海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义
王家生 , 宋强 , 林杞 , 许力源 , 陈粲 , 王舟 , 耿坤龙
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 908 -917.
海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义
Enlargement of Pyrite Framboid Size in Sulfate⁃Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event
,
海洋沉积物或海相地层中莓球状黄铁矿的莓球粒径大小和偏差被广泛应用于推测水体的氧化还原沉积环境.然而,在现代海洋天然气水合物赋存海区沉积物中硫酸盐‒甲烷转换带(SMTZ)内,甲烷厌氧氧化作用(AOM)成因的黄铁矿莓球粒径出现异常增大现象.当天然气水合物失稳引起异常多数量甲烷释放时,SMTZ位置可能跃升至沉积柱浅表层、海底甚至海水中,可能引起水体的缺氧、酸化和分层等变化;与此同时,增强的AOM仍会促进沉积物中黄铁矿的莓球粒径异常增大,因此有必要重新评估前人依据黄铁矿莓球粒径推测水体氧化还原环境的判别标准.莓球粒径>20 μm或莓球内核粒径平均>12 μm、标准偏差>3 μm的莓球状黄铁矿可能是海洋“甲烷事件”发生时的产物.
Single framboid size and deviation of pyrites in marine sediments or strata have been widely used as a useful proxy to indicate the seawater redox environment. However, our recent data about pyrite framboid size from the modern sediments bearing nature gas hydrate show a tremendous increasing trend in pyrite framboid size within the sulfate-methane transition zone (SMTZ), indicating the anaerobic oxidation of methane (AOM) dominated in SMTZ might play a key role to enhance the enlargement of pyrite framboid size. In case of large methane release caused by dissociation of gas hydrate (so called methane event), the rising SMTZ position would move up to shallow sediment or near seafloor and even into bottom seawater, most likely resulting into some anaerobic and acid environmental changes in bottom seawater. Meanwhile, the enhancing AOM coupled with the methane event will still greatly enlarge the pyrite framboid size in sediments. So in this situation, the traditional critical relationship between the pyrite framboid size and seawater redox environment will be no longer functional and need to be modified. It is proposed that the coupling of average framboid size >20 μm or core size >12 μm and deviation >3 μm might be used as a critical proxy to indicate the environment of marine methane event.
黄铁矿莓球粒径 / 硫酸盐‒甲烷转换带 / 甲烷事件 / 甲烷厌氧氧化作用 / 海水氧化还原环境 / 沉积学 / 矿物学.
pyrite framboidal size / sulfate⁃methane transition zone / methane event / anaerobic oxidation of methane / seawater redox environment / sedimentology / mineralogy
| [1] |
Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572 |
| [2] |
Bond, D. P., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian⁃Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7-8): 1265-1279. https://doi.org/10.1130/B30042.1 |
| [3] |
Borowski, W. S., Paull, C. K., Ussler, W., 1996. Marine Pore⁃Water Sulfate Profiles Indicate in Situ Methane Flux from Underlying Gas Hydrate. Geology, 24(7): 655. https://doi.org/10.1130/0091⁃7613(1996)0240655: mpwspi>2.3.co;2 |
| [4] |
Butler, I. B., Rickard, D., 2000. Framboidal Pyrite Formation via the Oxidation of Iron (II) Monosulfide by Hydrogen Sulphide. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. https://doi.org/10.1016/S0016⁃7037(00)00387⁃2 |
| [5] |
Chang, X. L., Huang, Y. G., Chen, Z. Q., et al., 2020. The Microscopic Analysis of Pyrite Framboids and Application in Paleo⁃Oceanography. Acta Sedimentologica Sinica, 38(1): 150-165 (in Chinese with English abstract). |
| [6] |
Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate⁃Driven Anaerobic Oxidation of Methane Inferred from Trace⁃Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002 |
| [7] |
Chen, C., Wang, J. S., Algeo, T. J., et al., 2025. Trace Elements of Pyrite in the Ediacaran Doushantuo Formation Reveal Ancient Methane Release Events. Precambrian Research, 416: 107627. https://doi.org/10.1016/j.precamres.2024.107627 |
| [8] |
Cui, H., Kaufman, A. J., Xiao, S. H., et al., 2017. Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane⁃Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010 |
| [9] |
Dickens, G. R., 2004. Hydrocarbon⁃Driven Warming. Nature, 429: 513-515. https://doi.org/10.1038/429513a |
| [10] |
Dickens, G. R., Castillo, M. M., Walker, J. C., 1997. A Blast of Gas in the Latest Paleocene: Simulating First⁃Order Effects of Massive Dissociation of Oceanic Methane Hydrate. Geology, 25(3): 259-262. https://doi.org/10.1130/0091⁃7613(1997)025<0259: abogit>2.3.co;2 |
| [11] |
Dickens, G. R., Fewless, T., Thomas, E., et al., 2003. Excess Barite Accumulation during the Paleocene⁃Eocene Thermal Maximum: Massive Input of Dissolved Barium from Seafloor Gas Hydrate Reservoirs. In: Wing, S. L., Gingerich, P. D., Schmitz, B., et al., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America, Boulder. https://doi.org/10.1130/0⁃8137⁃2369⁃8.11 |
| [12] |
Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021 |
| [13] |
Han, X. Q., Suess, E., Huang, Y. Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. https://doi.org/10.1016/j.margeo.2007.11.012 |
| [14] |
Heilig, G. K., 1994. The Greenhouse Gas Methane (CH4): Sources and Sinks, the Impact of Population Growth, Possible Interventions. Population and Environment, 16(2): 109-137. https://doi.org/10.1007/BF02208779 |
| [15] |
Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1 |
| [16] |
Kim, B., Zhang, Y. G., 2022. Methane Hydrate Dissociation across the Oligocene⁃Miocene Boundary. Nature Geoscience, 15: 203-209. https://doi.org/10.1038/s41561⁃022⁃00895⁃5 |
| [17] |
Lin, Q., 2016. Characteristics of Authigenic Minerals in Sediments of Natural Gas Hydrate Occurrence Area in the Northern South China Sea and Its Indication Significance of Sulfate⁃Methane Transition Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [18] |
Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016a. Enhanced Framboidal Pyrite Formation Related to Anaerobic Oxidation of Methane in the Sulfate⁃Methane Transition Zone of the Northern South China Sea. Marine Geology, 379: 100-108. https://doi.org/10.1016/j.margeo.2016.05.016 |
| [19] |
Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016b. Formation Mechanism of Authigenic Gypsum in Marine Methane Hydrate Settings: Evidence from the Northern South China Sea. Deep Sea Research Part I: Oceanographic Research, 115: 210-220. https://doi.org/10.1016/j.dsr.2016.06.010 |
| [20] |
Lin, Q., Wang, J. S., Taladay, K., et al., 2016c. Coupled Pyrite Concentration and Sulfur Isotopic Insight into the Paleo Sulfate⁃Methane Transition Zone (SMTZ) in the Northern South China Sea. Journal of Asian Earth Sciences, 115: 547-556. https://doi.org/10.1016/j.jseaes.2015.11.001 |
| [21] |
Liu, J. R., Izon, G., Wang, J. S., et al., 2018. Vivianite Formation in Methane⁃Rich Deep⁃Sea Sediments from the South China Sea. Biogeosciences, 15(20): 6329-6348. https://doi.org/10.5194/bg⁃15⁃6329⁃2018 |
| [22] |
Miao, X. M., Feng, X. L., Liu, X. T., et al., 2021. Effects of Methane Seepage Activity on the Morphology and Geochemistry of Authigenic Pyrite. Marine and Petroleum Geology, 133: 105231. https://doi.org/10.1016/j.marpetgeo.2021.105231 |
| [23] |
Ohfuji, H., Rickard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth⁃Science Reviews, 71(3-4): 147-170. https://doi.org/10.1016/j.earscirev.2005.02.001 |
| [24] |
Rust, G. W., 1935. Colloidal Primary Copper Ores at Cornwall Mines, Southeastern Missouri. Journal of Geology, 43(4): 398-426. https://doi.org/10.1086/624318 |
| [25] |
Wang, B., Lei, H. Y., Huang, F. F., 2022. Impacts of Sulfate⁃Driven Anaerobic Oxidation of Methane on the Morphology, Sulfur Isotope, and Trace Element Content of Authigenic Pyrite in Marine Sediments of the Northern South China Sea. Marine and Petroleum Geology, 139: 105578. https://doi.org/10.1016/j.marpetgeo.2022.105578 |
| [26] |
Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347-350. https://doi.org/10.1130/G24513A.1 |
| [27] |
Wang, J. S., Lin, Q., Li, Q., et al., 2015. AOM⁃Derived Authigenic Minerals in Marine Sediments and Implication for Ancient Methane Events in Deep Earth. Quaternary Sciences, 35(6): 1383-1392 (in Chinese with English abstract). |
| [28] |
Wang, J. S., Suess, E., 2002. Indicators of δ13C and δ18O of Gas Hydrate⁃Associated Sediments. Chinese Science Bulletin, 47(19): 1659-1663. https://doi.org/10.1007/BF03184118 |
| [29] |
Wang, J. S., Wang, Z., Chen, C., et al., 2024. Authigenic Minerals in Sediments at Marine Gas Hydrate Geosystem. China University of Geosciences Press, Wuhan (in Chinese). |
| [30] |
Wang, J., Suess, E., Rickert, D., 2003. Authigenic Gypsum Found in Gas Hydrate⁃Associated Sediments from Hydrate Ridge, the Eastern North Pacific. Science China: Earth Science, 47(3): 280-288. https://doi.org/10.1360/02yd0069 |
| [31] |
Wang, Z., Chen, C., Wang, J. S., et al., 2020. Wide but not Ubiquitous Distribution of Glendonite in the Doushantuo Formation, South China: Implications for Ediacaran Climate. Precambrian Research, 338: 105586. https://doi.org/10.1016/j.precamres.2019.105586 |
| [32] |
Wang, Z., Wang, J. S., Suess, E., et al., 2017. Silicified Glendonites in the Ediacaran Doushantuo Formation (South China) and Their Potential Paleoclimatic Implications. Geology, 45(2): 115-118. https://doi.org/10.1130/g38613.1 |
| [33] |
Wignall, P. B., Bond, D. P. G., Kuwahara, K., et al., 2010. An 80 Million Year Oceanic Redox History from Permian to Jurassic Pelagic Sediments of the Mino⁃Tamba Terrane, SW Japan, and the Origin of Four Mass Extinctions. Global and Planetary Change, 71(1-2): 109-123. https://doi.org/10.1016/j.gloplacha.2010.01.022 |
| [34] |
Wignall, P. B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298(7): 537-552. https://doi.org/10.2475/ajs.298.7.537 |
| [35] |
Wignall, P. B., Newton, R., Brookfield, M. E., 2005. Pyrite Framboid Evidence for Oxygen⁃Poor Deposition during the Permian⁃Triassic Crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183-188. https://doi.org/10.1016/j.palaeo.2004.10.009 |
| [36] |
Wilkin, R. T., Arthur, M. A., 2001. Variations in Pyrite Texture, Sulfur Isotope Composition, and Iron Systematics in the Black Sea: Evidence for Late Pleistocene to Holocene Excursions of the O2⁃H2S Redox Transition. Geochimica et Cosmochimica Acta, 65(9): 1399-1416. https://doi.org/10.1016/S0016⁃7037(01)00552⁃X |
| [37] |
Wilkin, R. T., Arthur, M. A., Dean, W. E., 1997. History of Water⁃Column Anoxia in the Black Sea Indicated by Pyrite Framboid Size Distributions. Earth and Planetary Science Letters, 148(3/4): 517-525. https://doi.org/10.1016/S0012⁃821X(97)00053⁃8 |
| [38] |
Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016⁃7037(96)00209⁃8 |
| [39] |
Xu, L. Y., 2020. Framboid Size and Microcrystalline Characteristics of Framboidal Pyrite in Sediments from the Northern South China Sea and Their Implications for Sedimentary Environment (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [40] |
Zachos, J. C., Röhl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene⁃Eocene Thermal Maximum. Science, 308(5728): 1611-1615. https://doi.org/10.1126/science.1109004 |
国家自然科学基金项目(42276068)
国家自然科学基金项目(42302215)
国家自然科学基金项目(42472374)
/
| 〈 |
|
〉 |