新元古代成冰纪雪球地球与化学风化作用
Chemical Weathering during the Neoproterozoic Snowball Earth Events
,
新元古代成冰纪(约720~635 Ma)发生了两次全球范围的雪球地球事件(斯图特冰期和马里诺冰期),是地球生命系统和环境演化的重要转折期.越来越多的证据显示雪球地球时期的气候和海洋氧化还原状态存在显著的时空波动,然而这一特征背后的碳循环‒海陆系统交互以及冰期气候波动的驱动机制还很不清楚.作为链接雪球地球发育、海洋化学和生物演化最为关键过程之一的大陆风化作用目前仍旧没有被有效刻画是其中的一个重要原因.本文综述了现有风化指标及其在成冰纪化学风化强度方面的研究现状,在此基础上,统计了全球28个成冰纪剖面(含钻孔)867件碎屑岩样品的主量元素数据,利用ln(Al2O3/Na2O)这一高效风化指标定量重建了从拉伸纪晚期到埃迪卡拉纪早期全球平均化学风化强度的演化趋势,发现了多次化学风化的强弱波动,表明冰期的启动和结束均与化学风化作用息息相关.此外,马里诺冰期的平均风化强度显著高于斯图特冰期,可能暗示马里诺冰期存在一定程度的水循环.未来的研究应进一步推动多指标的综合应用,以加深对成冰纪化学风化机制的理解,为全球环境演化的探索提供更多深入的视角和证据支持.
Two global-scale Snowball Earth events occurred during the Cryogenian period of the Neoproterozoic era (ca. 720‒ 635 Ma), representing a crucial transition period for the Earth’s biological systems and environmental evolution. An increasing amount of evidence indicates that there are spatio-temporal fluctuations in the climate and marine redox state during the Snowball glaciation. However, the driving mechanisms of the carbon cycle-land-ocean system interaction and glacial climate fluctuations during this period remain largely unclear. Continental weathering is a key process linking snowball development, ocean chemistry, and biological evolution, but existing research has been unable to effectively characterize continental weathering during the Snowball period. This paper summarizes the current status of proxies for chemical weathering intensity during the Cryogenian period, and statistically analyzes the major-element data of 867 clastic rock samples from 28 Cryogenian sections (including drill cores) worldwide. Using the index of ln(Al2O3/Na2O), the evolutionary trend of the global average chemical weathering intensity from the Late Tonian period to the Early Ediacaran period is quantitatively reconstructed. Three fluctuations in chemical weathering intensity are discovered, indicating that the onset and termination of glaciation are closely related to chemical weathering. In addition, the average weathering intensity during the Marinoan glaciation is significantly higher than that during the Sturtian glaciation, possibly suggesting the existence of a certain degree of hydrological circulation during the Marinoan glaciation. Future research can further apply the comprehensive application of multiple proxies to deepen the understanding of the chemical weathering mechanisms during the Cryogenian period, and provide more in-depth perspectives and evidence to support the exploration of global environmental evolution.
新元古代 / 成冰纪 / 化学风化指标 / 雪球地球 / 碳循环 / 气候变化.
Neoproterozoic / Cryogenian / chemical weathering intensity / Snowball Earth / carbon cycle / climate change
| [1] |
Algeo, T. J., Hong, H. L., Wang, C. W., 2025. The Chemical Index of Alteration (CIA) and Interpretation of ACNK Diagrams. Chemical Geology, 671: 122474. https://doi.org/10.1016/j.chemgeo.2024.122474 |
| [2] |
Allen, P. A., Etienne, J. L., 2008. Sedimentary Challenge to Snowball Earth. Nature Geoscience, 1: 817-825. https://doi.org/10.1038/ngeo355 |
| [3] |
Bahlburg, H.,Dobrzinski, N., 2011. A Review of the Chemical Index of Alteration (CIA) and Its Application to the Study of Neoproterozoic Glacial Deposits and Climate Transitions. Geological Society, London, Memoirs, 36: 81-92. https://doi.org/10.1144/m36.6 |
| [4] |
Benn, D. I., Le Hir, G., Bao, H. M., et al., 2015. Orbitally Forced Ice Sheet Fluctuations during the Marinoan Snowball Earth Glaciation. Nature Geoscience, 8: 704-707. https://doi.org/10.1038/ngeo2502 |
| [5] |
Berner, R. A., Lasaga, A. C., Garrels, R. M., 1983. The Carbonate⁃Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 283(7): 641-683. https://doi.org/10.2475/ajs.283.7.641 |
| [6] |
Busfield, M. E., Le Heron, D. P., 2016. A Neoproterozoic Ice Advance Sequence, Sperry Wash, California. Sedimentology, 63(2): 307-330. https://doi.org/10.1111/sed.12210 |
| [7] |
Cai, X. F., Luo, Z. J., Ye, Q., 2017. Sedimentary Characteristics of the Nantuo Formation in Siduping, Hunan and Its Coupling Relationship with Paleoclimate. East China Geology, 38(2): 91-98 (in Chinese with English abstract) |
| [8] |
Cheng, M., Zhang, Z. H., Algeo, T. J., et al., 2021. Hydrological Controls on Marine Chemistry in the Cryogenian Nanhua Basin (South China). Earth⁃Science Reviews, 218: 103678. https://doi.org/10.1016/j.earscirev.2021.103678 |
| [9] |
Cox, G. M., Halverson, G. P., Stevenson, R. K., et al., 2016. Continental Flood Basalt Weathering as a Trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters, 446: 89-99. https://doi.org/10.1016/j.epsl.2016.04.016 |
| [10] |
Cox, R., Lowe, D. R., Cullers, R. L., 1995. The Influence of Sediment Recycling and Basement Composition on Evolution of Mudrock Chemistry in the Southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. https://doi.org/10.1016/0016⁃7037(95)00185⁃9 |
| [11] |
Ding, H. F., Ma, D. S., Yao, C. Y., et al., 2009. Sedimentary Environment of Ediacaran Glacigenic Diamictite in Guozigou of Xinjiang, China. Chinese Science Bulletin, 54(18): 3283-3294. https://doi.org/10.1007/s11434⁃009⁃0443⁃5 |
| [12] |
Dodd, M. S., Shi, W., Li, C., et al., 2023. Uncovering the Ediacaran Phosphorus Cycle. Nature, 618: 974-980. https://doi.org/10.1038/s41586⁃023⁃06077⁃6 |
| [13] |
Fairchild, I. J., Fleming, E. J., Bao, H. M., et al., 2016. Continental Carbonate Facies of a Neoproterozoic Panglaciation, North⁃East Svalbard. Sedimentology, 63(2): 443-497. https://doi.org/10.1111/sed.12252 |
| [14] |
Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2003. CIA (Chemical Index of Alteration)and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract) |
| [15] |
Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2004. New Evidence for a Cold Climate during the Deposition of the Xieshuihe Formation in Northeast Hunan. Science Bulletin, 49(12): 1172-1178 (in Chinese). |
| [16] |
Fleming, E. J., Benn, D. I., Stevenson, C. T. E., et al., 2016. Glacitectonism, Subglacial and Glacilacustrine Processes during a Neoproterozoic Panglaciation, North⁃East Svalbard. Sedimentology, 63(2): 411-442. https://doi.org/10.1111/sed.12251 |
| [17] |
Fu, H. J., Jian, X., Liang, H. H., 2021. Research Progress of Sediment Indicators and Methods for Evaluation of Silicate Chemical Weathering Intensity. Journal of Palaeogeography (Chinese Edition), 23(6): 1192-1209 (in Chinese with English abstract) |
| [18] |
Fu, H. J., Jian, X., Pan, H. Q., 2023. Bias in Sediment Chemical Weathering Intensity Evaluation: A Numerical Simulation Study. Earth⁃Science Reviews, 246: 104574. https://doi.org/10.1016/j.earscirev.2023.104574 |
| [19] |
Gan, T., Tian, M., Wang, X. K., et al., 2024. Lithium Isotope Evidence for a Plumeworld Ocean in the Aftermath of the Marinoan Snowball Earth. Proceedings of the National Academy of Sciences, 121(46): e2407419121.https://doi.org/10.1073/pnas.2407419121 |
| [20] |
Gernon, T. M., Hincks, T. K., Tyrrell, T., et al., 2016. Snowball Earth Ocean Chemistry Driven by Extensive Ridge Volcanism during Rodinia Breakup. Nature Geoscience, 9: 242-248. https://doi.org/10.1038/ngeo2632 |
| [21] |
Goddéris, Y., Le Hir, G., Macouin, M., et al., 2017. Paleogeographic Forcing of the Strontium Isotopic Cycle in the Neoproterozoic. Gondwana Research, 42: 151-162. https://doi.org/10.1016/j.gr.2016.09.013 |
| [22] |
Halverson, G. P., Dudás, F. Ö., Maloof, A. C., et al., 2007. Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 103-129. https://doi.org/10.1016/j.palaeo.2007.02.028 |
| [23] |
Halverson, G. P., Wade, B. P., Hurtgen, M. T., et al., 2010. Neoproterozoic Chemostratigraphy. Precambrian Research, 182(4): 337-350. https://doi.org/10.1016/j.precamres.2010.04.007 |
| [24] |
Hoffman, P. F., 2016. Cryoconite Pans on Snowball Earth: Supraglacial Oases for Cryogenian Eukaryotes? Geobiology, 14(6): 531-542. https://doi.org/10.1111/gbi.12191 |
| [25] |
Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology⁃Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983 |
| [26] |
Hoffman, P. F., Kaufman, A. J., Halverson, G. P., et al., 1998. A Neoproterozoic Snowball Earth. The American Journal of Case Reports, 281(5381): 1342-1346. https://doi.org/10.1126/science.281.5381.1342 |
| [27] |
Hoffman, P. F., Li, Z. X., 2009. A Palaeogeographic Context for Neoproterozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 277(3-4): 158-172. https://doi.org/10.1016/j.palaeo.2009.03.013 |
| [28] |
Hood, A. V. S., Penman, D. E., Lechte, M. A., et al., 2022. Neoproterozoic Syn⁃Glacial Carbonate Precipitation and Implications for a Snowball Earth. Geobiology, 20(2): 175-193. https://doi.org/10.1111/gbi.12470 |
| [29] |
Hu, J., Li, C., Tong, J. N., et al., 2020. Glacial Origin of the Cryogenian Nantuo Formation in Eastern Shennongjia Area (South China): Implications for Macroalgal Survival. Precambrian Research, 351: 105969. https://doi.org/10.1016/j.precamres.2020.105969 |
| [30] |
Hu, J., Wang, J. S., Chen, H. R., et al., 2012. Multiple Cycles of Glacier Advance and Retreat during the Nantuo (Marinoan) Glacial Termination in the Three Gorges Area. Frontiers of Earth Science, 6(1): 101-108. https://doi.org/10.1007/s11707⁃011⁃0179⁃9 |
| [31] |
Huang, K. J., Teng, F. Z., Shen, B., et al., 2016. Episode of Intense Chemical Weathering during the Termination of the 635 Ma Marinoan Glaciation. Proc Natl Acad Sci USA, 113(52): 14904-14909. https://doi.org/10.1073/pnas.1607712113 |
| [32] |
Jacobsen, S. B., Kaufman, A. J., 1999. The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 161(1): 37-57. https://doi.org/10.1016/S0009⁃2541(99)00080⁃7 |
| [33] |
Kennedy, M. J., Christie⁃Blick, N., Prave, A. R., 2001. Carbon Isotopic Composition of Neoproterozoic Glacial Carbonates as a Test of Paleoceanographic Models for Snowball Earth Phenomena. Geology, 29(12): 1135-1138. https://doi.org/10.1130/0091⁃7613(2001)0291135: cicong>2.0.co;2 |
| [34] |
Lan, Z. W., 2023. Research Progress on the Chronostratigraphic Study of Nanhua System in South China. Sedimentary Geology and Tethyan Geology, 43(1): 180-187 (in Chinese with English abstract) |
| [35] |
Lan, Z. W., Huyskens, M. H., Le Hir, G., et al., 2022. Massive Volcanism may Have Foreshortened the Marinoan Snowball Earth. Geophysical Research Letters, 49(6): e2021GL097156. https://doi.org/10.1029/2021gl097156 |
| [36] |
Lan, Z. W., Li, X. H., Zhang, Q. R., et al., 2015. Global Synchronous Initiation of the 2nd Episode of Sturtian Glaciation: SIMS Zircon U⁃Pb and O Isotope Evidence from the Jiangkou Group, South China. Precambrian Research, 267: 28-38. https://doi.org/10.1016/j.precamres.2015.06.002 |
| [37] |
Lang, X. G., Chen, J. T., Cui, H., et al., 2018b. Cyclic Cold Climate during the Nantuo Glaciation: Evidence from the Cryogenian Nantuo Formation in the Yangtze Block, South China. Precambrian Research, 310: 243-255. https://doi.org/10.1016/j.precamres.2018.03.004 |
| [38] |
Lang, X. G., Shen, B., Peng, Y. B., et al., 2018a. Transient Marine Euxinia at the End of the Terminal Cryogenian Glaciation. Nature Communications, 9: 3019. https://doi.org/10.1038/s41467⁃018⁃05423⁃x |
| [39] |
Li, W. P., Li, H. L., Wang, Y., et al., 2022. Neoproterozoic Glaciations in Yecheng Area, Southwestern Margin of the Tarim Basin. Earth Science Frontiers, 29(3): 356-380 (in Chinese with English abstract). |
| [40] |
Li, X. L., Zhang, X., Lin, C. M., et al., 2022. Overview of the Application and Prospect of Common Chemical Weathering Indices. Geological Journal of China Universities, 28(1): 51-63 (in Chinese with English abstract) |
| [41] |
Li, Z. X., Evans, D. A. D., Halverson, G. P., 2013. Neoproterozoic Glaciations in a Revised Global Palaeogeography from the Breakup of Rodinia to the Assembly of Gondwanaland. Sedimentary Geology, 294: 219-232. https://doi.org/10.1016/j.sedgeo.2013.05.016 |
| [42] |
Lipp, A. G., Shorttle, O., Syvret, F., et al., 2020. Major Element Composition of Sediments in Terms of Weathering and Provenance: Implications for Crustal Recycling. Geochemistry, Geophysics, Geosystems, 21(6): e2019GC008758. https://doi.org/10.1029/2019gc008758 |
| [43] |
Liu, B., Xu, B., Meng, X. Y., et al., 2007. Study on the Chemical Index of Alteration of Neoproterozoic Strata in the Tarim Plate and Its Implications. Acta Petrologica Sinica, 23(7): 1664-1670 (in Chinese with English abstract). |
| [44] |
Mills, B., Watson, A. J., Goldblatt, C., et al., 2011. Timing of Neoproterozoic Glaciations Linked to Transport⁃Limited Global Weathering. Nature Geoscience, 4: 861-864. https://doi.org/10.1038/ngeo1305 |
| [45] |
Nesbitt, H. W., 1979. Mobility and Fractionation of Rare Earth Elements during Weathering of a Granodiorite. Nature, 279: 206-210. https://doi.org/10.1038/279206a0 |
| [46] |
Nesbitt, H. W., Markovics, G., Price, R. C., 1980. Chemical Processes Affecting Alkalis and Alkaline Earths during Continental Weathering. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. https://doi.org/10.1016/0016⁃7037(80)90218⁃5 |
| [47] |
Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0 |
| [48] |
Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016⁃7037(84)90408⁃3 |
| [49] |
Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290 |
| [50] |
Nesbitt, H. W., Young, G. M., McLennan, S. M., et al., 1996. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. Journal of Geology, 104(5): 525-542. https://doi.org/10.1086/629850 |
| [51] |
Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004 |
| [52] |
Ohta, T., Arai, H., 2007. Statistical Empirical Index of Chemical Weathering in Igneous Rocks: A New Tool for Evaluating the Degree of Weathering. Chemical Geology, 240(3/4): 280-297. https://doi.org/10.1016/j.chemgeo.2007.02.017 |
| [53] |
Pierrehumbert, R. T., Abbot, D. S., Voigt, A., et al., 2011. Climate of the Neoproterozoic. Annual Review of Earth and Planetary Sciences, 39: 417-460. https://doi.org/10.1146/annurev⁃earth⁃040809⁃152447 |
| [54] |
Pogge von Strandmann, P. A. E., Desrochers, A., Murphy, M. J., et al., 2017. Global Climate Stabilisation by Chemical Weathering during the Hirnantian Glaciation. Geochemical Perspectives Letters,: 230-237. https://doi.org/10.7185/geochemlet.1726 |
| [55] |
Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi’ao FormationDatangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Geological Science and Technology Information, 34(6): 47-57 (in Chinese with English abstract) |
| [56] |
Qi, Y., Gu, S. Y., Zhao, F. Q., 2022. Redox Characteristics of Marine Environment of Nantuo Glaciation, Nanhua Basin. Acta Sedimentologica Sinica, 40(3): 715-729 (in Chinese with English abstract) |
| [57] |
Rieu, R., Allen, P. A., Plotze, M., et al., 2007. Compositional and Mineralogical Variations in a Neoproterozoic Glacially Influenced Succession, Mirbat Area, South Oman: Implications for Paleoweathering Conditions. Precambrian Research, 154(3-4): 248-265. https://doi.org/10.1016/j.precamres.2007.01.003 |
| [58] |
Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re⁃Os Geochronology and Coupled Os⁃Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51-56.https://doi.org/10.1073/pnas.1317266110 |
| [59] |
Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry (Second Edition), Elsevier, Oxford. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00301⁃6 |
| [60] |
Shao, J. Q., Yang, S. Y., 2012. Does Chemical Index of Alteration (CIA) Reflect Silicate Weathering and Monsoonal Climate in the Changjiang River Basin? Chinese Science Bulletin, 57(10): 1178-1187. https://doi.org/10.1007/s11434⁃011⁃4954⁃5 |
| [61] |
Shen, H. J., Gu, S. Y., Zhao, S. F., et al., 2020. The Sedimentary Geochemical Records of Ocean Environment during the Nantuo (Marinoan) Glaciation in South China—Carbon and Oxygen Isotopes and Trace Element Compositions of Dolostone in Nantuo Formation, Nanhuan System, in Eastern Guizhou. Geological Review, 66(1): 214-228 (in Chinese with English abstract). |
| [62] |
Shen, W. B., Zhu, X. K., Yan, B., et al., 2022. Secular Variation in Seawater Redox State during the Marinoan Snowball Earth Event and Implications for Eukaryotic Evolution. Geology, 50(11): 1239-1244. https://doi.org/10.1130/G50147.1 |
| [63] |
Shi, W., Mills, B. J. W., Li, C., et al., 2022. Decoupled Oxygenation of the Ediacaran Ocean and Atmosphere during the Rise of Early Animals. Earth and Planetary Science Letters, 591: 117619. https://doi.org/10.1016/j.epsl.2022.117619 |
| [64] |
Shields, G. A., 2007. A Normalised Seawater Strontium Isotope Curve: Possible Implications for Neoproterozoic⁃Cambrian Weathering Rates and the Further Oxygenation of the Earth. eEarth, 2(2): 35-42. https://doi.org/10.5194/ee⁃2⁃35⁃200710.5194/eed⁃2⁃69⁃2007 |
| [65] |
Song, H. Y., An, Z. H., Ye, Q., et al., 2023. Mid⁃Latitudinal Habitable Environment for Marine Eukaryotes during the Waning Stage of the Marinoan Snowball Glaciation. Nature Communications, 14: 1564. https://doi.org/10.1038/s41467⁃023⁃37172⁃x |
| [66] |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford. |
| [67] |
Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break⁃up. Precambrian Research, 122(1-4): 141-158. https://doi.org/10.1016/S0301⁃9268(02)00209⁃7 |
| [68] |
Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial⁃Interglacial Transitions in Earth History. Earth⁃Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032 |
| [69] |
Wang, Z. Q., Yin, C. Y., Gao, L. Z., et al., 2006. The Character of the Chemical Index of Alteration and Discussion of Subdivision and Correlation of the Nanhua System in Yichang Area. Geological Review, 52(5): 577-585 (in Chinese with English abstract) |
| [70] |
Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016⁃7037(95)00038⁃2 |
| [71] |
Wei, G. Y., Wei, W., Wang, D., et al., 2020. Enhanced Chemical Weathering Triggered an Expansion of Euxinic Seawater in the Aftermath of the Sturtian Glaciation. Earth and Planetary Science Letters, 539: 116244. https://doi.org/10.1016/j.epsl.2020.116244 |
| [72] |
Wu, Z. Y., Gu, S. Y., 2019. Potassium Enrichment of Diamictite in Neoproterozoic Nantuo Glaciation in South China: An Example from the Cryogenian Nantuo Formation in Songtao, Guizhou Province. Journal of Guizhou University (Natural Sciences), 36(5): 43-49 (in Chinese with English abstract) |
| [73] |
Xu, X. T., Shao, L. Y., 2018. Limiting Factors in Utilization of Chemical Index of Alteration of Mudstones to Quantify the Degree of Weathering in Provenance. Journal of Palaeogeography (Chinese Edition), 20(3): 515-522 (in Chinese with English abstract) |
| [74] |
Ye, Q., Tong, J. N., Xiao, S. H., et al., 2015. The Survival of Benthic Macroscopic Phototrophs on a Neoproterozoic Snowball Earth. Geology, 43(6): 507-510. https://doi.org/10.1130/G36640.1 |
| [75] |
Yu, W. C., Algeo, T. J., Zhou, Q., et al., 2020. Cryogenian Cap Carbonate Models: A Review and Critical Assessment. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109727. https://doi.org/10.1016/j.palaeo.2020.109727 |
| [76] |
Zhang, Q. R., Chu, X. L., Feng, L. J., 2011. Neoproterozoic Glacial Records in the Yangtze Region, China. Geological Society, London, Memoirs, 36: 357-366. https://doi.org/10.1144/M36.3 |
| [77] |
Zhang, S. H., Evans, D. A. D., Li, H. Y., et al., 2013. Paleomagnetism of the Late Cryogenian Nantuo Formation and Paleogeographic Implications for the South China Block. Journal of Asian Earth Sciences, 72: 164-177. https://doi.org/10.1016/j.jseaes.2012.11.022 |
| [78] |
Zhao, X. M., Liu, S. D., Zhang, Q. X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585 (in Chinese with English abstract) |
| [79] |
Zhao, Y. Y., Zheng, Y. F., 2011. Record and Time of Neoproterozoic Glaciations on Earth. Acta Petrologica Sinica, 27(2): 545-565 (in Chinese with English abstract) |
| [80] |
Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251-254. https://doi.org/10.1130/G45719.1 |
| [81] |
Zhu, M. Y., Wang, H. F., 2011. Neoproterozoic Glaciogenic Diamictites of the Tarim Block, NW China. Geological Society, London, Memoirs, 36: 367-378. https://doi.org/10.1144/M36.33 |
国家重点研发计划项目(2022YFF0800100)
国家自然科学基金项目(42425002)
国家自然科学基金项目(42373070)
国家自然科学基金项目(42130208)
/
| 〈 |
|
〉 |