华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性

谢宝增 ,  汤冬杰 ,  刘亚婕 ,  杨欣囡 ,  柯竺彤 ,  孙龙飞 ,  李超 ,  王新强 ,  史晓颖

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1066 -1081.

PDF (6297KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1066 -1081. DOI: 10.3799/dqkx.2024.135

华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性

作者信息 +

Authigenic Clay Minerals from North China Reveal Spatiotemporal Variations in Shallow Seawater Redox Conditions during the Terminal Mesoproterozoic

Author information +
文章历史 +
PDF (6447K)

摘要

为了重建中元古代末期冠群真核生物快速演化的环境背景,以华北4条剖面的长龙山组碎屑岩为研究对象,开展了沉积学和矿物学分析.结果表明,怀来剖面深‒浅潮下带细‒粗砂岩中的黏土矿物以鲕绿泥石为主,指示缺氧铁化的海水环境;而深潮下带粉砂质泥岩‒泥质粉砂岩中以海绿石为主,反映次氧化的海水条件.门头沟剖面浅潮下带中‒粗砂岩中的黏土矿物以鲕绿泥石为主,指示缺氧铁化的海水条件;蓟县和卢龙剖面深潮下带砂岩中的黏土矿物则以海绿石为主,表明次氧化的环境条件.这些结果揭示,长龙山组沉积期华北浅海的氧化还原条件存在显著的时空差异,增氧促进了龙凤山藻的出现,但氧化水体分布的时空不连续性限制了它们的持续演化与广泛分布.

Abstract

This study investigates the environmental context for the rapid evolution of crown-group eukaryotes during the Late Mesoproterozoic, focusing on sedimentological and mineralogical analyses of clastic rocks from the Changlongshan Formation across four sections of the North China Craton. In the Huailai section, fine-to-coarse sandstones from the deep-to-shallow subtidal zones are dominated by chamosite, indicating an anoxic, ferruginous marine environment. Conversely, glauconite dominates silty mudstone and muddy siltstone in the deep subtidal zone, reflecting suboxic conditions. In the Mentougou section, medium-to-coarse sandstones from the shallow subtidal zone are rich in chamosite, suggesting persistent anoxic, ferruginous conditions. In the Jixian and Lulong sections, deep subtidal zone sandstones are dominated by glauconite, indicative of suboxic environments. These results reveal pronounced spatiotemporal variations in redox conditions across the shallow seas of North China during the deposition of the Changlongshan Formation. While oxygenation facilitated the emergence of Longfengshania algae, the spatiotemporal discontinuity in the distribution of oxic water bodies may have limited the sustained evolution and widespread distribution of eukaryotes.

Graphical abstract

关键词

长龙山组 / 海绿石 / 鲕绿泥石 / 氧化还原环境 / 空间差异性 / 冠群真核生物 / 沉积学 / 矿物学.

Key words

Changlongshan Formation / glauconite / chamosite / redox condition / spatial heterogeneity / crown⁃group eukaryote / sedimentology / mineralogy

引用本文

引用格式 ▾
谢宝增,汤冬杰,刘亚婕,杨欣囡,柯竺彤,孙龙飞,李超,王新强,史晓颖. 华北自生黏土矿物指示中元古代末期浅海氧化还原条件的时空差异性[J]. 地球科学, 2025, 50(03): 1066-1081 DOI:10.3799/dqkx.2024.135

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

元古宙中期(约1 800~800 Ma)是真核生物起源与早期演化的关键时期.然而,由于大气‒海洋系统长期处于低氧状态,真核生物的演化进程受到迟滞,在长达十亿年的时间内未能出现后生动物(Planavsky et al., 2014Lyons et al., 2021).近年来的研究表明,在这一长期低氧背景下,间歇性增氧事件可能为真核生物的短暂快速演化提供了有利的环境条件(Zhu et al., 2016Shang et al., 2019).例如,华北地区约1.63 Ga的串岭沟组页岩中记录的增氧事件(Yang et al., 2025)与已知最早的冠群真核生物出现时间相吻合(Miao et al., 2024);约 1.57 Ga的高于庄组碳酸盐岩中记录的增氧事件(Zhang et al., 2018Shang et al., 2019)与宏体多细胞真核生物的出现相关(Zhu et al., 2016);约 1.4 Ga下马岭组黑色页岩中记录的增氧事件(Zhang et al., 2016a)与冠群真核生物中的红藻和绿藻分子化石的发现相对应(Zhang et al., 2021).

目前,关于中元古代末期表生环境氧化还原条件的研究仍不充分,限制了人们对该时期冠群真核生物演化驱动因素的深入理解.已有研究表明,中元古代末期碳酸盐岩中存在显著的Cr同位素分馏,暗示当时大气氧浓度高于元古宙中期的背景水平(即高于0.1%~1.0%现代大气水平, PAL; Cole et al., 2016Gilleaudeau et al., 2016).近期的研究表明,冠群真核生物多样化的需氧阈值为2%~3% PAL(Mills et al., 2024),高于Cr同位素分馏所指示的氧浓度阈值(0.1%~1.0% PAL; Cole et al., 2016).然而,这样的大气氧浓度(<10% PAL)并不能直接反映当时浅海的氧化还原条件,因为在这种条件下海水‒大气交换并不平衡,浅海氧化还原条件存在显著的空间差异性(Reinhard et al., 2016Xie et al., 2023).例如,吉林南芬组的氧化还原敏感元素和Mo同位素数据表明,该组主要沉积于氧化环境(龚辉等, 2023);而华北长龙山组龙凤山藻层位的铁组分研究则表明,该组主要形成于缺氧环境,由底栖微生物席局部产氧形成的氧绿洲有可能促进了龙凤山藻的生长(Wang et al., 2021).

绿色黏土矿物(例如海绿石、鲕绿泥石)是一种重要的矿物学指标,能够反映孔隙水氧化还原条件,从而具有间接反映海水化学性质的潜力(Banerjee et al., 2015,2020Tang et al., 2017aBansal et al., 2020).华北长龙山组广泛发育绿色黏土矿物,并有宏体化石龙凤山藻的相关报道,这为重建中元古代末期氧化还原条件,揭示其与冠群真核生物协同演化提供了完美的窗口.为此,本文以华北地区4条长龙山组剖面为研究对象,开展了系统的沉积学与矿物学分析.其中,怀来(杜汝霖和田立富, 1985; Wang et al., 2021Jing et al., 2022)和门头沟剖面(唐烽, 1995)长龙山组二段下部的灰黑色页岩中曾报道有宏体化石龙凤山藻.因此,本研究不仅有助于深入揭示中元古代末期浅海氧化还原条件,还为探索氧化还原条件与冠群真核生物协同演化的关系提供重要依据.

1 地质背景

华北克拉通是全球最古老的克拉通之一,主要由太古宙至古元古代的变质基底及其上覆沉积盖层构成(Zhai et al., 2020).约18.5亿年前,华北克拉通的西部和东部块体沿中央造山带拼合,标志着该克拉通的最终成型(Zhao et al., 2011).此后,华北克拉通响应Nuna超大陆的解体,开始在北部、东北部和南部发生裂解,分别形成渣尔泰‒白云鄂博‒化德、燕辽和熊耳盆地(Deng et al., 2021).在古元古代末期,燕辽盆地与熊耳盆地相连(et al., 2022);而在中元古代大部分时间里,燕辽盆地与熊耳盆地不相连,而是与北东侧的广海相连;中元古代末期至新元古代早期,燕辽盆地则转为与东侧的广海相连(图1; 王鸿祯, 1985).

在元古宙中期,燕辽盆地接收了巨厚沉积,形成了长城群(Pt1)、蓟县群(Pt2)、下马岭组(Pt2)和青白口群(Pt2).其中,下马岭组与上覆青白口群之间存在约3.5亿年的沉积间断,这一间断与格林威尔造山带的形成及随之而来的地壳隆升有关(图2Gao et al., 2009Su et al., 2010Li et al., 2013Zhang et al., 2015).但也有研究表明它们之间可能并未出现显著的不整合(Kuang et al., 2023).长城群主要由沉积于太古宙至古元古代早期结晶基底上的硅质碎屑岩组成,反映了与Nuna超大陆初始裂解相关的沉积过程(Lu et al., 2002,2008).蓟县群则以碳酸盐岩为主,夹有一些页岩层,代表陆表海沉积.在蓟县群之上,华北地台发育了广泛的区域性不整合(乔秀夫等, 2007; Su et al., 2010et al., 2021).其上为下马岭组,主要由富有机质的黑色页岩组成(Luo et al., 2014Zhang et al., 2016aTang et al., 2020).不整合上覆于下马岭组的是青白口群,包括长龙山组的硅质碎屑岩和景儿峪组的碳酸盐岩.长龙山组(又名龙山组或骆驼岭组)中发育有著名的宏体藻Longfengshania化石(杜汝霖, 1982; 牛绍武, 2019; Wang et al., 2021; Jing et al., 2022).在景儿峪组沉积之后,地壳发生了显著的抬升,导致景儿峪组与寒武系之间出现地层缺失(周洪瑞等, 2006),这可能反映了Rodinia超大陆的形成(王鸿祯等, 2001; Lu et al., 2008).

长龙山组由粗‒细粒碎屑岩交替沉积组成,具有明显的纵向和横向差异.本文研究的4条剖面自西向东依次为怀来、门头沟、蓟县和卢龙剖面(图1图2).其中,蓟县剖面为我国中上元古界标准剖面,下部主要由粗至中粒砂岩组成,发育交错层理,表明其沉积水深较浅、水动力较强,为潮间带至正常浪基面以上的浅潮下带沉积;上部为红绿色页岩夹砂岩(图3a、3b),缺乏水体扰动构造,表明其沉积期水深相对较深、水动力较弱,为风暴浪基面与正常浪基面之间的深潮下带沉积(Kuang et al., 2023).怀来剖面与蓟县剖面在沉积特征和序列上相似,表现为下粗上细的特征(图2).下部为发育斜层理的中粗粒砂岩(图3c),向上过渡为含海绿石或鲕绿泥石的中细粒砂岩(图3d).上部为细至粉砂岩夹页岩(图3e),缺乏水体扰动构造.这样的沉积序列变化表明水深逐渐加深,沉积环境由浅潮下带向深潮下带转变(王立峰等, 2000; 杜汝霖等, 2009).门头沟剖面下部以砂岩夹泥质粉砂岩为主,上部以中厚层砂岩为主(图3f),均发育有交错层理(图3g),表明长龙山期该地区水深较浅、水动力较强,为正常浪基面以下的浅潮下带沉积(杜汝霖等, 2009; Kuang et al., 2023).卢龙剖面的沉积序列与蓟县剖面相似,上部以绿色页岩和粉砂岩为主,夹薄层中粗粒砂岩(图3h、3i),缺乏水体扰动的标志,表明水深相对较深、水动力弱,为风暴浪基面至正常浪基面之间的深潮下带沉积.

目前,长龙山组缺乏直接的年龄约束,但Kuang et al.(2023)通过地层对比和化石分析认为,京津冀地区的长龙山组‒景儿峪组可与胶辽地区的钓鱼台组‒南芬组进行对比(图2).两者在沉积序列及化石群特征上相似,均由灰绿色泥岩、砂岩和粉砂岩过渡至红色泥岩和淡青色灰岩(辽宁省地质勘查院, 2017);化石群均包含ChuariaShouhsienia组合以及相似的微古植物(朱士兴等, 2012).来自钓鱼台组的最年轻碎屑锆石年龄峰值为(1 136±11) Ma(n=33)(Zhao et al., 2020);而南芬组上覆地层桥头组的基性岩脉锆石年龄为945~920 Ma(Zhang et al., 2016bZhao et al., 2020).因此,钓鱼台组‒南芬组的年龄范围为约1 136 Ma至945 Ma(图2Zhao et al., 2020).也有研究表明,长龙山组与下伏下马岭组属于连续沉积,可能形成于约 1.35 Ga(Kuang et al., 2023);而另一些研究则表明该组年龄约为950~850 Ma(Wang et al., 2021).笔者对蓟县长龙山组上部海绿石的LA⁃ICP⁃MS/MS原位Rb⁃Sr测年结果为(1 060±20) Ma(未刊数据).据此,长龙山组的沉积年龄应属中元古代末期.

2 样品和方法

本文选取华北地区4条长龙山组剖面进行研究,自西向东依次为:河北怀来剖面(40°29′01.90″ N, 115°27′26.15″ E;图1b)、北京门头沟剖面 (40°02′10″ N, 115°52′25″ E;图1c)、天津蓟县剖面(40°04′35.85″ N, 117°25′45.46″ E;图1d)和河北卢龙剖面(39°46′16.23″ N, 118°49′53.95″ E;图1e).其中,怀来剖面长龙山组地层出露完整,以2 m间隔自底至顶系统采样;门头沟剖面因一段覆盖严重,采样集中于二段绿色砂岩,采样间隔为 2 m;蓟县和卢龙剖面二段以页岩和粉砂岩为主,采样以绿色粗碎屑岩夹层为主;共采集含海绿石或鲕绿泥石碎屑岩样品100余块.样品经去皮处理,仅使用其新鲜中心部分进行岩石薄片分析.

岩石薄片的显微观察在中国地质大学(北京)场发射扫描电子显微镜(FESEM)实验室进行.首先,使用Stereo Discovery V20型体式显微镜进行大范围观察,随后采用Zeiss Axio Scope A1型偏光显微镜进行高倍放大分析.薄片的微观结构通过Zeiss Supra 55型FESEM进行研究,加速电压设置为20 kV,工作距离约15 mm.形貌特征由SE2探测器表征,成分差异由AsB探测器揭示.为确保显微照片清晰且样品具备良好的导电性,分析前在样品表面喷镀10 nm厚碳层.矿物元素浓度通过与FESEM连接的Oxford能谱仪(EDS)进行定量分析,信号采集点直径约为2 μm.使用MINM25⁃53中的黑云母作为参考标准,单点重复分析误差小于1.2%.

本文选取了两类典型样品粉末进行X射线粉晶衍射(XRD)分析,仪器为日本Rigaku公司研发的Smart Lab.该设备配备旋转靶铜Kα1射线源、石墨单色器及闪烁探测器,衍射角范围为3°~140°.实验条件为:加速电压40 kV,电流 200 mA,扫描速度0.02 °/s,扫描范围为3°~70°.

3 结果

长龙山组砂岩中的黏土矿物含量和类型在不同剖面差异显著(图2),其含量最高可达15%(图4~图8).怀来和门头沟剖面的黏土矿物以鲕绿泥石为主,仅在一段下部和二段产化石层及其邻近层位(海侵导致水深加大)发育较多海绿石;而蓟县和卢龙剖面二段的黏土矿物则以海绿石为主(图2图4~图9).这些黏土矿物呈片状聚合体(图4f、图5f、图6f、图7f),主要以两种形式产出:一是以孔隙充填形式出现在陆源碎屑之间的孔隙中,其边界受控于碎屑轮廓(图5b、图6b);二是以具一定磨圆度的颗粒形式存在,粒径通常大于或等于周围的陆源碎屑颗粒(图4b、7b).

怀来剖面化石层位海绿石呈绿色(图4a、4b),在正交偏光下呈墨绿色(图4c),其成分较为均匀(图4d、4e).鲕绿泥石呈黄绿色(图5a、5b),正交偏光下呈墨绿色(图5c);成分不均一,表现为多个细小颗粒状鲕绿泥石(亮色)被后期的鲕绿泥石胶结(暗色),从而形成更大的集合体(图5d、5e).门头沟剖面鲕绿泥石呈暗绿色(图6a、6b),在正交偏光下呈墨绿色(图6c),与海绿石在光学显微镜下无显著差异.扫描电镜背散射成像和能谱分析显示,同一样品中可同时存在海绿石和鲕绿泥石颗粒(图6d、6e).海绿石和鲕绿泥石颗粒内均可见后期鲕绿泥石脉体(图6e、6f).鲕绿泥石颗粒内部成分不均一,可见少量海绿石残余(图6g).在蓟县剖面,海绿石在单偏光下呈绿色(图7a、7b),在正交偏光下呈墨绿色(图7c);其内部成分均一,偶见少量石英脉穿插(图7d、7e).卢龙剖面海绿石呈黄绿至绿色(图8a、8b),在正交偏光下呈墨绿色(图8c);其内部成分较为均一,但海绿石颗粒边缘常被少量鲕绿泥石细脉穿插(图8d~8f).

长龙山组的海绿石表现出高钾低铁的特征(图9a,附表1),而鲕绿泥石则相反(图9b,附表1).海绿石的K2O含量(质量分数)多集中在7%~10%之间,TFe2O3含量约为10%;鲕绿泥石理论上不含钾,检测到的钾含量可能源自少量亚微米级海绿石的混入,而低钾端元的鲕绿泥石中TFe2O3含量可高达40%(图9d).XRD粉晶衍射分析结果显示,门头沟剖面砂岩中的黏土矿物以鲕绿泥石为主,而卢龙剖面则以海绿石为主(图9c),这一结果与能谱分析一致(图9d,附表1).此外,XRD分析还表明,陆源碎屑矿物主要为石英,含少量长石,未检测到其他富铁的陆源碎屑矿物(图9c).

4 讨论

4.1 绿色黏土矿物成因

粗碎屑岩中的陆源碎屑颗粒本身不能反映海水的化学条件,但原位形成的黏土矿物具有重要的沉积环境指示意义(Tang et al., 2017a,2017bBanerjee et al., 2020Ma et al., 2022).在本文研究的样品中,部分黏土矿物呈不规则形态,充填于陆源碎屑之间的孔隙,其边界受控于碎屑颗粒的轮廓(图5b、图6b),这表明其形成于成岩阶段,而非异地搬运阶段.另一部分黏土矿物表现出相似于碎屑颗粒的磨圆特征(图4b、图7b),可能表明它们源自异地搬运.这些黏土矿物由纳米级片状矿物聚集而成(图4f、图5f、图6f、图7h),比其他碎屑矿物(如石英)更易磨损.尽管如此,它们的粒径通常大于周围的碎屑颗粒,这意味着它们仅经历了较短距离的搬运,仍具有反映沉积环境条件的潜力.

沉积物中的黏土矿物可由原生、早期成岩、晚期成岩或改造作用形成,但只有原生和早期成岩的黏土矿物才能有效指示原生沉积环境.在本文研究的样品中,部分黏土矿物表现出基质支撑作用,陆源碎屑颗粒可“悬浮”其中(图8a),这表明这些黏土矿物可能源自原生或早期成岩作用.此外,部分黏土矿物以碎屑颗粒的形式存在(图4b、图6d、图7b、图8b),这一现象同样支持其原生至早期成岩成因的假设,表明这些黏土矿物最初在沉积物表层形成,后经风浪破碎并被搬运再沉积.值得注意的是,本研究中的鲕绿泥石除以孔隙充填和碎屑颗粒形式存在外,还以细脉状形式切割海绿石颗粒(图6e、6f、6g,图8d~8f).这种脉状产出的鲕绿泥石为次生成因,不具备指示沉积环境条件的能力.

4.2 绿色黏土矿物重建长龙山期氧化还原条件

海绿石[(K,Na)(Fe,Al,Mg)2(Si,Al)4O10(OH)2]属于具有二八面体结构的黏土矿物,含有三价和二价铁.因此,早期成岩形成的海绿石可以指示次氧化的孔隙水环境(Banerjee et al., 2015Tang et al., 2017a).鲕绿泥石[(Fe2+,Mg,Al,Fe3+6(Si4-x,Al x )O10(OH)8]是具有三八面体结构的黏土矿物,铁主要以二价形式存在.鲕绿泥石通常由磁绿泥石在晚期成岩阶段发生结构转变而形成,而磁绿泥石在缺氧富铁条件下由海绿石转变或自生形成(Tang et al., 2017b).因此,早期成岩的磁绿泥石(后转化为鲕绿泥石)指示缺氧铁化的孔隙水环境(Tang et al., 2017bBansal et al., 2020; Ma et al., 2022).通过分析这些黏土矿物在自生过程中铁的来源,可以进一步推断底层海水的氧化还原条件(Tang et al., 2017a,2017b).若铁完全来源于含铁的陆源碎屑,并在早期成岩阶段释放进入孔隙水,那么这些黏土矿物则不具备反映底层海水化学条件的能力.然而,由于黏土矿物在砂岩中的丰度较高(图5a、图6a、图7a、图8a),这要求有大量的陆源碎屑铁供应,同时在早期成岩阶段需要较高含量的有机质作为还原剂活化碎屑铁.XRD和显微观察结果表明,长龙山组砂岩中除了黏土矿物富铁外,几乎没有其他富铁碎屑矿物,且未见高有机质特征(图4~图8).因此,这些自生黏土矿物所需的铁应主要来源于富铁的海水.海绿石形成于次氧化带,不仅有利于二价铁在海水中的迁移,还可部分氧化生成三价铁(Tang et al., 2017a);而鲕绿泥石则主要形成于缺氧铁化的海水环境(Tang et al., 2017b; Bansal et al., 2020; Ma et al., 2022).

自生黏土矿物在时间和空间分布上的差异(图2)可能表明,长龙山组沉积期浅海氧化还原条件存在显著的时空异质性.纵向上,怀来剖面的黏土矿物以鲕绿泥石为主(图2图5),代表了长期缺氧铁化条件;仅一段下部和二段化石层及其邻近层位以海绿石为主(图2图4),指示了次氧化条件.值得注意的是,海绿石产出于相对深水的风暴浪基面附近,而鲕绿泥石产出于风暴浪基面之上的深潮下带至浅潮下带环境.换言之,并非水深变浅,而是氧化还原界面加深导致了鲕绿泥石向海绿石的转变.横向上,相对局限的怀来和门头沟剖面(王立峰等, 2000; 杜汝霖等, 2009)深潮下带至浅潮下带产出大量鲕绿泥石,指示缺氧铁化的化学条件可扩张至正常浪基面之上(图10).相反,在相对开放的蓟县(图7)和卢龙(图8)剖面的深潮下带中均发育大量海绿石,且沉积水深可达风暴浪基面,指示这些区域的风暴浪基面附近可能处于次氧化环境,且次氧化与缺氧铁化的界面较深(图10).在本文研究的多个剖面普遍产出海绿石,更可能指示该时期发生了广泛的增氧过程.根据现有资料,这些地区的氧化还原界面深度明显大于元古宙中期的其他时段(正常浪基面之上; Luo et al., 2014Tang et al., 2017aLin et al., 2019),与~1.4 Ga增氧事件期间的氧化还原界面深度相当(风暴浪基面之下;Tang et al., 2020),表明在该时期浅海氧化得到了显著增强.

4.3 对冠群真核生物演化的启示

浅海氧化还原条件对真核生物演化具有重要影响.真核生物因线粒体有氧呼吸的需求而依赖氧气(Jahnke and Klein, 1979,1983Stolper et al., 2010).研究表明,早期后生动物如海绵的需氧量至少为0.5%~4% PAL(Mills et al., 2014),而冠群真核生物多样化的最低需氧量为2%~3% PAL(Mills et al., 2024).因此,在元古宙中期长期低氧背景下(Planavsky et al., 2014; Lyons et al., 2021),多次短期增氧事件可能是促进真核生物快速演化的关键因素(Zhang et al., 2018; Shang et al., 2019).本研究表明,怀来、蓟县、卢龙地区氧化水体的扩展导致氧化还原界面下移.一方面,这为冠群真核生物(如怀来剖面)提供了足够的氧气;另一方面,浅海和大气增氧分别通过增强固氮作用(N2→NO3-Stüeken et al., 2016)和提高向海洋输入硫酸盐(磷再循环增强;Alcott et al., 2022)过程增加营养盐(N和P)的可得性,从而扩展真核生物的生态空间并促进以Longfengshania为代表的宏体多细胞生物的演化(Jing et al., 2022Wang et al., 2021).然而,该时期氧化水体的时空分布不连续,限制了真核生物的持续广泛发展.

5 结论

通过对华北中元古代末期长龙山组多个剖面的沉积学和矿物学研究,得出以下结论:

(1)陆源碎屑沉积岩中的自生黏土矿物形成与水体的氧化还原条件密切相关:自生海绿石通常指示次氧化环境,而自生鲕绿泥石则指示缺氧铁化环境.

(2)怀来(化石层位)、蓟县、卢龙地区的长龙山组主要沉积于风暴浪基面至浅潮下带环境,发育大量早期成岩自生海绿石,表明风暴浪基面附近为次氧化环境.怀来(非化石层位)和门头沟地区的沉积岩中含大量鲕绿泥石,指示正常浪基面上为缺氧铁化环境.

(3)尽管该时期的氧化水体扩展和氧化还原界面加深有利于冠群真核生物的演化,但氧化水体的时空分布不连续性可能限制了真核生物的广泛分布.

参考文献

[1]

Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth’s Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15: 210-215. https://doi.org/10.1038/s41561⁃022⁃00906⁃5

[2]

Banerjee, S., Choudhury, T. R., Saraswati, P. K., et al., 2020. The Formation of Authigenic Deposits during Paleogene Warm Climatic Intervals: A Review. Journal of Palaeogeography, 9(1): 27. https://doi.org/10.1186/s42501⁃020⁃00076⁃8

[3]

Banerjee, S., Mondal, S., Chakraborty, P. P., et al., 2015. Distinctive Compositional Characteristics and Evolutionary Trend of Precambrian Glaucony: Example from Bhalukona Formation, Chhattisgarh Basin, India. Precambrian Research, 271: 33-48. https://doi.org/10.1016/j.precamres.2015.09.026

[4]

Bansal, U., Banerjee, S., Nagendra, R., 2020. Is the Rarity of Glauconite in Precambrian Bhima Basin in India Related to Its Chloritization? Precambrian Research, 336: 105509. https://doi.org/10.1016/j.precamres.2019.105509

[5]

Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale⁃Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1

[6]

Deng, Y., Wang, H. J., Lü, D., et al., 2021. Evolution of the 1.8-1.6 Ga Yanliao and Xiong’er Basins, North China Craton. Precambrian Research, 365: 106383. https://doi.org/10.1016/j.precamres.2021.106383

[7]

Du, R. L., 1982. The Discovery of the Fossils such as Chuaria in the Qingbaikou System in Northwestern Hebei and Their Significance. Geological Review, 28(1): 1-6 (in Chinese with English abstract).

[8]

Du, R. L., Tian, L. F., 1985. Discovery and Preliminary Study of Mega⁃Alga Longfengshania from the Qingbaikou System of the Yanshan Mountain Area. Acta Geological Sinica, 59(3): 183-190 (in Chinese with English abstract).

[9]

Du, R. L, Tian, L. F., Hu, H. B., et al., 2009. The Neoproterozoic Qingbaikou Period Longfengshan Biota. Science Press, Beijing (in Chinese).

[10]

Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009. Reclassification of the Meso⁃ and Neoproterozoic Chronostratigraphy of North China by SHRIMP Zircon Ages. Acta Geologica Sinica⁃English Edition, 83(6): 1074-1084. https://doi.org/10.1111/j.1755⁃6724.2009.00135.x

[11]

Gilleaudeau, G. J., Frei, R., Kaufman, A. J., et al., 2016. Oxygenation of the Mid⁃Proterozoic Atmosphere: Clues from Chromium Isotopes in Carbonates. Geochemical Perspectives Letters,2(2): 178-187. https://doi.org/10.7185/geochemlet.1618

[12]

Gong, H., Gao, F. H., Jia, X. Y., 2023. The Response of Geochemical Characteristics to Neoproterozoic Great Oxidation Event from Nanfen Formation in Tonghua Area. Journal of Jilin University (Earth Science Edition), Online (in Chinese with English abstract).

[13]

Jahnke, L., Klein, H. P., 1979. Oxygen as a Factor in Eukaryote Evolution: Some Effects of Low Levels of Oxygen on Saccharomyces Cerevisiae. Origins of Life, 9(4): 329-334. https://doi.org/10.1007/BF00926825

[14]

Jahnke, L., Klein, H. P., 1983. Oxygen Requirements for Formation and Activity of the Squalene Epoxidase in Saccharomyces Cerevisiae. Journal of Bacteriology, 155(2): 488-492. https://doi.org/10.1128/jb.155.2.488⁃492.1983

[15]

Jing, Y. H., Chen, Z. Q., Anderson, R. P., et al., 2022. Microscopic and Geochemical Analyses of the Tonian Longfengshan Biota from the Luotuoling Formation (Hebei Province, North China) with Taphonomic Implications. Precambrian Research, 382: 106899. https://doi.org/10.1016/j.precamres.2022.106899

[16]

Kuang, H. W., Peng, N., Liu, Y. Q., et al., 2023. Is There a Great Unconformity between Xiamaling and Longshan Formations in the North China Craton? Science China Earth Sciences, 66(5): 959-984. https://doi.org/10.1007/s11430⁃022⁃1034⁃9

[17]

Li, H. K., Lu, S. N., Su, W. B., et al., 2013. Recent Advances in the Study of the Mesoproterozoic Geochronology in the North China Craton. Journal of Asian Earth Sciences, 72: 216-227. https://doi.org/10.1016/j.jseaes.2013.02.020

[18]

Liaoning Institute of Geological Exploration, 2017. Regional Geology of China⁃Records of Liaoning. Geological Publishing House, Beijing (in Chinese).

[19]

Lin, Y. T., Tang, D. J., Shi, X. Y., et al., 2019. Shallow⁃Marine Ironstones Formed by Microaerophilic Iron⁃Oxidizing Bacteria in Terminal Paleoproterozoic. Gondwana Research, 76: 1-18. https://doi.org/10.1016/j.gr.2019.06.004

[20]

Lü, D., Deng, Y., Wang, H. J., et al., 2021. Using Cyclostratigraphic Evidence to Define the Unconformity Caused by the Mesoproterozoic Qinyu Uplift in the North China Craton. Journal of Asian Earth Sciences, 206: 104608. https://doi.org/10.1016/j.jseaes.2020.104608

[21]

Lü, D., Deng, Y., Wang, X. M., et al., 2022. New Chronological and Paleontological Evidence for Paleoproterozoic Eukaryote Distribution and Stratigraphic Correlation between the Yanliao and Xiong’er Basins, North China Craton. Precambrian Research, 371: 106577. https://doi.org/10.1016/j.precamres.2022.106577

[22]

Lu, S. N., Yang, C. L., Li, H. K., et al., 2002. A Group of Rifting Events in the Terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. https://doi.org/10.1016/S1342⁃937X(05)70896⁃0

[23]

Lu, S. N., Zhao, G. C., Wang, H. C., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1-2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017

[24]

Luo, G. M., Junium, C. K., Kump, L. R., et al., 2014. Shallow Stratification Prevailed for ∼1 700 to ∼1 300 Ma Ocean: Evidence from Organic Carbon Isotopes in the North China Craton. Earth and Planetary Science Letters, 400: 219-232. https://doi.org/10.1016/j.epsl.2014.05.020

[25]

Lyons, T. W., Diamond, C. W., Planavsky, N. J., et al., 2021. Oxygenation, Life, and the Planetary System during Earth’s Middle History: An Overview. Astrobiology, 21(8): 906-923. https://doi.org/10.1089/ast.2020.2418

[26]

Ma, J. B., Shi, X. Y., Lechte, M., et al., 2022. Mesoproterozoic Seafloor Authigenic Glauconite⁃Berthierine: Indicator of Enhanced Reverse Weathering on Early Earth. American Mineralogist, 107(1): 116-130. https://doi.org/10.2138/am⁃2021⁃7904

[27]

Miao, L., Yin, Z., Knoll, A. H., et al., 2024. 1.63⁃Billion⁃Year⁃Old Multicellular Eukaryotes from the Chuanlinggou Formation in North China. Sci Adv, 10(4): eadk3208. https://doi.org/10.1126/sciadv.adk3208

[28]

Mills, B., Lenton, T. M., Watson, A. J., 2014. Proterozoic Oxygen Rise Linked to Shifting Balance between Seafloor and Terrestrial Weathering. Proceedings of the National Academy of Sciences of the United States of America, 111(25): 9073-9078. https://doi.org/10.1073/pnas.1321679111

[29]

Mills, D. B., Simister, R. L., Sehein, T. R., et al., 2024. Constraining the Oxygen Requirements for Modern Microbial Eukaryote Diversity. Proceedings of the National Academy of Sciences of the United States of America, 121(2): e2303754120. https://doi.org/10.1073/pnas.2303754120

[30]

Niu, S. W., 2019. More on the Morphological Characteristics and Systematic Texology of Genus Longfengshania Du, 1982 (Magascopic Alga). Geological Bulletin of China, 38(8): 1259-1265 (in Chinese with English abstract).

[31]

Planavsky, N. J., Reinhard, C. T., Wang, X. L., et al., 2014. Low Mid⁃Proterozoic Atmospheric Oxygen Levels and the Delayed Rise of Animals. Science, 346(6209): 635-638. https://doi.org/10.1126/science.1258410

[32]

Qiao, X. F., Gao, L. Z., Zhang, C. H., 2007. New Idea of the Meso⁃ and Neoproterozoic Chronostratigraphic Chart and Tectonic Environment in Sino⁃Korean Plate. Geological Bulletin of China, 26(5): 503-509 (in Chinese with English abstract).

[33]

Reinhard, C. T., Planavsky, N. J., Olson, S. L., et al., 2016. Earth’s Oxygen Cycle and the Evolution of Animal Life. Proceedings of the National Academy of Sciences of the United States of America, 113(32): 8933-8938. https://doi.org/10.1073/pnas.1521544113

[34]

Shang, M. H., Tang, D. J., Shi, X. Y., et al., 2019. A Pulse of Oxygen Increase in the Early Mesoproterozoic Ocean at Ca. 1.57-1.56 Ga. Earth and Planetary Science Letters, 527: 115797. https://doi.org/10.1016/j.epsl.2019.115797

[35]

Stolper, D. A., Revsbech, N. P., Canfield, D. E., 2010. Aerobic Growth at Nanomolar Oxygen Concentrations. Proceedings of the National Academy of Sciences, 107(44): 18755-18760. https://doi.org/10.1073/pnas.1013435107

[36]

Stüeken, E. E., Kipp, M. A., Koehler, M. C., et al., 2016. The Evolution of Earth’s Biogeochemical Nitrogen Cycle. Earth⁃Science Reviews, 160: 220-239. https://doi.org/10.1016/j.earscirev.2016.07.007

[37]

Su, W. B., Li, H. K., Warren, D. H., et al., 2010. Zircon SHRIMP U⁃Pb Ages of Tuff in the Tieling Formation and Their Geological Significance. Chinese Science Bulletin, 55(29): 3312-3323. https://doi.org/10.1007/s11434⁃010⁃4007⁃5

[38]

Tang, D. J., Ma, J. B., Shi, X. Y., et al., 2020. The Formation of Marine Red Beds and Iron Cycling on the Mesoproterozoic North China Platform. American Mineralogist, 105(9): 1412-1423. https://doi.org/10.2138/am⁃2020⁃7406

[39]

Tang, D. J., Shi, X. Y., Jiang, G. Q., et al., 2017b. Ferruginous Seawater Facilitates the Transformation of Glauconite to Chamosite: An Example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist, 102(11): 2317-2332. https://doi.org/10.2138/am⁃2017⁃6136

[40]

Tang, D. J., Shi, X. Y., Ma, J. B., et al., 2017a. Formation of Shallow⁃Water Glaucony in Weakly Oxygenated Precambrian Ocean: An Example from the Mesoproterozoic Tieling Formation in North China. Precambrian Research, 294: 214-229. https://doi.org/10.1016/j.precamres.2017.03.026

[41]

Tang, D. J., Shi, X. Y., Wang, X. Q., et al., 2016. Extremely Low Oxygen Concentration in Mid⁃Proterozoic Shallow Seawaters. Precambrian Research, 276: 145-157. https://doi.org/10.1016/j.precamres.2016.02.005

[42]

Tang, F., 1995. Macroalgal Fossil of Changlongshan Stage in Beijing Region and Their Significance. Professional Papers of Stratigraphy and Palaeontology, 26: 24-36 (in Chinese with English abstract).

[43]

Wang, H. Y., Liu, A. R., Li, C., et al., 2021. A Benthic Oxygen Oasis in the Early Neoproterozoic Ocean. Precambrian Research, 355: 106085. https://doi.org/10.1016/j.precamres.2020.106085

[44]

Wang, H. Z., 1985. Atlas of the Palaeogeography of China. Cartographic Publishing House, Beijing (in Chinese).

[45]

Wang, H. Z., Shi, X. Y., Wang, X. L., et al., 2001. Research on the Sequence Stratigraphy of China. Guangdong Science and Technology Press, Guangzhou (in Chinese).

[46]

Wang, L. F., Li, W. X., Luo, J. L., et al., 2000. The Study on Sedimentary Facies of Changlongshan Formation of Neoproterozoic Era in Huailai, Hebei. World Geology, 19(2): 138-143 (in Chinese with English abstract).

[47]

Xie, B. Z., Zhu, J. M., Wang, X. L., et al., 2023. Mesoproterozoic Oxygenation Event: From Shallow Marine to Atmosphere. GSA Bulletin, 135(3-4): 753-766. https://doi.org/10.1130/b36407.1

[48]

Yang, X. Q., Yang, G. W., Li, C., et al., 2025. Pulse of Intense Oxidative Weathering during the Latest Paleoproterozoic. Geology, 53(1): 78-82. https://doi.org/10.1130/g52373.1

[49]

Zhai, M. G., Zhu, X. Y., Zhou, Y. Y., et al., 2020. Continental Crustal Evolution and Synchronous Metallogeny through Time in the North China Craton. Journal of Asian Earth Sciences, 194: 104169. https://doi.org/10.1016/j.jseaes.2019.104169

[50]

Zhang, K., Zhu, X. K., Wood, R. A., et al., 2018. Oxygenation of the Mesoproterozoic Ocean and the Evolution of Complex Eukaryotes. Nature Geoscience, 11(5): 345-350. https://doi.org/10.1038/s41561⁃018⁃0111⁃y

[51]

Zhang, S. C., Su, J., Ma, S. H., et al., 2021. Eukaryotic Red and Green Algae Populated the Tropical Ocean 1 400 Million Years Ago. Precambrian Research, 357: 106166. https://doi.org/10.1016/j.precamres.2021.106166

[52]

Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016a. Sufficient Oxygen for Animal Respiration 1, 400 Million Years Ago. Proceedings of the National Academy of Sciences, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113

[53]

Zhang, S. H., Zhao, Y., Ye, H., et al., 2016b. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre⁃Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203-225. https://doi.org/10.1016/j.precamres.2015.11.005

[54]

Zhang, S., Wang, X., Hammarlund, E. U., et al., 2015. Orbital Forcing of Climate 1.4 Billion Years Ago. Proceedings of the National Academy of Sciences, 112(12): E1406-E1413. https://doi.org/10.1073/pnas.1502239112

[55]

Zhao, G. C., Li, S. Z., Sun, M., et al., 2011. Assembly, Accretion, and Break⁃Up of the Palaeo⁃ Mesoproterozoic Columbia Supercontinent: Record in the North China Craton Revisited. International Geology Review, 53(11-12): 1331-1356. https://doi.org/10.1080/00206814.2010.527631

[56]

Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. Geological Society of America Bulletin, 132(3-4): 739-766. https://doi.org/10.1130/B35198.1

[57]

Zhou, H. R., Mei, M. X., Luo, Z. Q., et al., 2006. Sedimentary Sequence and Stratigraphic Framework of the Neoproterozoic Qingbaikou System in the Yanshan Region, North China. Earth Science Frontiers, 13(6): 280-290 (in Chinese with English abstract).

[58]

Zhu, S. X., Liu, H., Hu, J., 2012. On the Disintegration of the Neoproterozoic Qingbaikouan System in Yanshan Range, North China. North China Geology, 35(2): 81-95 (in Chinese with English abstract).

[59]

Zhu, S. X., Zhu, M. Y., Knoll, A. H., et al., 2016. Decimetre⁃Scale Multicellular Eukaryotes from the 1.56⁃ Billion⁃Year⁃Old Gaoyuzhuang Formation in North China. Nature Communications, 7: 11500. https://doi.org/10.1038/ncomms11500

基金资助

国家自然科学基金重点项目(41930320)

AI Summary AI Mindmap
PDF (6297KB)

111

访问

0

被引

详细

导航
相关文章

AI思维导图

/