/10.1641/B580807

[35]

Sun, X. X., Tan, E. H., Wang, B. C., et al., 2023. Salinity Change Induces Distinct Climate Feedbacks of Nitrogen Removal in Saline Lakes. Water Research, 245: 120668. https://doi.org/10.1016/j.watres.2023.120668

[36]

Sun, X. X., Yang, J., Jiang, H. C., et al., 2022. Nitrite⁃ and N2O⁃Reducing Bacteria Respond Differently to Ecological Factors in Saline Lakes. FEMS Microbiology Ecology, 98(2): fiac007. https://doi.org/10.1093/femsec/fiac007

[37]

Tang, Y., Liu, Y. C., Yang, J., et al., 2018. Gene Diversity Involved in Kalvin Pathway of Carbon Fixation and Its Response to Environmental Variables in Surface Sediments of the Northern Qinghai⁃Tibetan Plateau Lakes. Earth Science, 43(S1): 31-41 (in Chinese with English abstract).

[38]

Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., 2009. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnology and Oceanography, 54(6): 2298-2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298

[39]

Turetsky, M. R., Abbott, B. W., Jones, M. C., et al., 2020. Carbon Release through Abrupt Permafrost Thaw. Nature Geoscience, 13: 138-143. https://doi.org/10.1038/s41561⁃019⁃0526⁃0

[40]

Verpoorter, C., Kutser, T., Seekell, D. A., et al., 2014. A Global Inventory of Lakes Based on High⁃Resolution Satellite Imagery. Geophysical Research Letters, 41(18): 6396-6402. https://doi.org/10.1002/2014gl060641

[41]

Wan, W., Zhao, L., Xie, H., et al., 2018. Lake Surface Water Temperature Change over the Tibetan Plateau from 2001 to 2015: A Sensitive Indicator of the Warming Climate. Geophysical Research Letters, 45(20): 11177-111186. https://doi.org/10.1029/2018gl078601

[42]

Wang, B. C., Huang, J. R., Yang, J., et al., 2021. Bicarbonate Uptake Rates and Diversity of RuBisCO Genes in Saline Lake Sediments. FEMS Microbiology Ecology, 97(4): fiab037. https://doi.org/10.1093/femsec/fiab037

[43]

Wang, S. M., Dou, H. S., 1998. Chinese Lakes Records. Science Press, Beijing (in Chinese).

[44]

Wang, Y. H., Spencer, R. G. M., Podgorski, D. C., et al., 2018. Spatiotemporal Transformation of Dissolved Organic Matter along an Alpine Stream Flow Path on the Qinghai⁃Tibet Plateau: Importance of Source and Permafrost Degradation. Biogeosciences, 15(21): 6637-6648. https://doi.org/10.5194/bg⁃15⁃6637⁃2018

[45]

Wickland, K. P., Neff, J. C., 2008. Decomposition of Soil Organic Matter from Boreal Black Spruce Forest: Environmental and Chemical Controls. Biogeochemistry, 87(1): 29-47. https://doi.org/10.1007/s10533⁃007⁃9166⁃3

[46]

Wurtsbaugh, W. A., Miller, C., Null, S. E., et al., 2017. Decline of the World’s Saline Lakes. Nature Geoscience, 10: 816-821. https://doi.org/10.1038/ngeo3052

[47]

Yang, J., Yao, B. F., Cai, M., et al., 2024. Salinity Change Overrides Nitrogen Increase in Affecting Microbial Abundance, Diversity, Community Composition and Organic Carbon Mineralization in Saline Lakes. Journal of Earth Science, Online. https://doi.org/10.1007/s12583⁃024⁃0139⁃4

[48]

Yang, J., Chen, Y., She, W. Y., et al., 2020a. Deciphering Linkages between Microbial Communities and Priming Effects in Lake Sediments with Different Salinity. Journal of Geophysical Research: Biogeosciences, 125(11): e2019JG005611. https://doi.org/10.1029/2019jg005611

[49]

Yang, J., Han, M. X., Wang, B. C., et al., 2023. Predominance of Positive Priming Effects Induced by Algal and Terrestrial Organic Matter Input in Saline Lake Sediments. Geochimica et Cosmochimica Acta, 349: 126-134. https://doi.org/10.1016/j.gca.2023.04.005

[50]

Yang, J., Han, M. X., Zhao, Z. L., et al., 2022. Positive Priming Effects Induced by Allochthonous and Autochthonous Organic Matter Input in the Lake Sediments with Different Salinity. Geophysical Research Letters, 49(5): e2021GL096133. https://doi.org/10.1029/2021GL096133

[51]

Yang, J., Jiang, H. C., Liu, W., et al., 2020b. Potential Utilization of Terrestrially Derived Dissolved Organic Matter by Aquatic Microbial Communities in Saline Lakes. The ISME Journal, 14(9): 2313-2324. https://doi.org/10.1038/s41396⁃020⁃0689⁃0

[52]

Yao, F. F., Livneh, B., Rajagopalan, B., et al., 2023. Satellites Reveal Widespread Decline in Global Lake Water Storage. Science, 380(6646): 743-749. https://doi.org/10.1126/science.abo2812

[53]

You, Q. L., Chen, D. L., Wu, F. Y., et al., 2020. Elevation Dependent Warming over the Tibetan Plateau: Patterns, Mechanisms and Perspectives. Earth⁃Science Reviews, 210: 103349. https://doi.org/10.1016/j.earscirev.2020.103349

[54]

Zhang, G. Q., Chen, W. F., Xie, H. J., 2019. Tibetan Plateau’s Lake Level and Volume Changes from NASA’s ICESat/ICESat⁃2 and Landsat Missions. Geophysical Research Letters, 46(22): 13107-13118. https://doi.org/10.1029/2019gl085032

[55]

Zhang, G. Q., Yao, T. D., Xie, H. J., et al., 2020. Response of Tibetan Plateau Lakes to Climate Change: Trends, Patterns, and Mechanisms. Earth⁃Science Reviews, 208: 103269. https://doi.org/10.1016/j.earscirev.2020.103269

[56]

Zhang, Y. L., Yin, Y., Liu, X. H., et al., 2011. Spatial⁃Seasonal Dynamics of Chromophoric Dissolved Organic Matter in Lake Taihu, a Large Eutrophic, Shallow Lake in China. Organic Geochemistry, 42(5): 510-519. https://doi.org/10.1016/j.orggeochem.2011.03.007

[57]

Zheng, M. P., 1997. An Introduction to Saline Lakes on the Qinghai⁃Tibet Plateau. Springer, Dordrecht. https://doi.org/10.1007/978⁃94⁃011⁃5458⁃1

[58]

Zhou, Y. Q., Zhou, L., He, X. T., et al., 2019. Variability in Dissolved Organic Matter Composition and Biolability across Gradients of Glacial Coverage and Distance from Glacial Terminus on the Tibetan Plateau. Environmental Science & Technology, 53(21): 12207-12217. https://doi.org/10.1021/acs.est.9b03348

[59]

Ziervogel, K., McKay, L., Rhodes, B., et al., 2012. Microbial Activities and Dissolved Organic Matter Dynamics in Oil⁃Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site. PLoS One, 7(4): e34816. https://doi.org/10.1371/journal.pone.0034816

基金资助

国家自然科学基金项目(91751206)

国家自然科学基金项目(92251304)

AI Summary AI Mindmap
PDF (812KB)

129

访问

0

被引

详细

导航
相关文章

AI思维导图

/