晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系

何卫红 ,  吴攸攸 ,  张克信 ,  铃木纪毅 ,  肖异凡 ,  杨廷禄 ,  吴琛 ,  黄亚飞

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 983 -999.

PDF (4896KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 983 -999. DOI: 10.3799/dqkx.2024.140

晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系

作者信息 +

Gradual Collapse of Global Marine Ecosystem in the Late Permian and Its Link to the Anoxia

Author information +
文章历史 +
PDF (5012K)

摘要

一般认为二叠纪末生物大灭绝持续的时间为3~6万年.然而,越来越多的研究显示在生物灭绝高峰期到来之前存在着环境危机预警信号,但相关研究仍然较少.本文聚焦于大灭绝全过程,包括灭绝高峰期到来之前、灭绝高峰期以及大灭绝之后残存期生物与环境的变化,揭示海洋生态系统坍塌的过程.通过对全球30个海相剖面的化石和古环境记录综合研究,结果表明:(1)深水环境(包括远洋环境、深水陆架、深水盆地和台地边缘斜坡)生态系统衰退发生较早,浅水环境(包括浅水碳酸盐台地、礁和浅水陆架)生态系统衰退发生较晚;(2)浮游生态系统的衰退早于底栖生态系统的衰退.全球海洋生态系统衰退的这种时空差异与最小含氧带(OMZ)的形成及扩展,并导致缺氧有关.

Abstract

The duration for the End-Permian mass extinction has been estimated as about 30 to 60 kyr. However, an ever-expanding body of papers has revealed that the evolution of Late Permian ecosystems possibly involved some yet under-studied ‘early warning signals’ prior to the End-Permian mass extinction. The study on the pre-extinction ‘warning signals’ is still limited. In order to understand the process of marine ecosystem collapse specifically the ‘early warning signals’ pointing to the approaching of a global ecosystem regime shift (tipping point), 30 marine Permian-Triassic Boundary sections from different palaeogeographic settings were selected globally to investigate the spatiotemporal biodiversity changes of different taxa and the spatiotemporal redox conditions. The results reveal that: (1) The marine ecosystem collapsed first in deep waters and then in shallow waters (first in offshore pelagic settings, then in moderately deep waters and deep-water basins and shelves and finally in shallow water environments); (2) in the same environments (in deep or moderately deep waters), a similar differential temporal pattern is also apparent in that the planktonic ecosystems were devastated earlier than benthic ecosystems. To account for the spatiotemporal and ecological (taxonomic) differences in extinction timing, we propose that the formation and expansion of an OMZ (oxygen minimum zone) and the related anoxia (or oxygen depletion), were most likely responsible for the differential temporal patterns of marine ecosystem collapses between deep and shallow waters, and between planktonic and benthic communities during the Late Permian.

Graphical abstract

关键词

海洋生态系统坍塌 / 最小含氧带 / 缺氧 / 晚二叠世 / 地层学 / 环境影响.

Key words

collapse of marine ecosystem / oxygen minimum zone / anoxia / Late Permian / stratigraphy / environmental impact

引用本文

引用格式 ▾
何卫红,吴攸攸,张克信,铃木纪毅,肖异凡,杨廷禄,吴琛,黄亚飞. 晚二叠世全球海洋生态系统逐步坍塌与缺氧的可能联系[J]. 地球科学, 2025, 50(03): 983-999 DOI:10.3799/dqkx.2024.140

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

二叠纪末生物大灭绝是显生宙以来最大规模的生物灭绝事件.有关大灭绝模式主要存在两种不同认识,即突然灭绝(sudden extinction或“单幕式”)或者“两幕式”灭绝(two‒pulse extinction)(Jin et al., 2000Shen et al., 2011,2019aSong et al., 2013).不管哪种灭绝模式,均强调大灭绝的时间很短,历经3~6万年,即相当于煤山剖面第25层或者第25至28层(Jin et al., 2000; Shen et al., 2011, 2019a; Song et al., 2013Burgess et al., 2014Fan et al., 2020).然而,如果对不同古地理背景下、不同生态功能、不同生活方式的生物的灭绝规律进行详细分析和总结,可发现深水相腕足类的灭绝早于浅水相(He et al., 2015);栖居于深水水层中的放射虫灭绝早于生活于浅水水层中的放射虫(Feng et al., 2007He et al., 2024);浮游动物或者游泳动物的灭绝可能早于底栖动物(Wang et al., 2023He et al., 2024).这些证据表明二叠纪晚期海洋生态系统坍塌是一个非常复杂的过程.

为了解开“二叠纪‒三叠纪之交生态系统究竟如何演变、如何坍塌?”这一谜团,本文系统、全面收集和分析了全球二叠纪‒三叠纪之交的化石和古环境资料.

1 研究剖面选择以及剖面在长兴期的古水深、古地理背景

本文总共收集到了全球二叠系‒三叠系界线剖面30条(图1),其中10条剖面是研究生物灭绝的代表性剖面(表1).代表性剖面具有如下特征:第一,二叠纪‒三叠纪之交地层序列完整,适合于进行精细地层划分与对比.比如进行过详细的牙形石生物地层工作、碳同位素化学地层或者同位素年代学研究,在此基础上能识别出相当于煤山剖面二叠系‒三叠系界线附近关键界面(二叠系‒三叠系界线,相当于煤山剖面24e、25、26层等).第二,在二叠系‒三叠系界线附近(特别是长兴期)开展过不同生活方式(浮游和底栖)生物多样性变化的研究,如具有放射虫、腕足类或者有孔虫的逐层分布数据.此外,中国华南中寨、慈利、凉风垭、黄芝山、煤山、上寺、仁村坪、克脚和东攀剖面,以及阿曼Site 1、挪威Spitsbergen、意大利Western Dolomites、巴基斯坦Salt Range、中国西藏(Selong和Tulong)、克什米尔地区Guryul Ravine、日本Nf1212以及加拿大北极West Blind Fiord剖面,本文用来研究生物多样性演变和生物灭绝规律,因为在这些剖面已经做过比较详细的古无脊椎动物化石属种的地层分布研究.另外,中国华南赤壁、煤山、上寺、大峡口、马家山、克脚、东攀、沿沟、凉风垭、黄芝山、鱼洞子、老龙洞、打讲、作登、慈利,以及挪威Spitsbergen、意大利Western Dolomites、克什米尔地区Guryul Ravine、阿曼(Site 1、Site 6)、日本Sasayama⁃Kinkazan⁃Tenjinmaru复合剖面和Akkamori剖面和新西兰Island Bay of Waiheke Island剖面,本文用来研究二叠纪‒三叠纪之交是否发生过缺氧事件,因为前人在这些剖面做过氧化‒还原环境的研究(其中有17条剖面作为研究氧化‒还原环境的代表性剖面,见表1).

所有剖面的古地理背景及二叠系顶部的古水深分析见图1表1.由此可见,日本Nf1212、 Sasayama‒Kinkazan‒Tenjinmaru和Akkamori剖面,新西兰Island Bay of Waiheke Island剖面以及加拿大北极West Blind Fiord剖面代表远洋环境,古水深大于500 m(表1).中国华南东攀、克脚、仁村坪、大峡口、马家山剖面位于深水盆地相,古水深均大于200 m(表1).中国华南上寺、赤壁和煤山剖面位于碳酸盐台地边缘斜坡,为中等深水,古水深为50~200 m(表1).中国华南鱼洞子、老龙洞、凉风垭、慈利、黄芝山、沿沟、打讲、作登、中寨剖面均位于碳酸盐台地、礁或者近岸浅水环境,古水深浅于50 m(表1).意大利Western Dolomites、巴基斯坦Salt Range、中国西藏Selong、阿曼Site 1和挪威Spitsbergen均为碳酸盐台地或者浅水陆架,古水深浅于50 m(表1).克什米尔地区Guryul Ravine、中国西藏Tulong和阿曼Site 6均代表深水陆架环境,古水深大于200 m(表1).总之,本文深水环境包括远洋环境、深水陆架、深水盆地和中等深水台地边缘斜坡,浅水环境包括浅水碳酸盐台地、礁和浅水陆架.

2 研究剖面的地层划分与对比

本文对所有剖面进行了详细的地层划分与对比,包括二叠系‒三叠系界线、相当于煤山剖面第24e、25或者26层等.华南研究剖面的地层对比见图2(原始文献见表1,分析见He et al. (2025)的附件材料),其他地区或剖面的地层对比分析见He et al.(2025)的附件材料.

3 不同古地理背景下生物灭绝规律的对比与阶段划分

本文对不同古地理背景下各剖面进行了详细的生物灭绝规律的分析和总结(图3和图4):第一个阶段(I,从吴家坪期到Clarkina yini带下部或者相当于煤山剖面第23层顶部对应时期),从穿越远洋、深水盆地、深水陆架至中等深水斜坡的深水环境,生物衰退开始于吴家坪期(远洋环境中,浮游生物放射虫Albaillellaria目的属级灭绝率为53%)(图4);长兴早期也发生过小规模灭绝(远洋环境中,放射虫Albaillellaria目的属级灭绝率为19%)(图4);长兴晚期(对应于Clarkina changxingensis带中部),发生区域性灭绝(在斜坡环境,浮游生物放射虫的多样性明显下降或者灭绝)(图4);到长兴期更晚期(对应于Clarkina yini带下部),放射虫在斜坡环境继续灭绝,并且Albaillellaria目的灭绝出现在盆地相(如华南仁村坪),远洋环境中的底栖动物硅质海绵发生灭绝,在克什米尔地区Guryul Ravine、中国西藏土隆深水陆架环境,底栖动物腕足类也发生灭绝(图4).以上为生态系统衰退的第一个阶段.总体上,主要是浮游生物放射虫在深水环境发生局部灭绝(中等深水斜坡的灭绝比较普遍),后期,少数地区的底栖动物发生灭绝(图4).第二个阶段(II,对应于Clarkina yini带上部或者相当于煤山剖面24a至24d),从远洋环境到深水盆地和陆架,放射虫普遍发生灭绝;随后(对应于Clarkina yini

带顶部或者煤山剖面24d),在深水盆地、陆架和中等深水下斜坡环境,底栖动物也普遍发生灭绝;甚至,浅水台地(如凉风垭剖面)的底栖动物有孔虫也开始发生灭绝(图4).第三个阶段(III,对应于Clarkina meishanensis带或者煤山剖面第24e至25层),深水环境中,浮游生物放射虫和底栖动物继续发生灭绝;浅水环境中,底栖动物普遍发生灭绝(图4).第四个阶段(Stage IV,对应于Clarkina zhejiangensis‒Hindeodus changxingensis带至Isarcicella isarcica带,或者煤山剖面第26至28层或者至更高层位),残存的浮游生物放射虫在远洋环境发生灭绝;残存的底栖动物在深水环境(克什米尔地区Guryul Ravine、中国西藏土隆、华南克脚、煤山剖面)和浅水环境(中国华南黄芝山、意大利Western Dolomites、巴基斯坦Salt Range、阿曼Site 1)陆续发生灭绝,并且,这些底栖动物的灭绝不具有等时性(图4).海洋生态系统经历了从衰退到倒塌四个阶段的演变,仍有极少数地区早三叠世地层中可能残留有古生代放射虫(如挪威Spitsbergen、新西兰Arrow Rocks、日本西南部和泰国北部;Sashida et al., 1998;Spörli et al., 2007;Foster et al., 2023).但是,这些还需要进一步证实,因为挪威的放射虫是从结核Concretions中提取出来的,有可能是再沉积的化石.新西兰和日本的放射虫产于中生代增生楔构造岩片中,除非在岩片中能发现共生的三叠纪牙形石,才能证明该化石产出于三叠纪地层(笔者在造山带做过放射虫生物地层研究,发现由于洋壳俯冲增生,相邻地层的时代和层序往往具有不可预测性).

根据灭绝所影响的古地理范围和灭绝率的变化过程,本文将前两个阶段(Stage I和Stage II)称为二叠纪末大灭绝的序幕(prelude),第三个阶段(Stage III)影响的古地理范围最广,称为大灭绝高峰期(zenith),第四个阶段(Stage IV)是残存分子的不等时灭绝,称为尾幕(epilogue)(图5).

4 全球海洋生物灭绝规律与生态系统坍塌

如上所述,深水相灭绝开始于吴家坪期,延续至二叠系‒三叠系界线之上;浅水相的灭绝开始于Clarkina yini带顶部,同样延续至二叠系‒三叠系界线之上(图5).深水环境中的主体灭绝(major extinctions)分为两幕,第一幕(1st ME)发生于Clarkina changxingensis带中部,限于中等深水斜坡环境;第二幕(2nd ME)发生在Clarkina yini带上部至Clarkina meishanensis带(对应于煤山第24a至25层)(图5).第二幕灭绝影响的古地理范围更大,古地理环境更广,从远洋到深水盆地、深水陆架和中等深水斜坡(图5).本文将深水相第二幕命名为该环境生物灭绝的顶峰期(peak of extinctions).相比之下,浅水生物灭绝的顶峰期出现较晚,发生在Clarkina meishanensis带(ME,煤山第24e至25层)(图4图5).总之,深水相生物灭绝开始(onset)和顶峰期(peak)均比浅水灭绝的开始和顶峰期要早.

将不同生活方式的生物灭绝进行总结,有如下规律:在中等深水斜坡环境,放射虫的灭绝开始于Clarkina changxingensis带,延续至Clarkina yini带底部;底栖动物的灭绝开始于Clarkina yini带上部,并延续至二叠系‒三叠系界线之上(图4图5).在更深水环境,放射虫的灭绝开始于吴家坪期,在Clarkina yini带上部达到顶峰;底栖动物的灭绝开始于Clarkina yini带底部,到Clarkina yini带顶部达到顶峰(图4图5).因此,不管是在中等深水还是更深水环境,浮游动物放射虫的灭绝早于底栖动物灭绝(图4图5).

因此,笔者认为海洋生态系统的坍塌开始于深水,然后扩展到中等深水和浅水环境(图4图5).另外,放射虫栖居于深水至海洋表层,特别是Albaillellaria目栖居于200 m以下的水体中(He et al., 2011,2024).因此,浮游动物放射虫的灭绝早于底栖动物,表明水层中浮游生态系统的坍塌早于底栖生态系统(图5).并且,深水底栖生态系统的坍塌又要早于浅水底栖生态系统(图5).

5 讨论

5.1 OMZ的形成、扩展导致缺氧的发展和海洋生态系统逐步坍塌

有关现代大洋最小含氧带研究表明:在大洋水深为200~1 000 m的环境中,由于厌氧细菌降解有机质消耗掉氧气,并且氧气没有得到及时补充,则易于形成最小含氧带oxygen minimum zone(OMZ)(李学刚等, 2017).OMZ在结构上被划分为上层(上部氧跃层,氧气含量从正常急剧减少)、中层(核心层,氧含量最低)和下层(下部氧跃层,氧气含量从最低逐渐恢复)(李学刚等, 2017).因此,OMZ的形成导致中层水体缺氧;OMZ向下扩展将导致海底或者更深水缺氧;OMZ向上扩展将导致浅水甚至表层缺氧.

以上分析表明,晚二叠世生态系统坍塌从深水扩展到浅水,从水层扩展到海底.海洋生态系统坍塌的这种时空差异很难用单一因素或者几种因素简单解释,根据上述现代大洋OMZ氧气含量的分带性,最大可能性与最小含氧带的形成并随时间发生扩展有关.本文采用这一更为合理的假说解释海洋生态系统逐步坍塌的过程:最小含氧带(OMZ)在深水(包括远洋)形成,位于OMZ的核心带(core zone)缺氧,导致栖居于深水水层的浮游动物放射虫发生衰退或者灭绝(图6a);随着海洋缺氧程度增强,最小含氧带OMZ加厚,导致缺氧环境先后向海底(图6b)和浅水扩展(图6c),最终导致深水和浅水环境中的底栖生态系统彻底倒塌.这个过程的后期阶段还叠加了其他因素对生态系统的影响,比如全球变暖(Joachimski et al., 2012Song et al., 2019)、毒化(Shen et al., 2019b).

支持该假说的其他证据如下.二叠纪‒三叠纪之交不同古水深背景下氧化‒环境演变与生物灭绝之间的关系研究表明,在深水环境中,晚二叠世缺氧虽然是波动的,但生物灭绝均发生在海洋缺氧过程中;相反,在浅水环境中,生物灭绝很少发生在缺氧过程中.由此可见,晚二叠世深水海洋生态系统的确受到了最小含氧带的形成、扩展以及与之相关的海洋缺氧的影响;后期阶段,最小含氧带可能向浅水局部扩展,因此对浅水生态系统产生了有限的影响(He et al., 2025).

除此之外,元素地球化学和同位素地球化学研究均支持这一假说.Algeo et al. (2011)对日本远洋二叠纪‒三叠纪之交微量元素和硫同位素的研究表明,在水深为500~1 000 m的水体中,为滞流环境(euxinic),1 000 m以下为氧化至厌氧环境(oxic‒ suboxic),这种现象被解释为最小含氧带在泛大洋中层水体形成的结果.前人对华南古特提斯长兴晚期至三叠纪早期的地层进行同位素地球化学研究表明,存在碳、氮等同位素古水深梯度,表明长兴晚期在古特提斯洋的中层水体发育最小含氧带,到二叠纪末至三叠纪早期,最小含氧带向浅水扩展(Song et al., 2014Fang et al., 2021Wu et al., 2022).

5.2 二叠纪‒三叠纪之交火山作用导致长期环境扰动的古生态效应及其对现代生态系统健康发展的启示

最小含氧带的形成、扩展以及海洋缺氧与岩浆作用所产生的一系列生态环境效应有关.岩浆作用具有多源性,如中国华南古特提斯洋俯冲而广泛发育的弧火山作用(Wang et al., 2019Zhao et al., 2019Zhang et al., 2021He et al., 2023)、澳大利亚悉尼盆地以东古洋俯冲而产生的弧火山作用(Fielding et al., 2019)、中国西藏新特提斯南缘古洋壳俯冲形成的火山作用(Chen et al., 2024)、俄罗斯西伯利亚大火山岩省(Burgess et al., 2017Davydov et al., 2021)等,甚至还包括中二叠世晚期峨眉山玄武岩(He et al., 2007).另外,岩浆作用具有长期性,至少从晚二叠世延续至早三叠世,与海洋缺氧的时间基本吻合(He et al., 2025).岩浆作用(特别是弧火山脱气作用)导致富营养化和海洋缺氧,并导致全球变暖;全球变暖加剧海洋缺氧.海洋缺氧促使深水环境形成最小含氧带.随着火山作用长期积累,并在二叠纪‒三叠纪之交达到顶峰,最小含氧带进一步向深水和浅水扩展,最终导致了全球海洋生态系统的崩溃.

除此之外,最小含氧带的形成、扩展以及海洋缺氧可能还与陆地生态系统长期衰退、古植被退化、土壤侵蚀有一定联系.尽管华南陆相古植物灭绝相对海相生物灭绝较晚(Wu et al., 2024),但是世界上不少其他地区陆相植物灭绝的发生较早,并且是一个长期的过程.比如,我国华北从早二叠世(上石盒子组和孙家沟组之交)出现75%属级灭绝率和90%以上的种级灭绝率(数据参考Xiong et al.(2021); 地质时代根据Wu et al.( 2021));南非古植物灭绝分为两个阶段,即长兴早期种级灭绝率为60%,二叠系‒三叠系界线之下种级灭绝率为40%(数据参考Retallack(2021));另外,在俄罗斯西伯利亚(Davydov et al., 2021)和澳大利亚悉尼盆地(Fielding et al., 2019Vajda et al. 2020; Mays et al., 2020),陆相古植物的灭绝开始于长兴晚期,明显早于海相生物大灭绝主幕.

另外,在最小含氧带存在微生物反硝化作用和厌氧氨氧化作用.因此,最小含氧带的扩张导致温室气体N2O和CO2的释放(李学刚等, 2017),进而导致全球变暖;全球变暖加剧海洋分层和最小含氧带的扩张以及缺氧,形成负反馈循环过程.

二叠纪末,长期的环境扰动导致生态系统越来越不稳定,最后倒塌.该过程与现代全球变暖、OMZ扩张、极端环境频发具有相似之处,如OMZ的强度近年来一直在增强(李学刚等, 2017)、海洋富营养化与赤潮爆发、极端天气出现等.以古示今,长期的环境恶化和生态系统持续局部破坏将导致生态系统崩塌和不可逆转,对当今宜居地球生态系统健康发展将带来重大挑战.

参考文献

[1]

Algeo, T. J., Hannigan, R., Rowe, H., et al., 2007. Sequencing Events across the Permian‒Triassic Boundary, Guryul Ravine (Kashmir, India). Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 328-346. https://doi.org/10.1016/j.palaeo.2006.11.050

[2]

Algeo, T. J., Henderson, C. M., Ellwood, B., et al., 2012. Evidence for a Diachronous Late Permian Marine Crisis from the Canadian Arctic Region. Geological Society of America Bulletin, 124(9-10): 1424-1448. https://doi.org/10.1130/B30505.1

[3]

Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian‒Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007

[4]

Baresel, B., Bucher, H., Bagherpour, B., et al., 2017. Timing of Global Regression and Microbial Bloom Linked with the Permian‒Triassic Boundary Mass Extinction: Implications for Driving Mechanisms. Scientific Reports, 7: 43630. https://doi.org/10.1038/srep43630

[5]

Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High‒Precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9): 3316-3321. https://doi.org/10.1073/pnas.1317692111

[6]

Burgess, S. D., Muirhead, J. D., Bowring, S. A., 2017. Initial Pulse of Siberian Traps Sills as the Trigger of the End‒Permian Mass Extinction. Nature Communications, 8: 164. https://doi.org/10.1038/s41467‒017‒00083‒9

[7]

Chen, J. B., Zhou, Y. L., Liu, W. J., et al., 2024. Spatiotemporal Disparity of Volcanogenic Mercury Records in the Southwestern Neo‒Tethys Ocean during the Permian‒Triassic Transition. Global and Planetary Change, 240: 104534. https://doi.org/10.1016/j.gloplacha.2024.104534

[8]

Chen, J., Henderson, C. M., Shen, S. Z., 2008. Conodont Succession around the Permian‒Triassic Boundary at the Huangzhishan Section, Zhejiang and Its Stratigraphic Correlation. Acta Palaeontologica Sinica, 47(1): 91-114 (in English with Chinese abstract).

[9]

Chen, Z. Q., Tong, J. N., Zhang, K. X., et al., 2009. Environmental and Biotic Turnover across the Permian‒Triassic Boundary on a Shallow Carbonate Platform in Western Zhejiang, South China. Australian Journal of Earth Sciences, 56(6): 775-797. https://doi.org/10.1080/08120090903002607

[10]

Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End‒Permian Mass Extinction and Recovery. Nature Communications, 7: 12236. https://doi.org/10.1038/ncomms12236

[11]

Davydov, V. I., Karasev, E. V., Nurgalieva, N. G., et al., 2021. Climate and Biotic Evolution during the Permian‒Triassic Transition in the Temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110432. https://doi.org/10.1016/j.palaeo.2021.110432

[12]

Fan, J. X., Shen, S. Z., Erwin, D. H., et al., 2020. A High‒Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953

[13]

Fang, Y. H., 2021. Late Permian to Early Triassic Redox Variations of South China and Unusual Biosedimentary Responses (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[14]

Fang, Z. Y., He, X. Q., Zhang, G. J., et al., 2021. Ocean Redox Changes from the Latest Permian to Early Triassic Recorded by Chromium Isotopes. Earth and Planetary Science Letters, 570: 117050. https://doi.org/10.1016/j.epsl.2021.117050

[15]

Feng, Q. L., He, W. H., Gu, S. Z., et al., 2007. Radiolarian Evolution during the Latest Permian in South China. Global and Planetary Change, 55(1-3): 177-192. https://doi.org/10.1016/j.gloplacha.2006.06.012

[16]

Fielding, C. R., Frank, T. D., McLoughlin, S., et al., 2019. Age and Pattern of the Southern High‒Latitude Continental End‒Permian Extinction Constrained by Multiproxy Analysis. Nature Communications, 10: 385. https://doi.org/10.1038/s41467‒018‒07934‒z

[17]

Grasby, S. E., Bond, D. P. G., Wignall, P. B., et al., 2021. Transient Permian‒Triassic Euxinia in the Southern Panthalassa Deep Ocean. Geology, 49 (8): 889-893. https://doi.org/10.1130/g48928.1

[18]

He, B., Xu, Y. G., Huang, X. L., et al., 2007. Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U‒Pb Dating of Silicic Ignimbrites, Post‒Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255(3-4): 306-323. https://doi.org/10.1016/j.epsl.2006.12.021

[19]

He, W. H., Feng, Q. L., Gu, S. Z., et al., 2005. Changxingian (Upper Permian) Radiolarian Fauna from Meishan D Section, Changxing, Zhejiang, China, and Its Possible Paleoecological Significance. Journal of Paleontology, 79(2): 209-218. https://doi.org/10.1666/0022‒3360(2005)0790209: cuprff>2.0.co;2

[20]

He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123-138. https://doi.org/10.1111/gbi.12119

[21]

He, W. H., Shi, G. R., Yu, J. X., et al., 2023. Stratigraphy around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒99‒9350‒5

[22]

He, W. H., Shi, G. R., Zhang, K. X., et al., 2019. Brachiopods around the Permian‒Triassic Boundary of South China. Springer, Singapore. https://doi.org/10.1007/978‒981‒13‒1041‒6

[23]

He, W. H., Shi, G. R., Zhang, K. X., et al., 2025. The Deterioration and Collapse of Late Permian Marine Ecosystems and the End‒Permian Mass Extinction: A Global View. Earth‒Science Reviews, 261: 104971. https://doi.org/10.1016/j.earscirev.2024.104971

[24]

He, W. H., Weldon, E. A., Yang, T. L., et al., 2024. An End‒Permian Two‒Stage Extinction Pattern in the Deep‒Water Dongpan Section, and Its Relationship to the Migration and Vertical Expansion of the Oxygen Minimum Zone in the South China Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 649: 112307. https://doi.org/10.1016/j.palaeo.2024.112307

[25]

He, W. H., Zhang, Y., Zhang, Q., et al., 2011. A Latest Permian Radiolarian Fauna from Hushan, South China, and Its Geological Implications. Alcheringa: An Australasian Journal of Palaeontology, 35(4): 471-496. https://doi.org/10.1080/03115518.2010.536649

[26]

Huang, Y. F., He, W. H., Liao, W., et al., 2022. Two Pulses of Increasing Terrestrial Input to Marine Environment during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 586: 110753. https://doi.org/10.1016/j.palaeo.2021.110753

[27]

Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian‒Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End‒Permian Mass Extinction. Journal of Earth Science, 25(3): 413-430. https://doi.org/10.1007/s12583‒014‒0444‒4

[28]

Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian‒Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432

[29]

Joachimski, M. M., Lai, X. L., Shen, S. Z., et al., 2012. Climate Warming in the Latest Permian and the Permian‒Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1

[30]

Kajiwara, Y., Ishida, K., Tanikura, Y., et al., 1993a. Sulfur Isotope Data from the Permian‒Triassic Boundary at Sasayama in the Tanba Terrane in Southwestern Honshu, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 67-72.

[31]

Kajiwara, Y., Yamakita, S., Kobayashi, D., et al., 1993b. Sulfur Isotope Data from the Permian‒Triassic Boundary at Tenjinmaru in the Chichibu Terrane in Eastern Shikoku, Japan. Annual Report of the Institute of Geoscience, the University of Tsukuba, 19: 59-66.

[32]

Kato, Y., Nakao, K., Isozaki, Y., 2002. Geochemistry of Late Permian to Early Triassic Pelagic Cherts from Southwest Japan: Implications for an Oceanic Redox Change. Chemical Geology, 182(1): 15-34. https://doi.org/10.1016/S0009‒2541(01)00273‒X

[33]

Li, G. S., 2016. Fluctuations of Redox Conditions and Ecological Responses across the Permian‒Triassic Boundary in Different Paleogeographic Settings of Middle & Lower Yangtze Region (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[34]

Li, G. S., Wang, Y. B., Shi, G. R., et al., 2016. Fluctuations of Redox Conditions across the Permian‒Triassic Boundary—New Evidence from the GSSP Section in Meishan of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 48-58. https://doi.org/10.1016/j.palaeo.2015.09.050

[35]

Li, X. G., Song, J. M., Yuan, H. M., et al., 2017. The Oxygen Minimum Zones (OMZs) and Its Eco‒Environmental Effects in Ocean. Marine Sciences, 41(12): 127-138 (in Chinese with English abstract).

[36]

Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian‒Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035

[37]

Liao, W., 2020. Palaeoenvironment Change in Shallow‒ Marine Carbonate Platform across the Permian‒Triassic Boundary in South China and Its Possible Cause (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[38]

Liao, W., Bond, D. P. G., Wang, Y. B., et al., 2017. An Extensive Anoxic Event in the Triassic of the South China Block: A Pyrite Framboid Study from Dajiang and Its Implications for the Cause(s) of Oxygen Depletion. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 86-95. https://doi.org/10.1016/j.palaeo.2016.11.012

[39]

Liu, X. K., Song, H. J., Bond, D. P. G., et al., 2020. Migration Controls Extinction and Survival Patterns of Foraminifers during the Permian‒Triassic Crisis in South China. Earth‒Science Reviews, 209: 103329. https://doi.org/10.1016/j.earscirev.2020.103329

[40]

Mays, C., Vajda, V., Frank, T. D., et al., 2020. Refined Permian‒Triassic Floristic Timeline Reveals Early Collapse and Delayed Recovery of South Polar Terrestrial Ecosystems. GSA Bulletin, 132(7-8): 1489-1513. https://doi.org/10.1130/b35355.1

[41]

Nabbefeld, B., Grice, K., Twitchett, R. J., et al., 2010. An Integrated Biomarker, Isotopic and Palaeoenvironmental Study through the Late Permian Event at Lusitaniadalen, Spitsbergen. Earth and Planetary Science Letters, 291(1-4): 84-96. https://doi.org/10.1016/j.epsl.2009.12.053

[42]

Nie, X. M., Lei, Y., Feng, Q. L., et al., 2012. Evolution and Its Control Factors of the Changhsingian Radiolarian Fauna at the Shangsi Section in Jiange County, Guangyuan City, Sichuan Province. Geological Review, 58(5): 809-815 (in English with Chinese abstract).

[43]

Posenato, R., 2009. Survival Patterns of Macrobenthic Marine Assemblages during the End‒Permian Mass Extinction in the Western Tethys (Dolomites, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 280(1-2): 150-167. https://doi.org/10.1016/j.palaeo.2009.06.009

[44]

Posenato, R., 2019. The End‒Permian Mass Extinction (EPME) and the Early Triassic Biotic Recovery in the Western Dolomites (Italy): State of the Art. Bollettino Della Società Paleontologica Italiana, 58(1): 11-34.

[45]

Qiu, X. C., Tian, L., Wu, K., et al., 2019. Diverse Earliest Triassic Ostracod Fauna of the Non‒Microbialite‒ Bearing Shallow Marine Carbonates of the Yangou Section, South China. Lethaia, 52(4): 583-596. https://doi.org/10.1111/let.12332

[46]

Retallack, G. J., 2021. Multiple Permian‒Triassic Life Crises on Land and at Sea. Global and Planetary Change, 198: 103415. https://doi.org/10.1016/j.gloplacha.2020.103415

[47]

Rodríguez‒Tovar, F. J., Dorador, J., Zuchuat, V., et al., 2021. Response of Macrobenthic Trace Maker Community to the End‒Permian Mass Extinction in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 581: 110637. https://doi.org/10.1016/j.palaeo.2021.110637

[48]

Sano, H., Kuwahara, K., Yao, A., et al., 2010. Panthalassan Seamount‒Associated Permian‒Triassic Boundary Siliceous Rocks, Mino Terrane, Central Japan. Paleontological Research, 14(4): 293-314. https://doi.org/10.2517/1342‒8144‒14.4.293

[49]

Sano, H., Wada, T., Naraoka, H., 2012. Late Permian to Early Triassic Environmental Changes in the Panthalassic Ocean: Record from the Seamount‒Associated Deep‒Marine Siliceous Rocks, Central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 363: 1-10. https://doi.org/10.1016/j.palaeo.2012.07.018

[50]

Sashida, K., Sardsud, A., Igo, H., et al., 1998. Occurrence of Dienerian (Lower Triassic) Radiolarians from the Phatthalung Area of Peninsular Thailand and Radiolarian Biostratigraphy around the Permian/Triassic (P/T) Boundary. News of Osaka Micropaleontologists, 11: 59-70.

[51]

Shen, J., Algeo, T. J., Zhou, L., et al., 2012. Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 10(1): 82-103. https://doi.org/10.1111/j.1472‒4669.2011.00306.x

[52]

Shen, J., Chen, J. B., Algeo, T. J., et al., 2019b. Evidence for a Prolonged Permian‒Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10: 1563. https://doi.org/10.1038/s41467‒ 019‒09620‒0

[53]

Shen, J., Feng, Q. L., Algeo, T. J., et al., 2016. Two Pulses of Oceanic Environmental Disturbance during the Permian‒Triassic Boundary Crisis. Earth and Planetary Science Letters, 443: 139-152. https://doi.org/10.1016/j.epsl.2016.03.030

[54]

Shen, S. Z., Cao, C. Q., Henderson, C. M., et al., 2006. End‒Permian Mass Extinction Pattern in the Northern Peri‒Gondwanan Region. Palaeoworld, 15(1): 3-30. https://doi.org/10.1016/j.palwor.2006.03.005

[55]

Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End‒Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454

[56]

Shen, S. Z., He, X. L., 1991. Changxingian Brachiopod Assemblage Sequence in Zhongliang Hill, Chongqing. Journal of Stratigraphy, 15(3): 189-196 (in Chinese).

[57]

Shen, S. Z., Ramezani, J., Chen, J., et al., 2019a. A Sudden End‒Permian Mass Extinction in South China. GSA Bulletin, 131(1-2): 205-223. https://doi.org/10.1130/b31909.1

[58]

Song, H. J., Tong, J. N., Chen, Z. Q., 2009. Two Episodes of Foraminiferal Extinction near the Permian‒Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 56(6): 765-773. https://doi.org/10.1080/08120090903002599

[59]

Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583‒018‒1002‒2

[60]

Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian‒Triassic Crisis. Nature Geoscience, 6(1): 52-56. https://doi.org/10.1038/ngeo1649

[61]

Song, H. Y., Tong, J. N., Tian, L., et al., 2014. Paleo‒Redox Conditions across the Permian‒Triassic Boundary in Shallow Carbonate Platform of the Nanpanjiang Basin, South China. Science China Earth Sciences, 57(5): 1030-1038. https://doi.org/10.1007/s11430‒014‒4843‒2

[62]

Takahashi, S., Hori, R. S., Yamakita, S., et al., 2021. Progressive Development of Ocean Anoxia in the End‒Permian Pelagic Panthalassa. Global and Planetary Change, 207: 103650. https://doi.org/10.1016/j.gloplacha.2021.103650

[63]

Tian, L., Tong, J. N., Song, H. J., et al., 2014. Foraminferal Evolution and Formation of Oolitic Limestone near Permian‒Triassic Boundary at Yangou Section, Jiangxi Province. Earth Science, 39(11): 1573-1586 (in Chinese with English abstract).

[64]

Vajda, V., McLoughlin, S., Mays, C., et al., 2020. End‒Permian (252 Mya) Deforestation, Wildfires and Flooding: An Ancient Biotic Crisis with Lessons for the Present. Earth and Planetary Science Letters, 529: 115875. https://doi.org/10.1016/j.epsl.2019.115875

[65]

Wan, J. Y., Yuan, A. H., Crasquin, S., et al., 2019. High‒Resolution Variation in Ostracod Assemblages from Microbialites near the Permian‒Triassic Boundary at Zuodeng, Guangxi Region, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 535: 109349. https://doi.org/10.1016/j.palaeo.2019.109349

[66]

Wang, H., He, W. H., Xiao, Y. F., et al., 2023. Stagewise Collapse of Biotic Communities and Its Relations to Oxygen Depletion along the North Margin of Nanpanjiang Basin during the Permian‒Triassic Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 621: 111569. https://doi.org/10.1016/j.palaeo.2023.111569

[67]

Wang, Q. X., Tong, J. N., Song, H. J., et al., 2009. Ecosystem Evolution at the Turn of Permian‒Triassic in Kangjiaping Section of Cili, Hunan Province. Science in China (Series D), 39(9): 1239-1247 (in Chinese with English abstract).

[68]

Wang, X. D., Cawood, P. A., Zhao, L. S., et al., 2019. Convergent Continental Margin Volcanic Source for Ash Beds at the Permian‒Triassic Boundary, South China: Constraints from Trace Elements and Hf‒Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 154-165. https://doi.org/10.1016/j.palaeo.2018.02.011

[69]

Wu, B. J., Luo, G. M., Joachimski, M. M., et al., 2022. Carbon and Nitrogen Isotope Evidence for Widespread Presence of Anoxic Intermediate Waters before and during the Permian‒Triassic Mass Extinction. Geological Society of America Bulletin, 134(5-6): 1397-1413. https://doi.org/10.1130/B36005.1

[70]

Wu, Q., Ramezani, J., Zhang, H., et al., 2021. High‒Precision U‒Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677-681. https://doi.org/10.1130/g48051.1

[71]

Wu, Q., Zhang, H., Ramezani, J., et al., 2024. The Terrestrial End‒Permian Mass Extinction in the Paleotropics Postdates the Marine Extinction. Science Advances, 10(5): eadi7284. https://doi.org/10.1126/sciadv.adi7284

[72]

Xiao, Y. F., Wang, K. Y., He, W. H., et al., 2024. Changhsingian (Lopingian, Permian) Radiolarian Paleobiogeography on and around the Yangtze Platform. Palaeoworld, 33(5): 1409-1424. https://doi.org/10.1016/j.palwor.2022.07.001

[73]

Xiong, C. H., Wang, J. S., Huang, P., et al., 2021. Plant Resilience and Extinctions through the Permian to Middle Triassic on the North China Block: A Multilevel Diversity Analysis of Macrofossil Records. Earth‒Science Reviews, 223: 103846. https://doi.org/10.1016/j.earscirev.2021.103846

[74]

Yang, F., Sun, Y. D., Frings, P. J., et al., 2022. Collapse of Late Permian Chert Factories in the Equatorial Tethys and the Nature of the Early Triassic Chert Gap. Earth and Planetary Science Letters, 600: 117861. https://doi.org/10.1016/j.epsl.2022.117861

[75]

Yang, L. R., Song, H. J., Tong, J. N., et al., 2013. The Extinction Pattern of Fusulinids during the Permian‒ Triassic Crisis at the Kangjiaping Section, Cili, Hunan Province. Micropalaeontologica Sinica, 30(4): 353-366 (in Chinese with English abstract).

[76]

Yuan, D. X., Shen, S. Z., 2011. Conodont Succession across the Permian‒Triassic Boundary of the Liangfengya Section, Chongqing, South China. Acta Palaeontologica Sinica, 50(4): 420-438 (in Chinese with English abstract).

[77]

Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2014. Revised Conodont‒Based Integrated High‒Resolution Timescale for the Changhsingian Stage and End‒ Permian Extinction Interval at the Meishan Sections, South China. Lithos, 204: 220-245. https://doi.org/10.1016/j.lithos.2014.03.026

[78]

Yuan, D. X., Shen, S. Z., Henderson, C. M., et al., 2019. Integrative Timescale for the Lopingian (Late Permian): A Review and Update from Shangsi, South China. Earth‒Science Reviews, 188: 190-209. https://doi.org/10.1016/j.earscirev.2018.11.002

[79]

Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End‒Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390

[80]

Zhang, L. J., Zhang, X., Buatois, L. A., et al., 2020. Periodic Fluctuations of Marine Oxygen Content during the Latest Permian. Global and Planetary Change, 195: 103326. https://doi.org/10.1016/j.gloplacha.2020.103326

[81]

Zhang, M. H., Gu, S. Z., 2015. Latest Permian Deep‒ Water Foraminifers from Daxiakou, Hubei, South China. Journal of Paleontology, 89(3): 448-464. https://doi.org/10.1017/jpa.2015.19

[82]

Zhang, Y., He, W. H., Shi, G. R., et al., 2015. A New Changhsingian (Late Permian) Brachiopod Fauna from the Zhongzhai Section (South China) Part 3: Productida. Alcheringa: An Australasian Journal of Palaeontology, 39(3): 295-314. https://doi.org/10.1080/03115518.2015.1001186

[83]

Zhao, L. S., Chen, Y. L., Chen, Z. Q., et al., 2013. Uppermost Permian to Lower Triassic Conodont Zonation from Three Gorges Area, South China. Palaios, 28(8): 523-540. https://doi.org/10.2110/palo.2012.p12‒107r

[84]

Zhao, T. Y., Algeo, T. J., Feng, Q. L., et al., 2019. Tracing the Provenance of Volcanic Ash in Permian‒Triassic Boundary Strata, South China: Constraints from Inherited and Syn‒Depositional Magmatic Zircons. Palaeogeography, Palaeoclimatology, Palaeoecology, 516: 190-202. https://doi.org/10.1016/j.palaeo.2018.12.002

[85]

Zuchuat, V., Sleveland, A. R. N., Twitchett, R. J., et al., 2020. A New High‒Resolution Stratig11raphic and Palaeoenvironmental Record Spanning the End‒Permian Mass Extinction and Its Aftermath in Central Spitsbergen, Svalbard. Palaeogeography, Palaeoclimatology, Palaeoecology, 554: 109732. https://doi.org/10.1016/j.palaeo.2020.109732

基金资助

国家自然科学基金项目(42230205)

国家自然科学基金项目(42172012)

国家自然科学基金项目(41772016)

中国地质调查局项目(1212011220529)

中国地质调查局项目(DD20221645)

AI Summary AI Mindmap
PDF (4896KB)

59

访问

0

被引

详细

导航
相关文章

AI思维导图

/