海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义

王家生 ,  宋强 ,  林杞 ,  许力源 ,  陈粲 ,  王舟 ,  耿坤龙

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 908 -917.

PDF (1493KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 908 -917. DOI: 10.3799/dqkx.2024.132

海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义

作者信息 +

Enlargement of Pyrite Framboid Size in Sulfate⁃Methane Transition Zone of Marine Sediments and Its Implying of Marine Methane Event

Author information +
文章历史 +
PDF (1528K)

摘要

海洋沉积物或海相地层中莓球状黄铁矿的莓球粒径大小和偏差被广泛应用于推测水体的氧化还原沉积环境.然而,在现代海洋天然气水合物赋存海区沉积物中硫酸盐‒甲烷转换带(SMTZ)内,甲烷厌氧氧化作用(AOM)成因的黄铁矿莓球粒径出现异常增大现象.当天然气水合物失稳引起异常多数量甲烷释放时,SMTZ位置可能跃升至沉积柱浅表层、海底甚至海水中,可能引起水体的缺氧、酸化和分层等变化;与此同时,增强的AOM仍会促进沉积物中黄铁矿的莓球粒径异常增大,因此有必要重新评估前人依据黄铁矿莓球粒径推测水体氧化还原环境的判别标准.莓球粒径>20 μm或莓球内核粒径平均>12 μm、标准偏差>3 μm的莓球状黄铁矿可能是海洋“甲烷事件”发生时的产物.

Abstract

Single framboid size and deviation of pyrites in marine sediments or strata have been widely used as a useful proxy to indicate the seawater redox environment. However, our recent data about pyrite framboid size from the modern sediments bearing nature gas hydrate show a tremendous increasing trend in pyrite framboid size within the sulfate-methane transition zone (SMTZ), indicating the anaerobic oxidation of methane (AOM) dominated in SMTZ might play a key role to enhance the enlargement of pyrite framboid size. In case of large methane release caused by dissociation of gas hydrate (so called methane event), the rising SMTZ position would move up to shallow sediment or near seafloor and even into bottom seawater, most likely resulting into some anaerobic and acid environmental changes in bottom seawater. Meanwhile, the enhancing AOM coupled with the methane event will still greatly enlarge the pyrite framboid size in sediments. So in this situation, the traditional critical relationship between the pyrite framboid size and seawater redox environment will be no longer functional and need to be modified. It is proposed that the coupling of average framboid size >20 μm or core size >12 μm and deviation >3 μm might be used as a critical proxy to indicate the environment of marine methane event.

Graphical abstract

关键词

黄铁矿莓球粒径 / 硫酸盐‒甲烷转换带 / 甲烷事件 / 甲烷厌氧氧化作用 / 海水氧化还原环境 / 沉积学 / 矿物学.

Key words

pyrite framboidal size / sulfate⁃methane transition zone / methane event / anaerobic oxidation of methane / seawater redox environment / sedimentology / mineralogy

引用本文

引用格式 ▾
王家生,宋强,林杞,许力源,陈粲,王舟,耿坤龙. 海洋沉积物SMTZ带黄铁矿莓球粒径增大现象的甲烷事件意义[J]. 地球科学, 2025, 50(03): 908-917 DOI:10.3799/dqkx.2024.132

登录浏览全文

4963

注册一个新账户 忘记密码

海相沉积物或地层中莓球状黄铁矿的莓球粒径大小和标准偏差值被广泛应用于推测其形成时海水沉积环境的氧化还原条件,通常按莓球平均粒径大小约7 μm和标准偏差约3 μm为界将相应的水体沉积环境划分为缺氧‒硫化环境(平均粒径约<7 μm和偏差约<3 μm)和氧化‒次氧化环境(平均粒径 约>7 μm和偏差约>3 μm)(Wilkin et al., 1996,1997).尽管也有学者将莓球粒径大小数值调整为约6 μm(Bond and Wignall, 2010),黄铁矿的莓球粒径大小特征与海水氧化还原沉积环境之间关系的判别标准已被长期、广泛应用于古、今海洋的水体氧化还原沉积环境研究中(Bong and Wignall, 2010; Huang et al., 2017Wilkin et al., 2001Wignall et al., 1998,20052010; 常晓琳等, 2020).近年,前人在现代海洋沉积柱的硫酸盐‒甲烷转换带中 (sulfate⁃methane transition zone, 简称SMTZ)发现了莓球粒径异常增大的莓球状黄铁矿,认为其成因可能与甲烷厌氧氧化作用(anaerobic oxidation of methane, 简称AOM)有关(Lin et al., 2016aMiao et al., 2021Wang et al., 2022).海洋天然气水合物的失稳将释放出数量异常多的甲烷(简称“甲烷事件”),促使SMTZ位置上移至沉积物浅表层、海底甚至海水中,并可能导致海水的缺氧、酸化、硫化和分层等沉积环境变化(Dickens et al., 1997Kim and Zhang, 2022Zachos et al., 2005).与此同时,增强的AOM仍将促使沉积物中黄铁矿的莓球粒径异常增大,因此传统的黄铁矿莓球粒径大小与海水氧化还原沉积环境之间的判别标准可能不再适用于海洋甲烷事件发生时期,有必要对传统判别标准进行修正,从中剥离出一些莓球粒径异常大的莓球黄铁矿可能形成于海洋“甲烷事件”发生时的沉积环境.

1 莓球状黄铁矿及其莓球粒径大小与氧化还原沉积环境之间关系

莓球状黄铁矿(framboidal pyrite)是由大小和形态相近的黄铁矿微晶组成的球形‒亚球形黄铁矿聚合体,发育于温度低于4 ℃的硫化水体、缺氧沉积盆地至温度超过200 ℃热液系统水柱、沉积物和地层中.尽管莓球状黄铁矿的研究最早可追溯到20世纪初(Rust, 1935),但直到21世纪初人们才基本确定其物理性质为球状‒亚球状的外部形态和微晶状的内部构造(Ohfuji and Rickard, 2005).迄今为止,室内模拟培养莓球状黄铁矿的实验报道并不多(Butler and Rickard, 2000),那些已报道的室内模拟实验案例中也只有约30%实验结果可以与自然界产出的莓状黄铁矿相比较(Ohfuji and Rickard, 2005).

现代黑海水体和沉积物中莓球状黄铁矿的调查结果表明莓球状黄铁矿的成因与氧化还原条件密切相关,莓球状黄铁矿主要发育在氧化还原界面附近(Wilkin et al., 1996,19972001).在氧化‒贫氧(oxic⁃dysoxic)海水中,氧化还原界面通常位于水‒沉积物界面之下,硫酸盐还原反应在沉积物中持续进行导致局部环境趋向还原甚至硫化;由于反应物不间断地缓慢供给,莓球状黄铁矿的生长可以持续较长时间,形成了莓球粒径较大的莓球状黄铁矿,且粒径分布范围较大(许力源,2022).然而,在缺氧‒硫化(anoxic⁃euxinic)的海水中,氧化还原界面位于水体之中,莓球状黄铁矿的形成过程是在水体中进行的,反应物供给充足,一旦莓球状黄铁矿形成后便会沉入海底,并与表层沉积物一起被埋藏,使得莓球状黄铁矿具有较高的生长速率以及较小的粒径,且粒径分布范围极窄(许力源,2022);同时前人还认为,保存在沉积物中的莓球状黄铁矿的粒径大小和形态很少受到后期成岩作用改造的影响.因此,可以利用海相沉积物或海相地层中莓球状黄铁矿的莓球粒径大小和标准偏差值对当时水体的氧化还原条件进行判断,按莓球粒径大小约7 μm(Wilkin et al., 1996,1997)或6 μm(Bong and Wignall, 2010)和标准偏差约3 μm作为判别标准,将相应的沉积水体简单地划分为氧化‒贫氧(oxic⁃dysoxic)和缺氧‒硫化(anoxic⁃euxinic)两种氧化还原沉积环境(表1).

2 海洋沉积物硫酸盐‒甲烷转换带(SMTZ)及其内的莓球状黄铁矿莓球粒径研究新进展

2.1 海洋沉积物硫酸盐‒甲烷转换带(SMTZ)和位置变化特征

海洋沉积柱中硫酸盐‒甲烷转换带是指海洋沉积物的孔隙流体中硫酸根离子浓度和甲烷浓度均趋近于最低值的深度位置带(图1),即所有从海底下渗的海水中硫酸根离子和从深部上涌的沉积流体中甲烷组分在SMTZ位置几乎均被消耗殆尽.与此同时,甲烷厌氧氧化反应在SMTZ表现得最为强烈,几乎所有硫酸根离子在硫酸盐还原细菌 (sulfate⁃reducing bacteria, 简称SRB)作用下被还原成了硫化物类等,甲烷在甲烷厌氧氧化古菌(anaerobic methanotrophic archaea, ANME⁃1, ANME⁃2, ANME⁃3)作用下被厌氧氧化为碳酸氢根等(Boetius et al., 2000).此外,AOM过程也形成了包括黄铁矿在内的一些特征性碳酸盐类、硫化物类、硫酸盐类等自生矿物(Wang et al., 2002,20032008Dickens et al., 2003Han et al., 2008; 王家生等,2015, 2024; Lin et al., 2016a,2016b2016cLiu et al., 2018).事实上,现代海洋AOM过程消耗了地球海水圈层与沉积物圈层之间流体交换过程中超过80%的甲烷,从而保护了当今地球的宜居环境(海洋和大气)免受海水缺氧、酸化、分层和甲烷温室效应等影响(Heilig, 1994Dickens et al., 1997Dickens, 2004Zachos et al., 2005Kim and Zhang, 2022).

现代海水中硫酸根离子的浓度保持相对稳定(~28 mmol/L),因此现代海底沉积物流体中甲烷的浓度大小决定了沉积柱SMTZ位置的相对深度位置.从陆架浅水到大陆斜坡深水环境,SMTZ的位置深度变化从数十厘米至数百米不等(Borowski et al., 1996).在海洋天然气水合物成藏海区,当天然气水合物藏失稳分解后可在短时间内释放出大量甲烷等烃类气体,海底沉积物流体中甲烷等烃类气体的浓度迅速增加,SMTZ的深度位置会在短时间内跃升至沉积柱的较浅位置、海底表面甚至进入海水和大气中,形成所谓的“冷泉”等宏观地质现象(Feng et al., 2018).

2.2 海洋沉积物SMTZ内黄铁矿的莓球粒径大小研究新进展

Wignall et al.(2010)关注到了海洋沉积柱中硫酸盐还原带内(sulfate reduction zone,简称SRZ)莓球状黄铁矿的莓球粒径存在增大现象,但其当时所关注到的SRZ可能是有机质驱动的硫酸盐还原带(organoclastic sulfate reduction, 简称OSR)(图1).近年,包括笔者团队在内的一些学者发现了海洋沉积物中SMTZ带内AOM作用促进了莓球状黄铁矿的粒径生长(Lin et al.,2016aMiao et al., 2021Wang et al., 2022; 许力源,2022).南海北部陆坡天然气水合物赋存海域的沉积物中莓球状黄铁矿的莓球粒径特征显示沉积物中SMTZ内莓球状黄铁矿的平均粒径明显增大(Lin et al.,2016a)(图2).其中,Site 2A站位深度小于680 cmbsf(centimeter below seafloor,海底以下厘米)的沉积物中黄铁矿含量极少,莓球粒径基本上<10 μm,但在680~840 cmbsf(现代SMTZ位置)深度层位黄铁矿明显富集,其莓球粒径的平均值>20 μm,黄铁矿的硫同位素组成也明显正偏.973‒4站位沉积物中黄铁矿相对含量具有类似的变化规律,在深度小于600 cmbsf的沉积物中黄铁矿含量极少,莓球粒径偏小,但在600~900 cmbsf(现代SMTZ位置)深度层位黄铁矿明显富集,莓球粒径大多>20 μm,黄铁矿的硫同位素也随之明显正偏.

类似的现象也出现在南海北部陆坡天然气水合物藏的试采海区.GMGS4⁃W02B钻探站位沉积物中黄铁矿莓球粒径大小特征显示约100 mbsf(meter below seafloor,海底以下米)之下沉积物中黄铁矿的莓球粒径明显增大(图2)(许力源,2022),黄铁矿的含量及其硫同位素也明显增大,指示古SMTZ位置主导的AOM作用也同样促进了黄铁矿的莓球粒径增加、黄铁矿大量形成和硫同位素正偏.此外,在相邻的站位GMGS4⁃W03B和GMGS2⁃16也观察到了相似的黄铁矿莓球粒径在SMTZ位置深度出现明显增大的现象,并同时伴随有黄铁矿的含量明显增加,硫同位素组成明显正偏.因此,莓球粒径明显增加趋势与黄铁矿含量及其硫同位素明显正偏趋势之间的耦合关系可能指示着硫酸盐‒甲烷转换带内增强的甲烷厌氧氧化作用发挥了主导作用.相比于有机质硫酸盐还原作用,硫酸盐‒甲烷转换带内增强的甲烷厌氧氧化作用会产生更高浓度的溶解硫化物,致使草莓状黄铁矿生长速率加快,进而最终形成粒径较大的草莓状黄铁矿.

AOM作用促进黄铁矿莓球粒径增大现象也出现在南海北部陆坡其他天然气水合物赋存海域,例如神狐海域(Wang et al., 2022)和琼东南“海马”冷泉区(Miao et al., 2021)等.南海北部陆坡的钻探岩心沉积物样品中莓球状黄铁矿的莓球最大粒径达172 μm,出现在(古)SMTZ深度位置,并具有明显偏正的δ34S值(Chen et al., 2023).

东北太平洋Cascadia大陆边缘IODP311航次(Intergrated Ocean Drilling Program, Expedition 311)钻探岩心沉积物也发育大量莓球状黄铁矿.通过对其中U1329站位72个岩心沉积物样品中莓球状黄铁矿的莓球粒径测量分析,分别在17.83、26.83、60.83和93.82 mbsf这4个深度层位发现莓球粒径明显增大现象,最大粒径达141 μm(图3).与此同时,在上述4个层位沉积物中黄铁矿的含量和硫同位素组成也明显正向偏移,共同指示古SMTZ位置,进一步说明AOM作用促进了莓球粒径的异常增大.

3 海洋“甲烷事件”促进莓球粒径增大的判别标准及其古海洋意义

3.1 海洋“甲烷事件”促进黄铁矿莓球粒径增大的判别标准

海洋天然气水合物的失稳和释放出大量甲烷等烃类气体(“甲烷事件”)抬升了海洋沉积柱中硫酸盐‒甲烷转换带的位置,增强了甲烷厌氧氧化作用和自生黄铁矿等自生矿物的形成,同时也促进了黄铁矿的莓球粒径异常增大(Lin et al., 2016a; Miao et al., 2021; Wang et al., 2022; 许力源,2022; 王家生等,2024).在前人莓球状黄铁矿的莓球粒径与水体氧化还原环境之间的判别标准基础上(表1)(Bond and Wignall, 2010Wilkin et al., 1996,1997),林杞(2016)修改了其中的莓球粒径异常增大情景下的解释,指出莓球粒径平均>20 μm和标准偏差>3 μm的莓球状黄铁矿可能是海洋“甲烷事件”发生时增强的AOM产物,其相应的水体可能是缺氧‒硫化的还原环境,而不是氧化‒次氧化环境(图4).许力源(2022)在此基础上进一步完善了上述判别标准,认为莓球粒径大小测量过程应该考虑到一些莓球的次生加大现象,即一些莓球存在厚薄不等的次生加大边,它们可能代表了莓球形成过程中局部微环境(氧化‒还原条件)的改变,认为莓球的内核粒径大小和偏差最有可能反映原始的氧化还原沉积环境信息,并提出修改版的判别标准,认为莓球内核平均粒径>12 μm和标准偏差>3 μm可能代表了海洋“甲烷事件”的沉积环境(图4).

3.2 黄铁矿莓球粒径异常增大现象对海洋“甲烷事件”的指示意义

莓球粒径异常增大的草莓状黄铁矿很可能是硫酸盐‒甲烷转换带内增强的甲烷厌氧氧化反应所致.因此,如果在海洋沉积物或海相地层记录中发育有此类的莓球状黄铁矿,那么其很有可能指示了沉积过程中增强的甲烷厌氧氧化反应,莓球粒径异常增大的莓球状黄铁矿指示了海洋沉积过程中甲烷异常渗漏事件或“甲烷事件”发生时的沉积环境.

甲烷厌氧氧化反应既能够出现在氧化‒贫氧的底层水体沉积环境中,也能够出现在缺氧‒硫化的底层水体沉积环境中.当上涌的沉积流体中甲烷浓度增大时,沉积物中硫酸盐‒甲烷转换带位置就会向上移动(许力源,2022)(图5a),此时由于溶解态硫化物浓度的增加,沉积物中草莓状黄铁矿会快速生长形成粒径较大的草莓状黄铁矿,其底层水体可能仍保持着氧化‒贫氧水体,此情景相当于前人判别标准中提出的粒径较大草莓状黄铁矿指示氧化‒贫氧水体环境(Wilkin et al., 1996,1997Bond and Wignall, 2010).但当海洋甲烷事件发生时,大量的甲烷等烃类气体从深部天然气水合物藏释放出来,上涌的沉积流体中甲烷浓度会迅速增大,沉积柱中硫酸盐‒甲烷转换带的位置深度会跃升至沉积物浅表层,这一过程可能会导致底层海水的缺氧、酸化、硫化等(图5b)(Kim and Zhang, 2022);如果SMTZ跃升到海底表面,极有可能会造成底层海水的缺氧、酸化、硫化、分层,甚至强烈的温室气候效应(图5c)(Dickens et al., 1997Zachos et al., 2005; Kim and Zhang, 2022),而此时增强的AOM作用仍会在沉积物中形成莓球粒径异常增大的草莓状黄铁矿(图5b~5c).因此,前人依据草莓状黄铁矿的莓球粒径大小去推测底层水体的氧化还原条件的判别标准可能不适用于海洋甲烷事件发生时期,那些莓球粒径异常增大的黄铁矿是海洋甲烷事件发生时SMTZ跃升至沉积物浅表层或海底表面后增强的AOM作用的产物.当甲烷事件异常强烈,上涌的沉积流体中甲烷浓度很大,硫酸盐‒甲烷转换带有可能移动到水体中时;在水动力的影响下SMTZ难以在水体中形成一个稳定的化学分带,此时的草莓状黄铁矿会在水体中形成,并最终由于自身重量、甲烷气体向上的浮力、水动力条件等因素影响导致所生长的莓球粒径大小没有像在沉积物中那样巨大(图5d),遗憾的是迄今尚未有此情景下的相关研究数据.

3.3 深时古海洋甲烷事件探索

Chen et al.(2025)研究了鄂西宜昌地区秭归县青林口林场出露的陡山沱组中黄铁矿的莓球粒径特征,通过详细测试和统计岩石薄片中黄铁矿的 6 735个莓球粒径,发现在陡山沱组的底部和顶部出现了异常增大的莓球粒径趋势(图6),即在陡一段“盖帽”层位和陡四段层位出现了一些莓球的粒径平均>20 μm的变化趋势;此外,在陡二段下部和陡二段\陡三段交界层位也存在一些莓球粒径平 均>20 μm的变化趋势.结合该剖面上陡山沱组碳氧稳定同位素组成、黄铁矿的微量元素组成等资料,并参考前人已报道的“盖帽”碳酸盐岩层位、Gaskiers层位和陡四段层位中出现的极低碳同位素信号(Wang et al., 2008,20172020Cui et al., 2017),认为鄂西青林口剖面出露的陡山沱组沉积时期古海洋存在至少3次“甲烷事件”(methane event, 简称ME)(Chen et al., 2025).

4 结论

海洋沉积物和海相地层中莓球状黄铁矿的莓球粒径大小与水体氧化还原沉积环境之间存在着因果关系,海洋天然气水合物赋存海区沉积物中甲烷厌氧氧化作用促进了莓球粒径的明显增大,异常增大的莓球粒径可以作为一个可靠指标,揭示海洋甲烷异常释放事件(简称“甲烷事件”).

(1)前人提出的莓球状黄铁矿莓球粒径大小与水体氧化还原环境之间的传统判别标准不能适用于海洋“甲烷事件”发生时期的海洋沉积环境判别.

(2)莓球状黄铁矿的莓球平均粒径>20 μm或莓球内核平均粒径>12 μm,且粒径标准偏差>3 μm的莓球状黄铁矿可能是海洋“甲烷事件”发生时海洋沉积环境中的产物.

(3)巨莓粒径的莓球状黄铁矿、极低碳稳定同位素的自生碳酸盐类矿物和正偏趋势的黄铁矿含量及其硫同位素组成的耦合现象等,是古、今海洋“甲烷事件”发生时跃升的硫酸盐‒甲烷转换带和增强的甲烷厌氧氧化作用的有效地质‒地球化学识别标志.

参考文献

[1]

Boetius, A., Ravenschlag, K., Schubert, C. J., et al., 2000. A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane. Nature, 407(6804): 623-626. https://doi.org/10.1038/35036572

[2]

Bond, D. P., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian⁃Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7-8): 1265-1279. https://doi.org/10.1130/B30042.1

[3]

Borowski, W. S., Paull, C. K., Ussler, W., 1996. Marine Pore⁃Water Sulfate Profiles Indicate in Situ Methane Flux from Underlying Gas Hydrate. Geology, 24(7): 655. https://doi.org/10.1130/0091⁃7613(1996)0240655: mpwspi>2.3.co;2

[4]

Butler, I. B., Rickard, D., 2000. Framboidal Pyrite Formation via the Oxidation of Iron (II) Monosulfide by Hydrogen Sulphide. Geochimica et Cosmochimica Acta, 64(15): 2665-2672. https://doi.org/10.1016/S0016⁃7037(00)00387⁃2

[5]

Chang, X. L., Huang, Y. G., Chen, Z. Q., et al., 2020. The Microscopic Analysis of Pyrite Framboids and Application in Paleo⁃Oceanography. Acta Sedimentologica Sinica, 38(1): 150-165 (in Chinese with English abstract).

[6]

Chen, C., Wang, J. S., Algeo, T. J., et al., 2023. Sulfate⁃Driven Anaerobic Oxidation of Methane Inferred from Trace⁃Element Chemistry and Nickel Isotopes of Pyrite. Geochimica et Cosmochimica Acta, 349: 81-95. https://doi.org/10.1016/j.gca.2023.04.002

[7]

Chen, C., Wang, J. S., Algeo, T. J., et al., 2025. Trace Elements of Pyrite in the Ediacaran Doushantuo Formation Reveal Ancient Methane Release Events. Precambrian Research, 416: 107627. https://doi.org/10.1016/j.precamres.2024.107627

[8]

Cui, H., Kaufman, A. J., Xiao, S. H., et al., 2017. Was the Ediacaran Shuram Excursion a Globally Synchronized Early Diagenetic Event? Insights from Methane⁃Derived Authigenic Carbonates in the Uppermost Doushantuo Formation, South China. Chemical Geology, 450: 59-80. https://doi.org/10.1016/j.chemgeo.2016.12.010

[9]

Dickens, G. R., 2004. Hydrocarbon⁃Driven Warming. Nature, 429: 513-515. https://doi.org/10.1038/429513a

[10]

Dickens, G. R., Castillo, M. M., Walker, J. C., 1997. A Blast of Gas in the Latest Paleocene: Simulating First⁃Order Effects of Massive Dissociation of Oceanic Methane Hydrate. Geology, 25(3): 259-262. https://doi.org/10.1130/0091⁃7613(1997)025&lt;0259: abogit&gt;2.3.co;2

[11]

Dickens, G. R., Fewless, T., Thomas, E., et al., 2003. Excess Barite Accumulation during the Paleocene⁃Eocene Thermal Maximum: Massive Input of Dissolved Barium from Seafloor Gas Hydrate Reservoirs. In: Wing, S. L., Gingerich, P. D., Schmitz, B., et al., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene. Geological Society of America, Boulder. https://doi.org/10.1130/0⁃8137⁃2369⁃8.11

[12]

Feng, D., Qiu, J. W., Hu, Y., et al., 2018. Cold Seep Systems in the South China Sea: An Overview. Journal of Asian Earth Sciences, 168: 3-16. https://doi.org/10.1016/j.jseaes.2018.09.021

[13]

Han, X. Q., Suess, E., Huang, Y. Y., et al., 2008. Jiulong Methane Reef: Microbial Mediation of Seep Carbonates in the South China Sea. Marine Geology, 249(3-4): 243-256. https://doi.org/10.1016/j.margeo.2007.11.012

[14]

Heilig, G. K., 1994. The Greenhouse Gas Methane (CH4): Sources and Sinks, the Impact of Population Growth, Possible Interventions. Population and Environment, 16(2): 109-137. https://doi.org/10.1007/BF02208779

[15]

Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1

[16]

Kim, B., Zhang, Y. G., 2022. Methane Hydrate Dissociation across the Oligocene⁃Miocene Boundary. Nature Geoscience, 15: 203-209. https://doi.org/10.1038/s41561⁃022⁃00895⁃5

[17]

Lin, Q., 2016. Characteristics of Authigenic Minerals in Sediments of Natural Gas Hydrate Occurrence Area in the Northern South China Sea and Its Indication Significance of Sulfate⁃Methane Transition Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[18]

Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016a. Enhanced Framboidal Pyrite Formation Related to Anaerobic Oxidation of Methane in the Sulfate⁃Methane Transition Zone of the Northern South China Sea. Marine Geology, 379: 100-108. https://doi.org/10.1016/j.margeo.2016.05.016

[19]

Lin, Q., Wang, J. S., Algeo, T. J., et al., 2016b. Formation Mechanism of Authigenic Gypsum in Marine Methane Hydrate Settings: Evidence from the Northern South China Sea. Deep Sea Research Part I: Oceanographic Research, 115: 210-220. https://doi.org/10.1016/j.dsr.2016.06.010

[20]

Lin, Q., Wang, J. S., Taladay, K., et al., 2016c. Coupled Pyrite Concentration and Sulfur Isotopic Insight into the Paleo Sulfate⁃Methane Transition Zone (SMTZ) in the Northern South China Sea. Journal of Asian Earth Sciences, 115: 547-556. https://doi.org/10.1016/j.jseaes.2015.11.001

[21]

Liu, J. R., Izon, G., Wang, J. S., et al., 2018. Vivianite Formation in Methane⁃Rich Deep⁃Sea Sediments from the South China Sea. Biogeosciences, 15(20): 6329-6348. https://doi.org/10.5194/bg⁃15⁃6329⁃2018

[22]

Miao, X. M., Feng, X. L., Liu, X. T., et al., 2021. Effects of Methane Seepage Activity on the Morphology and Geochemistry of Authigenic Pyrite. Marine and Petroleum Geology, 133: 105231. https://doi.org/10.1016/j.marpetgeo.2021.105231

[23]

Ohfuji, H., Rickard, D., 2005. Experimental Syntheses of Framboids—A Review. Earth⁃Science Reviews, 71(3-4): 147-170. https://doi.org/10.1016/j.earscirev.2005.02.001

[24]

Rust, G. W., 1935. Colloidal Primary Copper Ores at Cornwall Mines, Southeastern Missouri. Journal of Geology, 43(4): 398-426. https://doi.org/10.1086/624318

[25]

Wang, B., Lei, H. Y., Huang, F. F., 2022. Impacts of Sulfate⁃Driven Anaerobic Oxidation of Methane on the Morphology, Sulfur Isotope, and Trace Element Content of Authigenic Pyrite in Marine Sediments of the Northern South China Sea. Marine and Petroleum Geology, 139: 105578. https://doi.org/10.1016/j.marpetgeo.2022.105578

[26]

Wang, J. S., Jiang, G. Q., Xiao, S. H., et al., 2008. Carbon Isotope Evidence for Widespread Methane Seeps in the ca. 635 Ma Doushantuo Cap Carbonate in South China. Geology, 36(5): 347-350. https://doi.org/10.1130/G24513A.1

[27]

Wang, J. S., Lin, Q., Li, Q., et al., 2015. AOM⁃Derived Authigenic Minerals in Marine Sediments and Implication for Ancient Methane Events in Deep Earth. Quaternary Sciences, 35(6): 1383-1392 (in Chinese with English abstract).

[28]

Wang, J. S., Suess, E., 2002. Indicators of δ13C and δ18O of Gas Hydrate⁃Associated Sediments. Chinese Science Bulletin, 47(19): 1659-1663. https://doi.org/10.1007/BF03184118

[29]

Wang, J. S., Wang, Z., Chen, C., et al., 2024. Authigenic Minerals in Sediments at Marine Gas Hydrate Geosystem. China University of Geosciences Press, Wuhan (in Chinese).

[30]

Wang, J., Suess, E., Rickert, D., 2003. Authigenic Gypsum Found in Gas Hydrate⁃Associated Sediments from Hydrate Ridge, the Eastern North Pacific. Science China: Earth Science, 47(3): 280-288. https://doi.org/10.1360/02yd0069

[31]

Wang, Z., Chen, C., Wang, J. S., et al., 2020. Wide but not Ubiquitous Distribution of Glendonite in the Doushantuo Formation, South China: Implications for Ediacaran Climate. Precambrian Research, 338: 105586. https://doi.org/10.1016/j.precamres.2019.105586

[32]

Wang, Z., Wang, J. S., Suess, E., et al., 2017. Silicified Glendonites in the Ediacaran Doushantuo Formation (South China) and Their Potential Paleoclimatic Implications. Geology, 45(2): 115-118. https://doi.org/10.1130/g38613.1

[33]

Wignall, P. B., Bond, D. P. G., Kuwahara, K., et al., 2010. An 80 Million Year Oceanic Redox History from Permian to Jurassic Pelagic Sediments of the Mino⁃Tamba Terrane, SW Japan, and the Origin of Four Mass Extinctions. Global and Planetary Change, 71(1-2): 109-123. https://doi.org/10.1016/j.gloplacha.2010.01.022

[34]

Wignall, P. B., Newton, R., 1998. Pyrite Framboid Diameter as a Measure of Oxygen Deficiency in Ancient Mudrocks. American Journal of Science, 298(7): 537-552. https://doi.org/10.2475/ajs.298.7.537

[35]

Wignall, P. B., Newton, R., Brookfield, M. E., 2005. Pyrite Framboid Evidence for Oxygen⁃Poor Deposition during the Permian⁃Triassic Crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3-4): 183-188. https://doi.org/10.1016/j.palaeo.2004.10.009

[36]

Wilkin, R. T., Arthur, M. A., 2001. Variations in Pyrite Texture, Sulfur Isotope Composition, and Iron Systematics in the Black Sea: Evidence for Late Pleistocene to Holocene Excursions of the O2⁃H2S Redox Transition. Geochimica et Cosmochimica Acta, 65(9): 1399-1416. https://doi.org/10.1016/S0016⁃7037(01)00552⁃X

[37]

Wilkin, R. T., Arthur, M. A., Dean, W. E., 1997. History of Water⁃Column Anoxia in the Black Sea Indicated by Pyrite Framboid Size Distributions. Earth and Planetary Science Letters, 148(3/4): 517-525. https://doi.org/10.1016/S0012⁃821X(97)00053⁃8

[38]

Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016⁃7037(96)00209⁃8

[39]

Xu, L. Y., 2020. Framboid Size and Microcrystalline Characteristics of Framboidal Pyrite in Sediments from the Northern South China Sea and Their Implications for Sedimentary Environment (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[40]

Zachos, J. C., Röhl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene⁃Eocene Thermal Maximum. Science, 308(5728): 1611-1615. https://doi.org/10.1126/science.1109004

基金资助

国家自然科学基金项目(42276068)

国家自然科学基金项目(42302215)

国家自然科学基金项目(42472374)

AI Summary AI Mindmap
PDF (1493KB)

74

访问

0

被引

详细

导航
相关文章

AI思维导图

/