晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系
何卫红 , 吴攸攸 , 张克信 , 铃木纪毅 , 肖异凡 , 杨廷禄 , 吴琛 , 黄亚飞
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 983 -999.
晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系
Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia
,
一般认为二叠纪末生物大灭绝持续的时间为3~6万年.然而,越来越多的研究显示在生物灭绝高峰期到来之前存在着环境危机预警信号,但相关研究仍然较少.本文聚焦于大灭绝全过程,包括灭绝高峰期到来之前、灭绝高峰期以及大灭绝之后残存期生物与环境的变化,揭示海洋生态系统坍塌的过程.通过对全球30个海相剖面的化石和古环境记录综合研究,结果表明:(1)深水环境(包括远洋环境、深水陆架、深水盆地和台地边缘斜坡)生态系统衰退发生较早,浅水环境(包括浅水碳酸盐台地、礁和浅水陆架)生态系统衰退发生较晚;(2)浮游生态系统的衰退早于底栖生态系统的衰退.全球海洋生态系统衰退的这种时空差异与最小含氧带(OMZ)的形成及扩展,并导致缺氧有关.
The duration for the End-Permian mass extinction has been estimated as about 30 to 60 kyr. However, an ever-expanding body of papers has revealed that the evolution of Late Permian ecosystems possibly involved some yet under-studied ‘early warning signals’ prior to the End-Permian mass extinction. The study on the pre-extinction ‘warning signals’ is still limited. In order to understand the process of marine ecosystem collapse specifically the ‘early warning signals’ pointing to the approaching of a global ecosystem regime shift (tipping point), 30 marine Permian-Triassic Boundary sections from different palaeogeographic settings were selected globally to investigate the spatiotemporal biodiversity changes of different taxa and the spatiotemporal redox conditions. The results reveal that: (1) The marine ecosystem collapsed first in deep waters and then in shallow waters (first in offshore pelagic settings, then in moderately deep waters and deep-water basins and shelves and finally in shallow water environments); (2) in the same environments (in deep or moderately deep waters), a similar differential temporal pattern is also apparent in that the planktonic ecosystems were devastated earlier than benthic ecosystems. To account for the spatiotemporal and ecological (taxonomic) differences in extinction timing, we propose that the formation and expansion of an OMZ (oxygen minimum zone) and the related anoxia (or oxygen depletion), were most likely responsible for the differential temporal patterns of marine ecosystem collapses between deep and shallow waters, and between planktonic and benthic communities during the Late Permian.
海洋生态系统坍塌 / 最小含氧带 / 缺氧 / 晚二叠世 / 地层学 / 环境影响.
collapse of marine ecosystem / oxygen minimum zone / anoxia / Late Permian / stratigraphy / environmental impact
| [1] |
Algeo, T. J., Hannigan, R., Rowe, H., et al., 2007. Sequencing Events across the Permian‒Triassic Boundary, Guryul Ravine (Kashmir, India). Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 328-346. https://doi.org/10.1016/j.palaeo.2006.11.050 |
| [2] |
Algeo, T. J., Henderson, C. M., Ellwood, B., et al., 2012. Evidence for a Diachronous Late Permian Marine Crisis from the Canadian Arctic Region. Geological Society of America Bulletin, 124(9-10): 1424-1448. https://doi.org/10.1130/B30505.1 |
| [3] |
Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian‒Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007 |
| [4] |
Baresel, B., Bucher, H., Bagherpour, B., et al., 2017. Timing of Global Regression and Microbial Bloom Linked with the Permian‒Triassic Boundary Mass Extinction: Implications for Driving Mechanisms. Scientific Reports, 7: 43630. https://doi.org/10.1038/srep43630 |
| [5] |
Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High‒Precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111 |
| [6] |
Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End‒Permian Mass Extinction. Nature Communications, 8: 164. https://doi.org/10.1038/s41467‒017‒00083‒9 |
| [7] |
Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo‒Tethys Ocean during the Permian‒Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534 |
| [8] |
Chen, J., Henderson, C. M., Shen, S. Z., 2008. Conodont Succession around the Permian‒Triassic Boundary at the Huangzhishan Section, Zhejiang and Its Stratigraphic Correlation. Acta Palaeontologica Sinica, 47(1): 91-114 (in English with Chinese abstract). |
| [9] |
Chen, Z. Q., Tong, J. N., Zhang, K. X., et al., 2009. Environmental and Biotic Turnover across the Permian‒Triassic Boundary on a Shallow Carbonate Platform in Western Zhejiang, South China. Australian Journal of Earth Sciences, 56(6): 775-797. https://doi.org/10.1080/08120090903002607 |
| [10] |
Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End‒Permian Mass Extinction and Recovery. Nature Communications, 7: 12236. https://doi.org/10.1038/ncomms12236 |
| [11] |
Davydov, V. I., Karasev, E. V., Nurgalieva, N. G., et al., 2021. Climate and Biotic Evolution during the Permian‒Triassic Transition in the Temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110432. https://doi.org/10.1016/j.palaeo.2021.110432 |
| [12] |
Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High‒Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953 |
| [13] |
Fang, Y. H., 2021. Late Permian to Early Triassic Redox Variations of South China and Unusual Biosedimentary Responses (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [14] |
Fang, Z. Y., He, X. Q., Zhang, G. J., et al., 2021. Ocean Redox Changes from the Latest Permian to Early Triassic Recorded by Chromium Isotopes. Earth and Planetary Science Letters, 570: 117050. https://doi.org/10.1016/j.epsl.2021.117050 |
| [15] |
Feng, Q. L., He, W. H., Gu, S. Z., et al., 2007. Radiolarian Evolution during the Latest Permian in South China. Global and Planetary Change, 55(1-3): 177-192. https://doi.org/10.1016/j.gloplacha.2006.06.012 |
| [16] |
Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High‒Latitude Continental End‒Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10: 385. https://doi.org/10.1038/s41467‒018‒07934‒z |
| [17] |
Grasby, S. E., Bond, D. P. G., Wignall, P. B., et al., 2021. Transient Permian‒Triassic Euxinia in the Southern Panthalassa Deep Ocean. Geology, 49 (8): 889-893. https://doi.org/10.1130/g48928.1 |
| [18] |
He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U‒Pb Dating of Silicic Ignimbrites, Post‒Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021 |
| [19] |
He, W. H., Feng, Q. L., Gu, S. Z., et al., 2005. Changxingian (Upper Permian) Radiolarian Fauna from Meishan D Section, Changxing, Zhejiang, China, and Its Possible Paleoecological Significance. Journal of Paleontology, 79(2): 209-218. https://doi.org/10.1666/0022‒3360(2005)0790209: cuprff>2.0.co;2 |
| [20] |
He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123-138. https://doi.org/10.1111/gbi.12119 |
| [21] |
He, W. H., Shi, G. R., Yu, J. X., et al., 2023. Stratigraphy around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒99‒9350‒5 |
| [22] |
He, W. H., Shi, G. R., Zhang, K. X., et al., 2019. Brachiopods around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒13‒1041‒6 |
| [23] |
He, W. H., Shi, G. R., Zhang, K. X., et al., 2025. The Deterioration and Collapse of Late Permian Marine Ecosystems and the End‒Permian Mass Extinction: A Global View. Earth‒Science Reviews, 261: 104971. https://doi.org/10.1016/j.earscirev.2024.104971 |
| [24] |
He, W. H., Weldon, E. A., Yang, T. L., et al., 2024. An End‒Permian Two‒Stage Extinction Pattern in the Deep‒Water Dongpan Section, and Its Relationship to the Migration and Vertical Expansion of the Oxygen Minimum Zone in the South China Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 649: 112307. https://doi.org/10.1016/j.palaeo.2024.112307 |
| [25] |
He, W. H., Zhang, Y., Zhang, Q., et al., 2011. A Latest Permian Radiolarian Fauna from Hushan, South China, and Its Geological Implications. Alcheringa: An Australasian Journal of Palaeontology, 35(4): 471-496. https://doi.org/10.1080/03115518.2010.536649 |
| [26] |
Huang, Y. F., He, W. H., Liao, W., et al., 2022. Two Pulses of Increasing Terrestrial Input to Marine Environment during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110753. https://doi.org/10.1016/j.palaeo.2021.110753 |
| [27] |
Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian‒Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End‒Permian Mass Extinction. Journal of Earth Science, 25(3): 413-430. https://doi.org/10.1007/s12583‒014‒0444‒4 |
| [28] |
Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian‒Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432 |
| [29] |
Joachimski, M. M., Lai, X. L., Shen, S. Z., et al., 2012. Climate Warming in the Latest Permian and the Permian‒Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1 |
| [30] |
Kajiwara, Y., Ishida, K., Tanikura, Y., et al., 1993a. Sulfur Isotope Data from the Permian‒Triassic Boundary at Sasayama in the Tanba Terrane in Southwestern Honshu, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 67-72. |
| [31] |
Kajiwara, Y., Yamakita, S., Kobayashi, D., et al., 1993b. Sulfur Isotope Data from the Permian‒Triassic Boundary at Tenjinmaru in the Chichibu Terrane in Eastern Shikoku, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 59-66. |
| [32] |
Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 182(1): 15-34. https://doi.org/10.1016/S0009‒2541(01)00273‒X |
| [33] |
Li, G. S., 2016. Fluctuations of Redox Conditions and Ecological Responses across the Permian‒Triassic Boundary in Different Paleogeographic Settings of Middle & Lower Yangtze Region (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [34] |
Li, G. S., Wang, Y. B., Shi, G. R., et al., 2016. Fluctuations of Redox Conditions across the Permian‒Triassic Boundary—New Evidence from the GSSP Section in Meishan of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 48-58. https://doi.org/10.1016/j.palaeo.2015.09.050 |
| [35] |
Li, X. G., Song, J. M., Yuan, H. M., et al., 2017. The Oxygen Minimum Zones (OMZs) and Its Eco‒Environmental Effects in Ocean. Marine Sciences, 41(12): 127-138 (in Chinese with English abstract). |
| [36] |
Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian‒Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035 |
| [37] |
Liao, W., 2020. Palaeoenvironment Change in Shallow‒ Marine Carbonate Platform across the Permian‒Triassic Boundary in South China and Its Possible Cause (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [38] |
Liao, W., Bond, D. P. G., Wang, Y. B., et al., 2017. An Extensive Anoxic Event in the Triassic of the South China Block: A Pyrite Framboid Study from Dajiang and Its Implications for the Cause(s) of Oxygen Depletion. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 86-95. https://doi.org/10.1016/j.palaeo.2016.11.012 |
| [39] |
Liu, X. K., Song, H. J., Bond, D. P. G., et al., 2020. Migration Controls Extinction and Survival Patterns of Foraminifers during the Permian‒Triassic Crisis in South China. Earth‒Science Reviews, 209: 103329. https://doi.org/10.1016/j.earscirev.2020.103329 |
| [40] |
Mays, C., Vajda, V., Frank, T. D., et al., 2020. Refined Permian‒Triassic Floristic Timeline Reveals Early Collapse and Delayed Recovery of South Polar Terrestrial Ecosystems. GSA Bulletin, 132(7-8): 1489-1513. https://doi.org/10.1130/b35355.1 |
| [41] |
Nabbefeld, B., Grice, K., Twitchett, R. J., et al., 2010. An Integrated Biomarker, Isotopic and Palaeoenvironmental Study through the Late Permian Event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291(1-4): 84-96. https://doi.org/10.1016/j.epsl.2009.12.053 |
| [42] |
Nie, X. M., Lei, Y., Feng, Q. L., et al., 2012. Evolution and Its Control Factors of the Changhsingian Radiolarian Fauna at the Shangsi Section in Jiange County, Guangyuan City, Sichuan Province. Geological Review, 58(5): 809-815 (in English with Chinese abstract). |
| [43] |
Posenato, R., 2009. Survival Patterns of Macrobenthic Marine Assemblages during the End‒Permian Mass Extinction in the Western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1-2): 150-167. https://doi.org/10.1016/j.palaeo.2009.06.009 |
| [44] |
Posenato, R., 2019. The End‒Permian Mass Extinction (EPME) and the Early Triassic Biotic Recovery in the Western Dolomites (Italy): State of the Art. Bollettino Della Società Paleontologica Italiana, 58(1): 11-34. |
| [45] |
Qiu, X. C., Tian, L., Wu, K., et al., 2019. Diverse Earliest Triassic Ostracod Fauna of the Non‒Microbialite‒ Bearing Shallow Marine Carbonates of the Yangou Section, South China. Lethaia, 52(4): 583-596. https://doi.org/10.1111/let.12332 |
| [46] |
Retallack, G. J., 2021. Multiple Permian‒Triassic Life Crises on Land and at Sea. Global and Planetary Change, 198: 103415. https://doi.org/10.1016/j.gloplacha.2020.103415 |
| [47] |
Rodríguez‒Tovar, F. J., Dorador, J., Zuchuat, V., et al., 2021. Response of Macrobenthic Trace Maker Community to the End‒Permian Mass Extinction in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 581: 110637. https://doi.org/10.1016/j.palaeo.2021.110637 |
| [48] |
Sano, H., Kuwahara, K., Yao, A., et al., 2010. Panthalassan Seamount‒Associated Permian‒Triassic Boundary Siliceous Rocks, Mino Terrane, Central Japan. Paleontological Research, 14(4): 293-314. https://doi.org/10.2517/1342‒8144‒14.4.293 |
| [49] |
Sano, H., Wada, T., Naraoka, H., 2012. Late Permian to Early Triassic Environmental Changes in the Panthalassic Ocean: Record from the Seamount‒Associated Deep‒Marine Siliceous Rocks, Central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 363: 1-10. https://doi.org/10.1016/j.palaeo.2012.07.018 |
| [50] |
Sashida, K., Sardsud, A., Igo, H., et al., 1998. Occurrence of Dienerian (Lower Triassic) Radiolarians from the Phatthalung Area of Peninsular Thailand and Radiolarian Biostratigraphy around the Permian/Triassic (P/T) Boundary. News of Osaka Micropaleontologists, 11: 59-70. |
| [51] |
Shen, J., Algeo, T. J., Zhou, L., et al., 2012. Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 10(1): 82-103. https://doi.org/10.1111/j.1472‒4669.2011.00306.x |
| [52] |
Shen, J., Chen, J. B., Algeo, T. J., et al., 2019b. Evidence for a Prolonged Permian‒Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10: 1563. https://doi.org/10.1038/s41467‒ 019‒09620‒0 |
| [53] |
Shen, J., Feng, Q. L., Algeo, T. J., et al., 2016. Two Pulses of Oceanic Environmental Disturbance during the Permian‒Triassic Boundary Crisis. Earth and Planetary Science Letters, 443: 139-152. https://doi.org/10.1016/j.epsl.2016.03.030 |
| [54] |
Shen, S. Z., Cao, C. Q., Henderson, C. M., et al., 2006. End‒Permian Mass Extinction Pattern in the Northern Peri‒Gondwanan Region. Palaeoworld, 15(1): 3-30. https://doi.org/10.1016/j.palwor.2006.03.005 |
| [55] |
Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End‒Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454 |
| [56] |
Shen, S. Z., He, X. L., 1991. Changxingian Brachiopod Assemblage Sequence in Zhongliang Hill, Chongqing. Journal of Stratigraphy, 15(3): 189-196 (in Chinese). |
| [57] |
Shen, S. Z., Ramezani, J., Chen, J., et al., 2019a. A Sudden End‒Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1 |
| [58] |
Song, H. J., Tong, J. N., Chen, Z. Q., 2009. Two Episodes of Foraminiferal Extinction near the Permian‒Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 56(6): 765-773. https://doi.org/10.1080/08120090903002599 |
| [59] |
Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583‒018‒1002‒2 |
| [60] |
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian‒Triassic Crisis. Nature Geoscience, 6(1): 52-56. https://doi.org/10.1038/ngeo1649 |
| [61] |
Song, H. Y., Tong, J. N., Tian, L., et al., 2014. Paleo‒Redox Conditions across the Permian‒Triassic Boundary in Shallow Carbonate Platform of the Nanpanjiang Basin, South China. Science China Earth Sciences, 57(5): 1030-1038. https://doi.org/10.1007/s11430‒014‒4843‒2 |
| [62] |
Takahashi, S., Hori, R. S., Yamakita, S., et al., 2021. Progressive Development of Ocean Anoxia in the End‒Permian Pelagic Panthalassa. Global and Planetary Change, 207: 103650. https://doi.org/10.1016/j.gloplacha.2021.103650 |
| [63] |
Tian, L., Tong, J. N., Song, H. J., et al., 2014. Foraminferal Evolution and Formation of Oolitic Limestone near Permian‒Triassic Boundary at Yangou Section, Jiangxi Province. Earth Science, 39(11): 1573-1586 (in Chinese with English abstract). |
| [64] |
Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End‒Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875 |
| [65] |
Wan, J. Y., Yuan, A. H., Crasquin, S., et al., 2019. High‒Resolution Variation in Ostracod Assemblages from Microbialites near the Permian‒Triassic Boundary at Zuodeng, Guangxi Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109349. https://doi.org/10.1016/j.palaeo.2019.109349 |
| [66] |
Wang, H., He, W. H., Xiao, Y. F., et al., 2023. Stagewise Collapse of Biotic Communities and Its Relations to Oxygen Depletion along the North Margin of Nanpanjiang Basin during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 621: 111569. https://doi.org/10.1016/j.palaeo.2023.111569 |
| [67] |
Wang, Q. X., Tong, J. N., Song, H. J., et al., 2009. Ecosystem Evolution at the Turn of Permian‒Triassic in Kangjiaping Section of Cili, Hunan Province. Science in China (Series D), 39(9): 1239-1247 (in Chinese with English abstract). |
| [68] |
Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian‒Triassic Boundary, South China: Constraints from Trace Elements and Hf‒Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011 |
| [69] |
Wu, B. J., Luo, G. M., Joachimski, M. M., et al., 2022. Carbon and Nitrogen Isotope Evidence for Widespread Presence of Anoxic Intermediate Waters before and during the Permian‒Triassic Mass Extinction. Geological Society of America Bulletin, 134(5-6): 1397-1413. https://doi.org/10.1130/B36005.1 |
| [70] |
Wu, Q., Ramezani, J., Zhang, H., et al., 2021. High‒Precision U‒Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677-681. https://doi.org/10.1130/g48051.1 |
| [71] |
Wu, Q., Zhang, H., Ramezani, J., et al., 2024. The Terrestrial End‒Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284 |
| [72] |
Xiao, Y. F., Wang, K. Y., He, W. H., et al., 2024. Changhsingian (Lopingian, Permian) Radiolarian Paleobiogeography on and around the Yangtze Platform. Palaeoworld, 33(5): 1409-1424. https://doi.org/10.1016/j.palwor.2022.07.001 |
| [73] |
Xiong, C. H., Wang, J. S., Huang, P., et al., 2021. Plant Resilience and Extinctions through the Permian to Middle Triassic on the North China Block: A Multilevel Diversity Analysis of Macrofossil Records. Earth‒Science Reviews, 223: 103846. https://doi.org/10.1016/j.earscirev.2021.103846 |
| [74] |
Yang, F., Sun, Y. D., Frings, P. J., et al., 2022. Collapse of Late Permian Chert Factories in the Equatorial Tethys and the Nature of the Early Triassic Chert Gap. Earth and Planetary Science Letters, 600: 117861. https://doi.org/10.1016/j.epsl.2022.117861 |
| [75] |
Yang, L. R., Song, H. J., Tong, J. N., et al., 2013. The Extinction Pattern of Fusulinids during the Permian‒ Triassic Crisis at the Kangjiaping Section, Cili, Hunan Province. Micropalaeontologica Sinica, 30(4): 353-366 (in Chinese with English abstract). |
| [76] |
Yuan, D. X., Shen, S. Z., 2011. Conodont Succession across the Permian‒Triassic Boundary of the Liangfengya Section, Chongqing, South China. Acta Palaeontologica Sinica, 50(4): 420-438 (in Chinese with English abstract). |
| [77] |
Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2014. Revised Conodont‒Based Integrated High‒Resolution Timescale for the Changhsingian Stage and End‒ Permian Extinction Interval at the Meishan Sections, South China. Lithos, 204: 220-245. https://doi.org/10.1016/j.lithos.2014.03.026 |
| [78] |
Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2019. Integrative Timescale for the Lopingian (Late Permian): A Review and Update from Shangsi, South China. Earth‒Science Reviews, 188: 190-209. https://doi.org/10.1016/j.earscirev.2018.11.002 |
| [79] |
Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End‒Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390 |
| [80] |
Zhang, L. J., Zhang, X., Buatois, L. A., et al., 2020. Periodic Fluctuations of Marine Oxygen Content during the Latest Permian. Global and Planetary Change, 195: 103326. https://doi.org/10.1016/j.gloplacha.2020.103326 |
| [81] |
Zhang, M. H., Gu, S. Z., 2015. Latest Permian Deep‒ Water Foraminifers from Daxiakou, Hubei, South China. Journal of Paleontology, 89(3): 448-464. https://doi.org/10.1017/jpa.2015.19 |
| [82] |
Zhang, Y., He, W. H., Shi, G. R., et al., 2015. A New Changhsingian (Late Permian) Brachiopod Fauna from the Zhongzhai Section (South China) Part 3: Productida. Alcheringa: An Australasian Journal of Palaeontology, 39(3): 295-314. https://doi.org/10.1080/03115518.2015.1001186 |
| [83] |
Zhao, L. S., Chen, Y. L., Chen, Z. Q., et al., 2013. Uppermost Permian to Lower Triassic Conodont Zonation from Three Gorges Area, South China. Palaios, 28(8): 523-540. https://doi.org/10.2110/palo.2012.p12‒107r |
| [84] |
Zhao, T. Y., Algeo, T. J., Feng, Q. L., et al., 2019. Tracing the Provenance of Volcanic Ash in Permian‒Triassic Boundary Strata, South China: Constraints from Inherited and Syn‒Depositional Magmatic Zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 190-202. https://doi.org/10.1016/j.palaeo.2018.12.002 |
| [85] |
Zuchuat, V., Sleveland, A. R. N., Twitchett, R. J., et al., 2020. A New High‒Resolution Stratig11raphic and Palaeoenvironmental Record Spanning the End‒Permian Mass Extinction and Its Aftermath in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 109732. https://doi.org/10.1016/j.palaeo.2020.109732 |
国家自然科学基金项目(42230205)
国家自然科学基金项目(42172012)
国家自然科学基金项目(41772016)
中国地质调查局项目(1212011220529)
中国地质调查局项目(DD20221645)
/
| 〈 |
|
〉 |