中元古代微生物硅循环促进浅海硅岩沉积
史青 , 史晓颖 , Jiang Ganqing , 汤冬杰 , 王新强
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1082 -1104.
中元古代微生物硅循环促进浅海硅岩沉积
,
Microbial Silicon Cycling Promoted Shallow⁃Sea Chert Deposition in Mesoproterozoic Ocean
,
为揭示中元古代浅海硅循环和硅岩形成机制,运用沉积学、矿物学、地球生物学和地球化学方法对华北~1.48 Ga雾迷山组硅岩开展了综合研究.结果表明,硅岩以微石英为主(~90%),含少量硅交代碳酸盐颗粒(~5%)和微量黄铁矿(~1%);并具高Ge/Si摩尔比(~8.83 μmol/mol)和正Eu异常(~1.41),表明其主要为原生沉淀硅,~94%的硅源自海水.硅岩中保存良好的微生物组构(菌丝、胞外聚合物(extracellular polymeric substances,简称EPS)、席碎片)和微小蓝细菌与有机矿物密切共生,表明微生物在诱发硅沉淀中有重要作用.粘硅EPS和有机硅复合体降解释放硅可增加局部溶解硅浓度,改变沉积浅层和孔隙水化学条件,促进硅沉淀.微小蓝细菌和其他可聚硅微生物在浅海的繁盛对中元古代硅循环有重要影响,并促进了浅海环境的硅岩沉积.
To reveal the silicon cycling and potential mechanism of chert deposition in Mesoproterozoic shallow seas, an integrated study of sedimentology, mineralogy, geobiology and geochemistry was conducted on the Wumishan cherts (~1.48 Ga) using multiple techniques. The results show that the cherts are predominated by microquartz (~90%) in composition, with some silica-replaced carbonate (~5%) and minor pyrite (~1%) grains, indicating that the cherts largely originated from primary silica precipitation. High Ge/Si molar ratios (~8.83 μmol/mol) and positive Eu anomalies (~1.41) in the cherts suggest silica largely deriving from seawater (~94%), with a small contribution of thermally derived Si (~6%). Diverse microbial components (e.g., microbial filaments, EPS (extracellular polymeric substances) relics, mat fragments) and picocyanobacterian fossils were closely associated with organominerals, suggesting that microbial activities played important roles in silica precipitation. The Si liberated from degraded EPS and organo-Si complexes locally increased the dissolved Si concentrations and changed the chemical conditions in shallow substrate and pore-waters, promoting silica precipitation. The flourishing picocyanobacteria and certain prokaryotes that can accumulate silica in their cells or EPS may have changed the Si-cycling in Mesoproterozoic ocean, and the biogenic silica released from the microbial biomass may have promoted the silica precipitation in the Mesoproterozoic shallow-sea environments.
中元古代浅海硅循环 / 生物成因硅 / 微生物硅化 / 海水溶解硅浓度 / 华北地台 / 沉积学 / 矿物学.
Mesoproterozoic marine silicon cycle / biogenic silica / microbial silicification / seawater dissolved silica concentrations / North China Platform / sedimentology / mineralogy
| [1] |
Algeo, T. J., Li, C., 2020. Redox Classification and Calibration of Redox Thresholds in Sedimentary Systems. Geochimica et Cosmochimica Acta, 287: 8-26. https://doi.org/10.1016/j.gca.2020.01.055 |
| [2] |
Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum⁃Uranium Covariation. Chemical Geology, 268(3-4): 211-225. https://doi.org/10.1016/j.chemgeo.2009.09.001 |
| [3] |
Alibert, C., Kinsley, L., 2016. Ge/Si in Hamersley BIF as Tracer of Hydrothermal Si and Ge Inputs to the Paleoproterozoic Ocean. Geochimica et Cosmochimica Acta, 184: 329-343. https://doi.org/10.1016/j.gca.2016.03.027 |
| [4] |
Andrade, C. N., Lapen, T. J., Chafetz, H. S., 2023. Silicon Isotopic Compositions of Dissolved Silicic Acid in Pre⁃ and Post⁃Diatom Oceans. Geochimica et Cosmochimica Acta, 343: 264-271. https://doi.org/10.1016/j.gca.2022.11.021 |
| [5] |
Baines, S. B., Twining, B. S., Brzezinski, M. A., et al., 2012. Significant Silicon Accumulation by Marine Picocyanobacteria. Nature Geoscience, 5: 886-891. https://doi.org/10.1038/ngeo1641 |
| [6] |
Benning, L. G., Phoenix, V. R., Yee, N., et al., 2004. Molecular Characterization of Cyanobacterial Silicification Using Synchrotron Infrared Micro⁃Spectroscopy. Geochimica et Cosmochimica Acta, 68(4): 729-741. https://doi.org/10.1016/s0016⁃7037(03)00489⁃7 |
| [7] |
Brzezinski, M. A., Krause, J. W., Baines, S. B., et al., 2017. Patterns and Regulation of Silicon Accumulation in Synechococcus Spp. Journal of Phycology, 53(4): 746-761.https://doi.org/10.1111/jpy.12545 |
| [8] |
Buick, R., Knoll, A. H., 1999. Acritarchs and Microfossils from the Mesoproterozoic Bangemall Group, Northwestern Australia. Journal of Paleontology, 73(5): 744-764.https://doi.org/10.1017/s0022336000040634 |
| [9] |
Cermeño, P., Falkowski, P. G., Romero, O. E., et al., 2015. Continental Erosion and the Cenozoic Rise of Marine Diatoms. Proceedings of the National Academy of Sciences, 112(14): 4239-4244.https://doi.org/10.1073/pnas.1412883112 |
| [10] |
Conley, D. J., Frings, P. J., Fontorbe, G., et al., 2017. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time. Frontiers in Marine Science, 4: 397. https://doi.org/10.3389/fmars.2017.00397 |
| [11] |
Cui, Y. X., Lang, X. G., Li, F. B., et al., 2019. Germanium/Silica Ratio and Rare Earth Element Composition of Silica⁃Filling in Sheet Cracks of the Doushantuo Cap Carbonates, South China: Constraining Hydrothermal Activity during the Marinoan Snowball Earth Glaciation. Precambrian Research, 332: 105407. https://doi.org/10.1016/j.precamres.2019.105407 |
| [12] |
Delvigne, C., Cardinal, D., Hofmann, A., et al., 2012. Stratigraphic Changes of Ge/Si, REE+Y and Silicon Isotopes as Insights into the Deposition of a Mesoarchaean Banded Iron Formation. Earth and Planetary Science Letters, 355: 109-118. https://doi.org/10.1016/j.epsl.2012.07.035 |
| [13] |
Ding, T. P., Gao, J. F., Tian, S. H., et al., 2017. The δ30Si Peak Value Discovered in Middle Proterozoic Chert and Its Implication for Environmental Variations in the Ancient Ocean. Scientific Reports, 7: 44000. https://doi.org/10.1038/srep44000 |
| [14] |
Dong, L., Shen, B., Lee, C. A., et al., 2015. Germanium/Silicon of the Ediacaran⁃Cambrian Laobao Cherts: Implications for the Bedded Chert Formation and Paleoenvironment Interpretations. Geochemistry, Geophysics, Geosystems, 16(3): 751-763. https://doi.org/10.1002/2014GC005595 |
| [15] |
Egan, K. E., Rickaby, R. E. M., Hendry, K. R., et al., 2013. Opening the Gateways for Diatoms Primes Earth for Antarctic Glaciation. Earth and Planetary Science Letters, 375: 34-43. https://doi.org/10.1016/j.epsl.2013.04.030 |
| [16] |
Escario, S., Nightingale, M., Humez, P., et al., 2020. The Contribution of Aqueous Catechol⁃Silica Complexes to Silicification during Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 280: 185-201. https://doi.org/10.1016/j.gca.2020.04.016 |
| [17] |
Escoube, R., Rouxel, O. J., Edwards, K., et al., 2015. Coupled Ge/Si and Ge Isotope Ratios as Geochemical Tracers of Seafloor Hydrothermal Systems: Case Studies at Loihi Seamount and East Pacific Rise 9°50’N. Geochimica et Cosmochimica Acta, 167: 93-112. https://doi.org/10.1016/j.gca.2015.06.025 |
| [18] |
Froelich, P. N., Blanc, V., Mortlock, R. A., et al., 1992. River Fluxes of Dissolved Silica to the Ocean Were Higher during Glacials: Ge/Si in Diatoms, Rivers, and Oceans. Paleoceanography, 7(6): 739-767. https://doi.org/10.1029/92PA02090 |
| [19] |
Gao, P., He, Z. L., Lash, G. G., et al., 2020. Mixed Seawater and Hydrothermal Sources of Nodular Chert in Middle Permian Limestone on the Eastern Paleo⁃Tethys Margin (South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 551: 109740. https://doi.org/10.1016/j.palaeo.2020.109740 |
| [20] |
Geilert, S., Vroon, P. Z., van Bergen, M. J., 2014. Silicon Isotopes and Trace Elements in Chert Record Early Archean Basin Evolution. Chemical Geology, 386: 133-142. https://doi.org/10.1016/j.chemgeo.2014.07.027 |
| [21] |
Gong, J., Myers, K. D., Munoz⁃Saez, C., et al., 2020. Formation and Preservation of Microbial Palisade Fabric in Silica Deposits from El Tatio, Chile. Astrobiology, 20(4): 500-524.https://doi.org/10.1089/ast.2019.2025 |
| [22] |
Hamade, T., Konhauser, K. O., Raiswell, R., et al., 2003. Using Ge/Si Ratios to Decouple Iron and Silica Fluxes in Precambrian Banded Iron Formations. Geology, 31(1): 35. https://doi.org/10.1130/0091⁃7613(2003)031<0035: UGSRTD>2.0.CO;2 |
| [23] |
Handley, K. M., Turner, S. J., Campbell, K. A., et al., 2008. Silicifying Biofilm Exopolymers on a Hot⁃Spring Microstromatolite: Templating Nanometer⁃Thick Laminae. Astrobiology, 8(4): 747-770.https://doi.org/10.1089/ast.2007.0172 |
| [24] |
Herdianita, N. R., Browne, P. R. L., Rodgers, K. A., et al., 2000. Mineralogical and Textural Changes Accompanying Ageing of Silica Sinter. Mineralium Deposita, 35(1): 48-62. https://doi.org/10.1007/s001260050005 |
| [25] |
Hofmann, H. J., Jackson, G. D., 1991. Shelf⁃Facies Microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65(3): 361-382. https://doi.org/10.1017/S0022336000030353 |
| [26] |
Isson, T. T., Planavsky, N. J., Coogan, L. A., et al., 2020. Evolution of the Global Carbon Cycle and Climate Regulation on Earth. Global Biogeochemical Cycles, 34(2): e2018GB006061. https://doi.org/10.1029/2018gb006061 |
| [27] |
Jones, B., Renaut, R. W., 2007. Microstructural Changes Accompanying the Opal⁃A to Opal⁃CT Transition: New Evidence from the Siliceous Sinters of Geysir, Haukadalur, Iceland. Sedimentology, 54(4): 921-948. https://doi.org/10.1111/j.1365⁃3091.2007.00866.x |
| [28] |
Jurkowska, A., Świerczewska⁃Gładysz, E., 2020. New Model of Si Balance in the Late Cretaceous Epicontinental European Basin. Global and Planetary Change, 186: 103108. https://doi.org/10.1016/j.gloplacha.2019.103108 |
| [29] |
Jurkowska, A., Świerczewska⁃Gładysz, E., 2024. The Evolution of the Marine Si Cycle in the Archean⁃ Palaeozoic: An Overlooked Si Source? Earth⁃Science Reviews, 248: 104629. https://doi.org/10.1016/j.earscirev.2023.104629 |
| [30] |
Kastner, M., Siever, R., 1983. Siliceous Sediments of the Guaymas Basin: The Effect of High Thermal Gradients on Diagenesis. The Journal of Geology, 91(6): 629-641. https://doi.org/10.1086/628816 |
| [31] |
Kent, A. G., Baer, S. E., Mouginot, C., et al., 2019. Parallel Phylogeography of Prochlorococcus and Synechococcus. The ISME Journal, 13: 430-441. https://doi.org/10.1038/s41396⁃018⁃0287⁃6 |
| [32] |
Knauth, L. P., 1994. Petrogenesis of Chert. Reviews in Mineralogy & Geochemistry, 29: 233-258. https://doi.org/10.1515/9781501509698⁃012 |
| [33] |
Knoll, A. H., 1982. Microfossils from the Late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology, 56: 755-790. |
| [34] |
Knoll, A. H., Nowak, M. A., 2017. The Timetable of Evolution. Science Advances, 3(5): e1603076. https://doi.org/10.1126/sciadv.1603076 |
| [35] |
Konhauser, K. O., Phoenix, V. R., Bottrell, S. H., et al., 2001. Microbial⁃Silica Interactions in Icelandic Hot Spring Sinter: Possible Analogues for Some Precambrian Siliceous Stromatolites. Sedimentology, 48(2): 415-433. https://doi.org/10.1046/j.1365⁃3091.2001.00372.x |
| [36] |
Krause, J. W., Brzezinski, M. A., Baines, S. B., et al., 2017. Picoplankton Contribution to Biogenic Silica Stocks and Production Rates in the Sargasso Sea. Global Biogeochemical Cycles, 31(5): 762-774. https://doi.org/10.1002/2017GB005619 |
| [37] |
Kremer, B., 2020. Entrapment and Transformation of Post⁃Bloom Radiolarians in Cyanobacterial Mats as a Factor Enhancing the Formation of Black Cherts in the Early Silurian Sea. Journal of Sedimentary Research, 90(2): 151-164. https://doi.org/10.2110/jsr.2020.7 |
| [38] |
Li, C. Q., Dong, L., Ma, H. R., et al., 2022b. Formation of the Massive Bedded Chert and Coupled Silicon and Iron Cycles during the Ediacaran⁃Cambrian Transition. Earth and Planetary Science Letters, 594: 117721. https://doi.org/10.1016/j.epsl.2022.117721 |
| [39] |
Li, J., Liu, P., Menguy, N., et al., 2022a. Intracellular Silicification by Early⁃Branching Magnetotactic Bacteria. Science Advances, 8(19): eabn6045.https://doi.org/10.1126/sciadv.abn6045 |
| [40] |
Maliva, R. G., Knoll, A. H., Simonson, B. M., 2005. Secular Change in the Precambrian Silica Cycle: Insights from Chert Petrology. Geological Society of America Bulletin, 117(7): 835. https://doi.org/10.1130/b25555.1 |
| [41] |
Manning⁃Berg, A. R., Kah, L. C., 2017. Proterozoic Microbial Mats and Their Constraints on Environments of Silicification. Geobiology, 15(4): 469-483.https://doi.org/10.1111/gbi.12238 |
| [42] |
Marron, A. O., Ratcliffe, S., Wheeler, G. L., et al., 2016. The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution, 33(12): 3226-3248.https://doi.org/10.1093/molbev/msw209 |
| [43] |
Miao, L. Y., Moczydłowska, M., Zhu, S. X., et al., 2019. New Record of Organic⁃Walled, Morphologically Distinct Microfossils from the Late Paleoproterozoic Changcheng Group in the Yanshan Range, North China. Precambrian Research, 321: 172-198. https://doi.org/10.1016/j.precamres.2018.11.019 |
| [44] |
Moore, K. R., Gong, J., Pajusalu, M., et al., 2021. A New Model for Silicification of Cyanobacteria in Proterozoic Tidal Flats. Geobiology, 19(5): 438-449.https://doi.org/10.1111/gbi.12447 |
| [45] |
Mortlock, R. A., Froelich, P. N., Feely, R. A., et al., 1993. Silica and Germanium in Pacific Ocean Hydrothermal Vents and Plumes. Earth and Planetary Science Letters, 119(3): 365-378. https://doi.org/10.1016/0012⁃821X(93)90144⁃X |
| [46] |
Ohnemus, D. C., Krause, J. W., Brzezinski, M. A., et al., 2018. The Chemical Form of Silicon in Marine Synechococcus. Marine Chemistry, 206: 44-51. https://doi.org/10.1016/j.marchem.2018.08.004 |
| [47] |
Perri, E., Tucker, M. E., Słowakiewicz, M., et al., 2018. Carbonate and Silicate Biomineralization in a Hypersaline Microbial Mat (Mesaieed Sabkha, Qatar): Roles of Bacteria, Extracellular Polymeric Substances and Viruses. Sedimentology, 65(4): 1213-1245. https://doi.org/10.1111/sed.12419 |
| [48] |
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485 |
| [49] |
Rodgers, K. A., Browne, P. R. L., Buddle, T. F., et al., 2004. Silica Phases in Sinters and Residues from Geothermal Fields of New Zealand. Earth⁃Science Reviews, 66(1-2): 1-61. https://doi.org/10.1016/j.earscirev.2003.10.001 |
| [50] |
Sánchez⁃Baracaldo, P., Bianchini, G., Wilson, J. D., et al., 2022. Cyanobacteria and Biogeochemical Cycles through Earth History. Trends in Microbiology, 30(2): 143-157. https://doi.org/10.1016/j.tim.2021.05.008 |
| [51] |
Shen, B., Ma, H. R., Ye, H. Q., et al., 2018. Hydrothermal Origin of Syndepositional Chert Bands and Nodules in the Mesoproterozoic Wumishan Formation: Implications for the Evolution of Mesoproterozoic Cratonic Basin, North China. Precambrian Research, 310: 213-228. https://doi.org/10.1016/j.precamres.2018.03.007 |
| [52] |
Shi, M., Feng, Q. L., Khan, M. Z., et al., 2017. An Eukaryote⁃Bearing Microbiota from the Early Mesoproterozoic Gaoyuzhuang Formation, Tianjin, China and Its Significance. Precambrian Research, 303: 709-726. https://doi.org/10.1016/j.precamres.2017.09.013 |
| [53] |
Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio⁃Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the Ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050 |
| [54] |
Siever, R., 1992. The Silica Cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8): 3265-3272. https://doi.org/10.1016/0016⁃7037(92)90303⁃Z |
| [55] |
Stefurak, E. J. T., Lowe, D. R., Zentner, D., et al., 2015. Sedimentology and Geochemistry of Archean Silica Granules. Geological Society of America Bulletin,: B31181.1. https://doi.org/10.1130/b31181.1 |
| [56] |
Stolper, D. A., Love, G. D., Bates, S., et al., 2017. Paleoecology and Paleoceanography of the Athel Silicilyte, Ediacaran⁃Cambrian Boundary, Sultanate of Oman. Geobiology, 15(3): 401-426.https://doi.org/10.1111/gbi.12236 |
| [57] |
Su, W. B., Li, H. K., Huff, W. D., et al., 2010. SHRIMP U⁃Pb Dating for a K⁃Bentonite Bed in the Tieling Formation, North China. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434⁃010⁃4007⁃5 |
| [58] |
Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2018. Stratiform Siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and Environmental Implications. Gondwana Research, 58: 1-15. https://doi.org/10.1016/j.gr.2018.01.013 |
| [59] |
Tang, D. J., Shi, X. Y., Shi, Q., et al., 2015. Organomineralization in Mesoproterozoic Giant Ooids. Journal of Asian Earth Sciences, 107: 195-211. https://doi.org/10.1016/j.jseaes.2015.04.034 |
| [60] |
Tang, T. T., Kisslinger, K., Lee, C., 2014. Silicate Deposition during Decomposition of Cyanobacteria may Promote Export of Picophytoplankton to the Deep Ocean. Nature Communications, 5: 4143. https://doi.org/10.1038/ncomms5143 |
| [61] |
Tostevin, R., Snow, J. T., Zhang, Q., et al., 2021. The Influence of Elevated SiO2 (Aq) on Intracellular Silica Uptake and Microbial Metabolism. Geobiology, 19(4): 421-433.https://doi.org/10.1111/gbi.12442 |
| [62] |
Tostevin, R., Wood, R. A., Shields, G. A., et al., 2016. Low⁃Oxygen Waters Limited Habitable Space for Early Animals. Nature Communications, 7: 12818. https://doi.org/10.1038/ncomms12818 |
| [63] |
Tréguer, P. J., Sutton, J. N., Brzezinski, M., et al., 2021. Reviews and Syntheses: The Biogeochemical Cycle of Silicon in the Modern Ocean. Biogeosciences, 18(4): 1269-1289. https://doi.org/10.5194/bg⁃18⁃1269⁃2021 |
| [64] |
Tribovillard, N., Algeo, T. J., Baudin, F., et al., 2012. Analysis of Marine Environmental Conditions Based Onmolybdenum⁃Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 324: 46-58. https://doi.org/10.1016/j.chemgeo.2011.09.009 |
| [65] |
Trower, E. J., Strauss, J. V., Sperling, E. A., et al., 2021. Isotopic Analyses of Ordovician⁃Silurian Siliceous Skeletons Indicate Silica⁃Depleted Paleozoic Oceans. Geobiology, 19(5): 460-472. https://doi.org/10.1111/gbi.12449 |
| [66] |
Wallace, M. W., Hood, A. V., Shuster, A., et al., 2017. Oxygenation History of the Neoproterozoic to Early Phanerozoic and the Rise of Land Plants. Earth and Planetary Science Letters, 466: 12-19. https://doi.org/10.1016/j.epsl.2017.02.046 |
| [67] |
Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016⁃7037(99)00400⁃7 |
| [68] |
Wen, H. J., Fan, H. F., Tian, S. H., et al., 2016. The Formation Conditions of the Early Ediacaran Cherts, South China. Chemical Geology, 430: 45-69. https://doi.org/10.1016/j.chemgeo.2016.03.005 |
| [69] |
Wheat, C. G., McManus, J., 2005. The Potential Role of Ridge⁃Flank Hydrothermal Systems on Oceanic Germanium and Silicon Balances. Geochimica et Cosmochimica Acta, 69(8): 2021-2029. https://doi.org/10.1016/j.gca.2004.05.046 |
| [70] |
Wignall, P. B., Twitchett, R. J., 1996. Oceanic Anoxia and the End Permian Mass Extinction. Sensors (Basel, Switzerland), 272(5265): 1155-1158.https://doi.org/10.1126/science.272.5265.1155 |
| [71] |
Williams, L. A., Pasts, G. A., Crerrar, D. A., 1985. Silica Diagenesis, I. Solubility Controls. SEPM Journal of Sedimentary Research, Vol. 55: 301-311. https://doi.org/10.1306/212f86ac⁃2b24⁃11d7⁃8648000102c1865d |
| [72] |
Xing, C. C., Liu, P. J., Wang, R. M., et al., 2022. Tracing the Evolution of Dissolved Organic Carbon (DOC) Pool in the Ediacaran Ocean by Germanium/Silica (Ge/Si) Ratios of Diagenetic Chert Nodules from the Doushantuo Formation, South China. Precambrian Research, 374: 106639. https://doi.org/10.1016/j.precamres.2022.106639 |
| [73] |
Ye, Y., Frings, P. J., von Blanckenburg, F., et al., 2021. Silicon Isotopes Reveal a Decline in Oceanic Dissolved Silicon Driven by Biosilicification: A Prerequisite for the Cambrian Explosion? Earth and Planetary Science Letters, 566: 116959. https://doi.org/10.1016/j.epsl.2021.116959 |
| [74] |
Yuan, Y. L., Shi, X. Y., Tang, D. J., et al., 2022. Microfabrics and Organominerals as Indicator of Microbial Dolomite in Deep Time: An Example from the Mesoproterozoic of North China. Precambrian Research, 382: 106881. https://doi.org/10.1016/j.precamres.2022.106881 |
| [75] |
Zhang, S. H., Zhao, Y., Li, X. H., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125. https://doi.org/10.1016/j.epsl.2017.02.034 |
| [76] |
Zheng, X. Y., Beard, B. L., Reddy, T. R., et al., 2016. Abiologic Silicon Isotope Fractionation between Aqueous Si and Fe(III)⁃Si Gel in Simulated Archean Seawater: Implications for Si Isotope Records in Precambrian Sedimentary Rocks. Geochimica et Cosmochimica Acta, 187: 102-122. https://doi.org/10.1016/j.gca.2016.05.012 |
国家自然科学基金项目(41930320)
教育部“111”项目(B20011)
/
| 〈 |
|
〉 |