古DNA研究在地球生物学领域的应用
Applications of Ancient DNA Research in the Field of Geobiology
,
在地球生物学诸多分支学科中,分子古生物学融合了多学科理论和方法,在探讨地质历史时期生物的形成与演化及生物与环境的相互作用等问题时发挥了重要作用.古DNA是分子古生物研究的主要载体之一,能反映个体之间的遗传差异,为生物系统发生学、谱系地理学提供不可替代的、来自古代生物的实时遗传信息.部分灭绝物种或种群遗留在现生种群中的遗传成分,不仅反映了古代生物类群之间的基因交流历史,也为现生亲缘类群的生物保护提供借鉴.近些年来,随着古DNA提取和富集技术的进步,不依赖于生物实体遗存的沉积物古DNA成为后来居上的研究方向,在古生态系统重建及生物在气候环境变化背景下的生态适应等研究中凸显其重要性.本文重点解读了古DNA在生物系统发生学、生物谱系地理学、保护生物学及第四纪古环境古气候重建等地球生物学领域的典型应用实例及其重要意义,并对古DNA及古基因组在地球生物学领域的应用前景进行了展望.
Among the many branches of geobiology, molecular palaeontology integrates multidisciplinary theories and methods, and plays an important role in exploring the speciation and evolution of organisms as well as the interaction between organisms and the environment in the geological history. Ancient DNA is one of the main carriers of molecular palaeontology research. It can reflect the genetic differences between individuals and provide irreplaceable real-time genetic information from ancient organisms for phylogeny and phylogeography. The genetic components legacy from some extinct groups to living populations not only reflect the history of gene flow between these groups and the ancestral populations of extant species, but also provide reference for protection of their living counterparts. In recent years, with the advancement of high-fragmented and trace amount DNA extraction and enrichment technologies, ancient DNA from sediments that does not rely on biological body fossils has become a rapid developing research direction, highlighting its importance in the reconstruction of ancient ecosystems and the ecological adaptation of organisms under the pressure of climate and environmental changes. This article focuses on the typical application examples and important significance of ancient DNA in geobiological fields in terms of phylogenetics, phylogeography, conservation biology, and Quaternary paleoenvironment and paleoclimate reconstruction, and looks forward to the application prospects of ancient DNA and ancient genomes in geobiology.
地球生物学 / 古DNA / 系统发生学 / 谱系地理学 / 基因流 / 生态系统重建 / 沉积学 / 气候变化.
geobiology / ancient DNA / phylogenetics / phylogeography / gene flow / ecosystem restoration / sedimentology / climate change
| [1] |
Ahmed, E., Parducci, L., Unneberg, P., et al., 2018. Archaeal Community Changes in Lateglacial Lake Sediments: Evidence from Ancient DNA. Quaternary Science Reviews, 181: 19-29. https://doi.org/10.1016/j.quascirev.2017.11.037 |
| [2] |
Allentoft, M. E., Sikora, M., Sjögren, K. G., et al., 2015. Population Genomics of Bronze Age Eurasia. Nature, 522: 167-172. https://doi.org/10.1038/nature14507 |
| [3] |
Baca, M., Popović, D., Stefaniak, K., et al., 2016. Retreat and Extinction of the Late Pleistocene Cave Bear (Ursus Spelaeus Sensu Lato). The Science of Nature, 103(11): 92. https://doi.org/10.1007/s00114⁃016⁃1414⁃8 |
| [4] |
Barlow, A., Cahill, J. A., Hartmann, S., et al., 2018. Partial Genomic Survival of Cave Bears in Living Brown Bears. Nature Ecology & Evolution, 2: 1563-1570. https://doi.org/10.1038/s41559⁃018⁃0654⁃8 |
| [5] |
Barnes, I., Matheus, P., Shapiro, B., et al., 2002. Dynamics of Pleistocene Population Extinctions in Beringian Brown Bears. Science, 295(5563): 2267-2270. https://doi.org/10.1126/science.1067814 |
| [6] |
Barnett, R., Shapiro, B., Barnes, I., et al., 2009. Phylogeography of Lions (Panthera Leo ssp.) Reveals Three Distinct Taxa and a Late Pleistocene Reduction in Genetic Diversity. Mol Ecol, 18(8): 1668-1677. https://doi.org/10.1111/j.1365⁃294x.2009.04134.x |
| [7] |
Barnosky, A. D., Koch, P. L., Feranec, R. S., et al., 2004. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science, 306(5693): 70-75. https://doi.org/10.1126/science.1101476 |
| [8] |
Bergström, A., Stanton, D. W. G., Taron, U. H., et al., 2022. Grey Wolf Genomic History Reveals a Dual Ancestry of Dogs. Nature, 607: 313-320. https://doi.org/10.1038/s41586⁃022⁃04824⁃9 |
| [9] |
Boessenkool, S., McGlynn, G., Epp, L. S., et al., 2014. Use of Ancient Sedimentary DNA as a Novel Conservation Tool for High⁃Altitude Tropical Biodiversity. Conservation Biology, 28(2): 446-455. https://doi.org/10.1111/cobi.12195 |
| [10] |
Bos, K. I., Schuenemann, V. J., Golding, G. B., et al., 2011. A Draft Genome of Yersinia Pestis from Victims of the Black Death. Nature, 478: 506-510. https://doi.org/10.1038/nature10549 |
| [11] |
Brown, T. A., Jones, M. K., Powell, W., et al., 2009. The Complex Origins of Domesticated Crops in the Fertile Crescent. Trends in Ecology & Evolution, 24(2): 103-109. https://doi.org/10.1016/j.tree.2008.09.008 |
| [12] |
Cai, D. W., Zhu, S. Q., Gong, M., et al., 2022. Radiocarbon and Genomic Evidence for the Survival of Equus Sussemionus until the Late Holocene. eLife, 11: e73346. https://doi.org/10.7554/elife.73346 |
| [13] |
Capo, E., Giguet⁃Covex, C., Rouillard, A., et al., 2021. Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. Quaternary, 4(1): 6. https://doi.org/10.3390/quat4010006 |
| [14] |
Coolen, M. J. L., Overmann, J., 1998. Analysis of Subfossil Molecular Remains of Purple Sulfur Bacteria in a Lake Sediment. Applied and Environmental Microbiology, 64(11): 4513-4521. https://doi.org/10.1128/aem.64.11.4513⁃4521.1998 |
| [15] |
Cruzan, M. B., Templeton, A. R., 2000. Paleoecology and Coalescence: Phylogeographic Analysis of Hypotheses from the Fossil Record. Trends in Ecology & Evolution, 15(12): 491-496. https://doi.org/10.1016/s0169⁃5347(00)01998⁃4 |
| [16] |
Da Fonseca, R. R., Smith, B. D., Wales, N., et al., 2015. The Origin and Evolution of Maize in the Southwestern United States. Nature Plants, 1: 14003. https://doi.org/10.1038/nplants.2014.3 |
| [17] |
Dalén, L., Heintzman, P. D., Kapp, J. D., et al., 2023. Deep⁃Time Paleogenomics and the Limits of DNA Survival. Science, 382(6666): 48-53. https://doi.org/10.1126/science.adh7943 |
| [18] |
Dalton, D. L., Prost, S., 2021. Rhinoceros Genomes Uncover Family Secrets. Nature, 599: 209-210. https://doi.org/10.1038/d41586⁃021⁃02777⁃z |
| [19] |
Dannemann, M., Kelso, J., 2017. The Contribution of Neanderthals to Phenotypic Variation in Modern Humans. The American Journal of Human Genetics, 101(4): 578-589. https://doi.org/10.1016/j.ajhg.2017.09.010 |
| [20] |
Davison, J., Ho, S. Y. W., Bray, S. C., et al., 2011. Late⁃Quaternary Biogeographic Scenarios for the Brown Bear (Ursus Arctos), a Wild Mammal Model Species. Quaternary Science Reviews, 30(3-4): 418-430. https://doi.org/10.1016/j.quascirev.2010.11.023 |
| [21] |
Debruyne, R., Barriel, V., Tassy, P., 2003. Mitochondrial Cytochrome B of the Lyakhov Mammoth (Proboscidea, Mammalia): New Data and Phylogenetic Analyses of Elephantidae. Molecular Phylogenetics and Evolution, 26(3): 421-434. https://doi.org/10.1016/S1055⁃7903(02)00292⁃0 |
| [22] |
Deng, T., Xue, X. X., 1997. The First Appearance of the True Horse (Genus Equus) as a Marker for the Lower Boundary of the Quaternary. Journal of Stratigraphy, 21(2): 109-116 (in Chinese with English abstract). |
| [23] |
Díez⁃del⁃Molino, D., Dehasque, M., Chacón⁃Duque, J. C., et al., 2023. Genomics of Adaptive Evolution in the Woolly Mammoth. Current Biology, 33(9): 1753-1764. https://doi.org/10.1016/j.cub.2023.03.084 |
| [24] |
Du, Z. C., Sheng, G. L., Hu, J. M., et al., 2024. Mitochondrial Genetic Diversity and Evolutionary History of Late Pleistocene Woolly Mammoths in Northeast China. Chinese Science Bulletin, 70(1): 121-133 (in Chinese). |
| [25] |
Eisenmann, V., Sergej, V., 2011. Unexpected Finding of a New Equus Species (Mammalia, Perissodactyla) Belonging to a Supposedly Extinct Subgenus in Late Pleistocene Deposits of Khakassia (Southwestern Siberia). Geodiversitas, 33(3): 519-530. https://doi.org/10.5252/g2011n3a5 |
| [26] |
Enk, J., Devault, A., Widga, C., et al., 2016. Mammuthus Population Dynamics in Late Pleistocene North America: Divergence, Phylogeography, and Introgression. Frontiers in Ecology and Evolution, 4: 42. https://doi.org/10.3389/fevo.2016.00042 |
| [27] |
Fages, A., Hanghøj, K., Khan, N., et al., 2019. Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series. Cell, 177(6): 1419-1435. https://doi.org/10.1016/j.cell.2019.03.049 |
| [28] |
Frantz, L. A. F., Haile, J., Lin, A. T., et al., 2019. Ancient Pigs Reveal a Near⁃Complete Genomic Turnover Following Their Introduction to Europe. Proceedings of the National Academy of Sciences, 116(35): 17231-17238. https://doi.org/10.1073/pnas.1901169116 |
| [29] |
Frei, D., De⁃Kayne, R., Selz, O. M., et al., 2022. Genomic Variation from an Extinct Species Is Retained in the Extant Radiation Following Speciation Reversal. Nature Ecology & Evolution, 6: 461-468. https://doi.org/10.1038/s41559⁃022⁃01665⁃7 |
| [30] |
Freitas, F. O., Bendel, G., Allaby, R. G., et al., 2003. DNA from Primitive Maize Landraces and Archaeological Remains: Implications for the Domestication of Maize and Its Expansion into South America. Journal of Archaeological Science, 30(7): 901-908. https://doi.org/10.1016/S0305⁃4403(02)00269⁃8 |
| [31] |
Froese, D., Stiller, M., Heintzman, P. D., et al., 2017. Fossil and Genomic Evidence Constrains the Timing of Bison Arrival in North America. Proceedings of the National Academy of Sciences, 114: 3457-3462. https://doi.org/10.1073/pnas.1620754114 |
| [32] |
Fu, Q. M., Meyer, M., Gao, X., et al., 2013. DNA Analysis of an Early Modern Human from Tianyuan Cave, China. Proceedings of the National Academy of Sciences, 110(6): 2223-2227. https://doi.org/10.1073/pnas.1221359110 |
| [33] |
Green, R. E., Krause, J., Briggs, A. W., et al., 2010. A Draft Sequence of the Neandertal Genome. Science, 328: 710-722. https://doi.org/10.1126/science.1188021 |
| [34] |
Green, R. E., Krause, J., Ptak, S. E., et al., 2006. Analysis of One Million Base Pairs of Neanderthal DNA. Nature, 444: 330-336. https://doi.org/10.1038/nature05336 |
| [35] |
Green, R. E., Malaspinas, A. S., Krause, J., et al., 2008. A Complete Neandertal Mitochondrial Genome Sequence Determined by High⁃Throughput Sequencing. Cell, 134(3): 416-426. https://doi.org/10.1016/j.cell.2008.06.021 |
| [36] |
Hajdinjak, M., Mafessoni, F., Skov, L., et al., 2021. Initial Upper Palaeolithic Humans in Europe Had Recent Neanderthal Ancestry. Nature, 592: 253-257. https://doi.org/10.1038/s41586⁃021⁃03335⁃3 |
| [37] |
Heintzman, P. D., Zazula, G. D., MacPhee, R. D., et al., 2017. A New Genus of Horse from Pleistocene North America. eLife, 6: e29944. https://doi.org/10.7554/elife.29944 |
| [38] |
Higuchi, R., Bowman, B., Freiberger, M., et al., 1984. DNA Sequences from the Quagga, an Extinct Member of the Horse Family. Nature, 312: 282-284. https://doi.org/10.1038/312282a0 |
| [39] |
Hoshino, T., Doi, H., Uramoto, G. I., et al., 2020. Global Diversity of Microbial Communities in Marine Sediment. Proceedings of the National Academy of Sciences, 117(44): 27587-27597. https://doi.org/10.1073/pnas.1919139117 |
| [40] |
Hou, X. D., Zhao, J., Zhang, H. C., et al., 2022. Paleogenomes Reveal a Complex Evolutionary History of Late Pleistocene Bison in Northeastern China. Genes (Basel), 13(10): 1684. https://doi.org/10.3390/genes13101684 |
| [41] |
Hu, J. M., Westbury, M. V., Yuan, J. X., et al., 2022. An Extinct and Deeply Divergent Tiger Lineage from Northeastern China Recognized through Palaeogenomics. Proceedings of the Royal Society B: Biological Sciences, 289(1979): 20220617. https://doi.org/10.1098/rspb.2022.0617 |
| [42] |
Hu, J., Westbury, M. V., Yuan, J. X., et al., 2021. Ancient Mitochondrial Genomes from Chinese Cave Hyenas Provide Insights into the Evolutionary History of the Genus Crocuta. Crocuta. Proceedings of the Royal Society B, 288(1943): 20202934. https://doi.org/10.1098/rspb.2020.2934 |
| [43] |
Hublin, J. J., Sirakov, N., Aldeias, V., et al., 2020. Initial Upper Palaeolithic Homo Sapiens from Bacho Kiro Cave, Bulgaria. Nature, 581: 299-302. https://doi.org/10.1038/s41586⁃020⁃2259⁃z |
| [44] |
Jaenicke⁃Després, V., Buckler, E. S., Smith, B. D., et al., 2003. Early Allelic Selection in Maize as Revealed by Ancient DNA. Science, 302(5648): 1206-1208. https://doi.org/10.1126/science.1089056 |
| [45] |
Kato, S., Arakaki, S., Nagano, A. J., et al., 2024. Genomic Landscape of Introgression from the Ghost Lineage in a Gobiid Fish Uncovers the Generality of Forces Shaping Hybrid Genomes. Molecular Ecology, 33(20): e17216. https://doi.org/10.1111/mec.17216 |
| [46] |
Kirillova, I. V., Chernova, O. F., van der Made, J., et al., 2017. Discovery of the Skull of Stephanorhinus Kirchbergensis (Jäger, 1839) Above the Arctic Circle. Quaternary Research, 88: 537-550. https://doi.org/10.1017/qua.2017.53 |
| [47] |
Kjær, K. H., Winther Pedersen, M., De Sanctis, B., et al., 2022. A 2⁃Million⁃Year⁃Old Ecosystem in Greenland Uncovered by Environmental DNA. Nature, 612: 283-291. https://doi.org/10.1038/s41586⁃022⁃05453⁃y |
| [48] |
Ko, A. M., Zhang, Y. Q., Yang, M. A., et al., 2018. Mitochondrial Genome of a 22 000⁃Year⁃Old Giant Panda from Southern China Reveals a New Panda Lineage. Current Biology, 28(12): R693-R694. https://doi.org/10.1016/j.cub.2018.05.008 |
| [49] |
Koch, P. L., Barnosky, A. D., 2006. Late Quaternary Extinctions: State of the Debate. Annual Review of Ecology, Evolution, and Systematics, 37: 215-250. https://doi.org/10.1146/annurev.ecolsys.34.011802.132415 |
| [50] |
Kosintsev, P., Mitchell, K. J., Devièse, T., et al., 2019. Evolution and Extinction of the Giant Rhinoceros Elasmotherium Sibiricum Sheds Light on Late Quaternary Megafaunal Extinctions. Nature Ecology & Evolution, 3: 31-38. https://doi.org/10.1038/s41559⁃018⁃0722⁃0 |
| [51] |
Krings, M., Stone, A., Schmitz, R. W., et al., 1997. Neandertal DNA Sequences and the Origin of Modern Humans. Cell, 90(1): 19-30. https://doi.org/10.1016/S0092⁃8674(00)80310⁃4 |
| [52] |
Kuhlwilm, M., de Manuel, M., Nater, A., et al., 2016. Evolution and Demography of the Great Apes. Current Opinion in Genetics & Development, 41: 124-129. https://doi.org/10.1016/j.gde.2016.09.005 |
| [53] |
Kumar, V., Lammers, F., Bidon, T., et al., 2017. The Evolutionary History of Bears Is Characterized by Gene Flow across Species. Scientific Reports, 7: 46487. https://doi.org/10.1038/srep46487 |
| [54] |
Larson, G., Cucchi, T., Fujita, M., et al., 2007.Phylogeny and Ancient DNA of Sus Provides Insights into Neolithic Expansion in Island Southeast Asia and Oceania. Proceedings of the National Academy of Sciences, 104: 4834-4839. https://doi.org/10.1073/pnas.0607753104 |
| [55] |
Larson, G., Dobney, K., Albarella, U., et al., 2005. Worldwide Phylogeography of Wild Boar Reveals Multiple Centers of Pig Domestication. Science, 307(5715): 1618-1621. https://doi.org/10.1126/science.1106927 |
| [56] |
Li, T., Lai, X. L., Wang, W., et al., 2004. Taxonomy and Evolution of Giant Panda. Bulletin of Geological Science and Technology, 23(3): 40-46 (in Chinese with English abstract). |
| [57] |
Librado, P., Gamba, C., Gaunitz, C., et al., 2017. Ancient Genomic Changes Associated with Domestication of the Horse. Science, 356(6336): 442-445. https://doi.org/10.1126/science.aam5298 |
| [58] |
Lin, H. F., Hu, J. M., Baleka, S., et al., 2023. A Genetic Glimpse of the Chinese Straight⁃Tusked Elephants. Biology Letters, 19(7): 20230078. https://doi.org/10.1098/rsbl.2023.0078 |
| [59] |
Lippold, S., Knapp, M., Kuznetsova, T., et al., 2011. Discovery of Lost Diversity of Paternal Horse Lineages Using Ancient DNA. Nature Communications, 2: 450. https://doi.org/10.1038/ncomms1447 |
| [60] |
Liu, S. L., Westbury, M. V., Dussex, N., et al., 2021a. Ancient and Modern Genomes Unravel the Evolutionary History of the Rhinoceros Family. Cell, 184(19): 4874-4885. https://doi.org/10.1016/j.cell.2021.07.032 |
| [61] |
Liu, S. S., Kruse, S., Scherler, D., et al., 2021b. Sedimentary Ancient DNA Reveals a Threat of Warming⁃Induced Alpine Habitat Loss to Tibetan Plateau Plant Diversity. Nature Communications, 12: 2995. https://doi.org/10.1038/s41467⁃021⁃22986⁃4 |
| [62] |
Lord, E., Dussex, N., Kierczak, M., et al., 2020. Pre⁃Extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros. Current Biology, 30(19): 3871-3879. https://doi.org/10.1016/j.cub.2020.07.046 |
| [63] |
Lorenzen, E. D., Nogués⁃Bravo, D., Orlando, L., et al., 2011. Species⁃Specific Responses of Late Quaternary Megafauna to Climate and Humans. Nature, 479: 359-364. https://doi.org/10.1038/nature10574 |
| [64] |
Lucena⁃Perez, M., Paijmans, J. L. A., Nocete, F., et al., 2024. Recent Increase in Species⁃Wide Diversity after Interspecies Introgression in the Highly Endangered Iberian Lynx. Nature Ecology & Evolution, 8: 282-292. https://doi.org/10.1038/s41559⁃023⁃02267⁃7 |
| [65] |
Mascher, M., Schuenemann, V. J., Davidovich, U., et al., 2016. Genomic Analysis of 6 000⁃Year⁃Old Cultivated Grain Illuminates the Domestication History of Barley. Nature Genetics, 48(9): 1089-1093. https://doi.org/10.1038/ng.3611 |
| [66] |
McManus, K. F., Kelley, J. L., Song, S., et al., 2015. Inference of Gorilla Demographic and Selective History from Whole⁃Genome Sequence Data. Molecular Biology and Evolution, 32(3): 600-612. https://doi.org/10.1093/molbev/msu394 |
| [67] |
Meyer, M., Arsuaga, J. L., de Filippo, C., et al., 2016. Nuclear DNA Sequences from the Middle Pleistocene Sima de Los Huesos Hominins. Nature, 531: 504-507. https://doi.org/10.1038/nature17405 |
| [68] |
Meyer, M., Kircher, M., Gansauge, M. T., et al., 2012. A High⁃Coverage Genome Sequence from an Archaic Denisovan Individual. Science, 338(6104): 222-226. https://doi.org/10.1126/science.1224344 |
| [69] |
Meyer, M., Palkopoulou, E., Baleka, S., et al., 2017. Palaeogenomes of Eurasian Straight⁃Tusked Elephants Challenge the Current View of Elephant Evolution. eLife, 6: e25413. https://doi.org/10.7554/elife.25413 |
| [70] |
Miller, W., Drautz, D. I., Ratan, A., et al., 2008. Sequencing the Nuclear Genome of the Extinct Woolly Mammoth. Nature, 456: 387-390. https://doi.org/10.1038/nature07446 |
| [71] |
Miller, W., Schuster, S. C., Welch, A. J., et al., 2012. Polar and Brown Bear Genomes Reveal Ancient Admixture and Demographic Footprints of Past Climate Change. Proceedings of the National Academy of Sciences, 109(36): E2382-E2390. https://doi.org/10.1073/pnas.1210506109 |
| [72] |
Murchie, T. J., Monteath, A. J., Mahony, M. E., et al., 2021. Collapse of the Mammoth⁃Steppe in Central Yukon as Revealed by Ancient Environmental DNA. Nature Communications, 12: 7120. https://doi.org/10.1038/s41467⁃021⁃27439⁃6 |
| [73] |
Noonan, J. P., Coop, G., Kudaravalli, S., et al., 2006. Sequencing and Analysis of Neanderthal Genomic DNA. Science, 314(5802): 1113-1118. https://doi.org/10.1126/science.1131412 |
| [74] |
Noro, M., Masuda, R., Dubrovo, I. A., et al., 1998. Molecular Phylogenetic Inference of the Woolly Mammoth Mammuthus Primigenius, Based on Complete Sequences of Mitochondrial Cytochrome B and 12S Ribosomal RNA Genes. Journal of Molecular Evolution, 46(3): 314-326. https://doi.org/10.1007/pl00006308 |
| [75] |
O'Brien, S. J., Pan, W., Lu, Z., 1994. Pandas, People and Policy. Nature, 369: 179-180. https://doi.org/10.1038/369179a0 |
| [76] |
Orlando, L., 2020. Ancient Genomes Reveal Unexpected Horse Domestication and Management Dynamics. BioEssays, 42(1): e1900164. https://doi.org/10.1002/bies.201900164 |
| [77] |
Orlando, L., Ginolhac, A., Zhang, G. J., et al., 2013. Recalibrating Equus Evolution Using the Genome Sequence of an Early Middle Pleistocene Horse. Nature, 499(7456): 74-78. https://doi.org/10.1038/nature12323 |
| [78] |
Orlando, L., Leonard, J. A., Thenot, A., et al., 2003. Ancient DNA Analysis Reveals Woolly Rhino Evolutionary Relationships. Molecular Phylogenetics and Evolution, 28(3): 485-499. https://doi.org/10.1016/S1055⁃7903(03)00023⁃X |
| [79] |
Orlando, L., Metcalf, J. L., Alberdi, M. T., et al., 2009. Revising the Recent Evolutionary History of Equids Using Ancient DNA. Proceedings of the National Academy of Sciences, 106(51): 21754-21759. https://doi.org/10.1073/pnas.0903672106 |
| [80] |
Ozawa, T., Hayashi, S., Mikhelson, V. M., 1997. Phylogenetic Position of Mammoth and Steller’s Sea Cow within Tethytheria Demonstrated by Mitochondrial DNA Sequences. Journal of Molecular Evolution, 44(4): 406-413. https://doi.org/10.1007/pl00006160 |
| [81] |
Parducci, L., Jørgensen, T., Tollefsrud, M. M., et al., 2012. Glacial Survival of Boreal Trees in Northern Scandinavia. Science, 335(6072): 1083-1086. https://doi.org/10.1126/science.1216043 |
| [82] |
Pawar, H., Rymbekova, A., Cuadros⁃Espinoza, S., et al., 2023. Ghost Admixture in Eastern Gorillas. Nature Ecology & Evolution, 7(9): 1503-1514. https://doi.org/10.1038/s41559⁃023⁃02145⁃2 |
| [83] |
Poinar, H. N., Schwarz, C., Qi, J., et al., 2006. Metagenomics to Paleogenomics: Large⁃Scale Sequencing of Mammoth DNA. Science, 311(5759): 392-394. https://doi.org/10.1126/science.1123360 |
| [84] |
Price, M., Hongo, H., 2020. The Archaeology of Pig Domestication in Eurasia. Journal of Archaeological Research, 28(4): 557-615. https://doi.org/10.1007/s10814⁃019⁃09142⁃9 |
| [85] |
Prüfer, K., Racimo, F., Patterson, N., et al., 2014. The Complete Genome Sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481): 43-49. https://doi.org/10.1038/nature12886 |
| [86] |
Racimo, F., Sankararaman, S., Nielsen, R., et al., 2015. Evidence for Archaic Adaptive Introgression in Humans. Nature Reviews Genetics, 16(6): 359-371. https://doi.org/10.1038/nrg3936 |
| [87] |
Reich, D., Green, R. E., Kircher, M., et al., 2010. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature, 468(7327): 1053-1060. https://doi.org/10.1038/nature09710 |
| [88] |
Rohland, N., Pollack, J. L., Nagel, D., et al., 2005. The Population History of Extant and Extinct Hyenas. Molecular Biology and Evolution, 22(12): 2435-2443. https://doi.org/10.1093/molbev/msi244 |
| [89] |
Salis, A. T., Bray, S. C. E., Lee, M. S. Y., et al., 2022. Lions and Brown Bears Colonized North America in Multiple Synchronous Waves of Dispersal across the Bering Land Bridge. Molecular Ecology, 31(24): 6407-6421. https://doi.org/10.1111/mec.16267 |
| [90] |
Sandoval⁃Velasco, M., Dudchenko, O., Rodríguez, J. A., et al., 2024. Three⁃Dimensional Genome Architecture Persists in a 52 000⁃Year⁃Old Woolly Mammoth Skin Sample. Cell, 187: 3541-3562. https://doi.org/10.1101/2023.06.30.547175 |
| [91] |
Sheng, G. L., Barlow, A., Cooper, A., et al., 2018. Ancient DNA from Giant Panda (Ailuropoda Melanoleuca) of South⁃Western China Reveals Genetic Diversity Loss during the Holocene. Genes, 9(4): 198. https://doi.org/10.3390/genes9040198 |
| [92] |
Sheng, G. L., Basler, N., Ji, X. P., et al., 2019. Paleogenome Reveals Genetic Contribution of Extinct Giant Panda to Extant Populations. Current Biology, 29(10): 1695-1700. https://doi.org/10.1016/j.cub.2019.04.021 |
| [93] |
Sheng, G. L., Soubrier, J., Liu, J. Y., et al., 2014. Pleistocene Chinese Cave Hyenas and the Recent Eurasian History of the Spotted Hyena, Crocuta Crocuta. Molecular Ecology, 23: 522-533. https://doi.org/10.1111/mec.12576 |
| [94] |
Sheng, G. L., Yuan, J. X., Yi, J., et al., 2009. Ancient DNA Analyses of the Spotted Hyena (Crocuta Crocuta) from Lingxian Cave, Qinhuangdao, Hebei Province. Earth Science, 34(6): 877-883 (in Chinese with English abstract). |
| [95] |
Simonti, C. N., Vernot, B., Bastarache, L., et al., 2016. The Phenotypic Legacy of Admixture between Modern Humans and Neandertals. Science, 351(6274): 737-741. https://doi.org/10.1126/science.aad2149 |
| [96] |
Sjögren, P., Edwards, M. E., Gielly, L., et al., 2017. Lake Sedimentary DNA Accurately Records 20th Century Introductions of Exotic Conifers in Scotland. The New Phytologist, 213(2): 929-941. https://doi.org/10.1111/nph.14199 |
| [97] |
Skoglund, P., Mathieson, I., 2018. Ancient Genomics of Modern Humans: The First Decade. Annual Review of Genomics and Human Genetics, 19: 381-404. https://doi.org/10.1146/annurev⁃genom⁃083117⁃021749 |
| [98] |
Slon, V., Hopfe, C., Weiß, C. L., et al., 2017. Neandertal and Denisovan DNA from Pleistocene Sediments. Science, 356(6338): 605-608. https://doi.org/10.1126/science.aam9695 |
| [99] |
Slon, V., Mafessoni, F., Vernot, B., et al., 2018. The Genome of the Offspring of a Neanderthal Mother and a Denisovan Father. Nature, 561(7721): 113-116. https://doi.org/10.1038/s41586⁃018⁃0455⁃x |
| [100] |
Sommer, R. S., Benecke, N., Lõugas, L., et al., 2011. Holocene Survival of the Wild Horse in Europe: A Matter of Open Landscape? Journal of Quaternary Science, 26(8): 805-812. https://doi.org/10.1002/jqs.1509 |
| [101] |
Stuart, A. J., 2015. Late Quaternary Megafaunal Extinctions on the Continents: A Short Review. Geological Journal, 50(3): 338-363. https://doi.org/10.1002/gj.2633 |
| [102] |
Sun, X., Liu, Y. C., Tiunov, M. P., et al., 2023. Ancient DNA Reveals Genetic Admixture in China during Tiger Evolution. Nature Ecology & Evolution, 7(11): 1914-1929. https://doi.org/10.1038/s41559⁃023⁃02185⁃8 |
| [103] |
van der Valk, T., Pečnerová, P., Díez⁃Del⁃Molino, D., et al., 2021. Million⁃Year⁃Old DNA Sheds Light on the Genomic History of Mammoths. Nature, 591(7849): 265-269. https://doi.org/10.1038/s41586⁃021⁃03224⁃9 |
| [104] |
Vernot, B., Zavala, E. I., Gómez⁃Olivencia, A., et al., 2021. Unearthing Neanderthal Population History Using Nuclear and Mitochondrial DNA from Cave Sediments. Science, 372(6542): eabf1667. https://doi.org/10.1126/science.abf1667 |
| [105] |
Wang, J., Xia, H., Yao, J. T., et al., 2020. Subsistence Strategies of Prehistoric Hunter⁃Gatherers on the Tibetan Plateau during the Last Deglaciation. Science China Earth Sciences, 50(3):380-390 (in Chinese with English abstract). |
| [106] |
Wang, Y. C., Pedersen, M. W., Alsos, I. G., et al., 2021. Late Quaternary Dynamics of Arctic Biota from Ancient Environmental Genomics. Nature, 600(7887): 86-92. https://doi.org/10.1038/s41586⁃021⁃04016⁃x |
| [107] |
Wei, F., 2022. Population History of the Giant Panda. Springer, New York. |
| [108] |
Weinstock, J., Willerslev, E., Sher, A., et al., 2005. Evolution, Systematics, and Phylogeography of Pleistocene Horses in the New World: A Molecular Perspective. PLoS Biology, 3(8): e241. https://doi.org/10.1371/journal.pbio.0030241 |
| [109] |
Westbury, M. V., Hartmann, S., Barlow, A., et al., 2020. Hyena Paleogenomes Reveal a Complex Evolutionary History of Cross⁃Continental Gene Flow between Spotted and Cave Hyena. Science Advances, 6(11): eaay0456. https://doi.org/10.1126/sciadv.aay0456 |
| [110] |
Willerslev, E., Davison, J., Moora, M., et al., 2014. Fifty Thousand Years of Arctic Vegetation and Megafaunal Diet. Nature, 506(7486): 47-51. https://doi.org/10.1038/nature12921 |
| [111] |
Willerslev, E., Gilbert, M. T. P., Binladen, J., et al., 2009. Analysis of Complete Mitochondrial Genomes from Extinct and Extant Rhinoceroses Reveals Lack of Phylogenetic Resolution. BMC Evolutionary Biology, 9: 95. https://doi.org/10.1186/1471⁃2148⁃9⁃95 |
| [112] |
Willerslev, E., Hansen, A. J., Binladen, J., et al., 2003. Diverse Plant and Animal Genetic Records from Holocene and Pleistocene Sediments. Science, 300(5620): 791-795. https://doi.org/10.1126/science.1084114 |
| [113] |
Xiao, B., Wang, T. J., Lister, A. M., et al., 2023. Ancient and Modern Mitogenomes of Red Deer Reveal Its Evolutionary History in Northern China. Quaternary Science Reviews, 301: 107924. https://doi.org/10.1016/j.quascirev.2022.107924 |
| [114] |
Xie, S. C., 2023. Geobiology. Higher Education Press, Beijing (in Chinese). |
| [115] |
Yang, H., Golenberg, E. M., Shoshani, J., 1996. Phylogenetic Resolution within the Elephantidae Using Fossil DNA Sequence from the American Mastodon (Mammut Americanum) as an Outgroup. Proceedings of the National Academy of Sciences, 93(3): 1190-1194. https://doi.org/10.1073/pnas.93.3.1190 |
| [116] |
Yang, M. A., Gao, X., Theunert, C., et al., 2017. 40, 000⁃Year⁃Old Individual from Asia Provides Insight into Early Population Structure in Eurasia. Current Biology, 27(20): 3202-3208. https://doi.org/10.1016/j.cub.2017.09.030 |
| [117] |
Yin, H. F., Xie, S. C., Tong, J. N., et al., 2009. On the Significance of Geobiology. Acta Palaeontologica Sinica, 48(3): 293-301 (in Chinese). |
| [118] |
Yuan, J. X., Hou, X. D., Barlow, A., et al., 2019. Molecular Identification of Late and Terminal Pleistocene Equus Ovodovi from Northeastern China. PLoS One, 14(5): e0216883. https://doi.org/10.1371/journal.pone.0216883 |
| [119] |
Yuan, J. X., Hu, J. M., Liu, W. H., et al., 2024. Camelus Knoblochi Genome Reveals the Complex Evolutionary History of Old World Camels. Current Biology, 34(11): 2502-2508. https://doi.org/10.1016/j.cub.2024.04.050 |
| [120] |
Yuan, J. X., Sheng, G. L., Preick, M., et al., 2020. Mitochondrial Genomes of Late Pleistocene Caballine Horses from China Belong to a Separate Clade. Quaternary Science Reviews, 250: 106691. https://doi.org/10.1016/j.quascirev.2020.106691 |
| [121] |
Yuan, J. X., Sun, G. J., Xiao, B., et al., 2023. Ancient Mitogenomes Reveal a High Maternal Genetic Diversity of Pleistocene Woolly Rhinoceros in Northern China. BMC Ecology and Evolution, 23(1): 56. https://doi.org/10.1186/s12862⁃023⁃02168⁃0 |
| [122] |
Zavala, E. I., Jacobs, Z., Vernot, B., et al., 2021. Pleistocene Sediment DNA Reveals Hominin and Faunal Turnovers at Denisova Cave. Nature, 595(7867): 399-403. https://doi.org/10.1038/s41586⁃021⁃03675⁃0 |
| [123] |
Zhang, D. J., Xia, H. A., Chen F.H., et al., 2020. Denisovan DNA in Late Pleistocene Sediments from Baishiya Karst Cave on the Tibetan Plateau. Science, 370: 584-587. https://doi.org/10.1126/science.abb6320 |
| [124] |
Zhang, M., Liu, Y. C., Li, Z. P., et al., 2022. Ancient DNA Reveals the Maternal Genetic History of East Asian Domestic Pigs. Journal of Genetics and Genomics, 49(6): 537-546. https://doi.org/10.1016/j.jgg.2021.11.014 |
| [125] |
Zhang, N. F., Shao, X. Y., Guo, Y. Q., et al., 2023. Ancient Mitochondrial Genomes Provide New Clues to the Origin of Domestic Cattle in China. Genes, 14(7): 1313. https://doi.org/10.3390/genes14071313 |
国家自然科学基金项目(42172027)
国家自然科学基金项目(42472008)
国家自然科学基金项目(41672017)
国家自然科学基金项目(41472014)
/
| 〈 |
|
〉 |