牙形石生物磷灰石地球化学研究进展

张磊 ,  赵赫 ,  吕政艺 ,  王向东

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1122 -1141.

PDF (3241KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1122 -1141. DOI: 10.3799/dqkx.2025.004

牙形石生物磷灰石地球化学研究进展

作者信息 +

Progress in Study of Conodont Bioapatite Geochemistry

Author information +
文章历史 +
PDF (3318K)

摘要

牙形石作为一类已灭绝的但分类地位不明的海洋脊索动物的口部摄食器官,是一种由碳氟磷灰石组成的磷酸盐质微体化石(大小一般约0.5 mm,最大可达3 mm),对成岩蚀变具有较强的抵抗能力,有利于保存原始海水信息,它的元素和同位素组成被认为是可靠的古海洋化学记录载体.以稀土元素和氧、锶、钙同位素体系为代表的牙形石地球化学研究在揭示古海洋氧化还原状态、古海洋酸碱程度、海水表层温度、大陆风化作用和古气候等方面发挥了关键作用.一直以来,相关学者不仅聚焦于牙形石地球化学研究在古环境‒古气候领域的应用,也不断深入探究牙形石微观结构,尤其是多种元素及同位素信息的准确提取、评价和筛选,目的是进一步完善牙形石地球化学研究方法并准确应用.本文综述了牙形石形貌、结构和古生态特征,在此基础上总结了牙形石稀土元素以及氧、锶、钙同位素地球化学研究进展,以期为牙形石地球化学发展及其在古环境‒古气候研究中的应用提供参考和启发.

Abstract

Conodonts, serving as a feeding apparatus in oral cavity of an extinct and taxonomically ambiguous group of marine chordates, are phosphatic microfossils composed of carbonate fluorapatite (typically around 0.5 mm in size, with a maximum of 3 mm). They exhibit strong resistance to diagenesis, which is beneficial for preserving primary seawater information. Their elemental and isotopic composition is considered a reliable carrier of paleoceanographic chemical records. Geochemical systems represented by rare earth elements and oxygen, strontium, and calcium isotopes in conodonts have played a key role in revealing seawater redox conditions, acidity and alkalinity of paleooceans, surface seawater temperature, continental weathering, and paleoclimates. Conodont geochemical studies have been not only focusing on its application in the field of paleoenvironment and paleoclimatology, but also continuously delving into the microstructure of conodonts, especially the accurate extraction, evaluation, and screening of various elemental and isotopic information, with the aim of further improving the accurate application of conodont geochemistry. This paper reviews the morphology, structure, and paleoecological characteristics of conodonts, and on this basis, summarizes the study progress of rare earth elements and oxygen, strontium, and calcium isotope geochemistry of conodonts, in order to provide reference and inspiration for the development of conodont geochemistry and its application in paleoenvironmental and paleoclimatic studies.

Graphical abstract

关键词

牙形石 / 古海洋 / 古温度 / 大陆风化 / 稀土元素 / 氧同位素 / 锶同位素 / 钙同位素 / 地球化学.

Key words

conodont / paleoceanography / paleotemperature / continental weathering / rare earth elements / oxygen isotopes / strontium isotope / calcium isotope / geochemistry

引用本文

引用格式 ▾
张磊,赵赫,吕政艺,王向东. 牙形石生物磷灰石地球化学研究进展[J]. 地球科学, 2025, 50(03): 1122-1141 DOI:10.3799/dqkx.2025.004

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

牙形石是一类已灭绝的但分类地位不明的海洋脊索动物的口部摄食器官矿化骨骼形成的微小化石(Goudemand et al., 2011Henderson, 2021)(图1),始于寒武纪,止于三叠纪,具有数量众多、地理分布广泛、演化迅速的特点,是地质历史时期的标准化石之一,在全球地层划分和对比中发挥着关键作用(Orchard, 2010).例如,古生代‒中生代地层界线(也即二叠系‒三叠系界线)的“金钉子”(即全球界线层型剖面和点位)以浙江长兴煤山D剖面产出的牙形石Hindeodus parvus的首次出现为标准(Yin et al., 2001).牙形石是年代地层研究的重要标准化石,目前全球以牙形石作为标准化石的“金钉子”已达19个(https://stratigraphy.org/).

牙形石主要成分是碳氟磷灰石,非计量化学式为Ca5Na0.14(PO43.01(CO30.16F0.73(H2O)0.85Pietzner et al., 1968Sweet, 1989).在牙形类动物生长期以及牙形石埋藏成岩阶段还会从周围环境吸收稀土元素以及锶、铀、钍等微量元素.因此,牙形石是古海洋化学研究的重要载体(Trotter and Eggins, 2006Bright et al., 2009;赵来时等,2009;陈剑波等,2012;Zhao et al., 2013Chen et al., 2015Trotter et al., 2016Kilic, 2024).与地层中常见的碳酸质化石壳体相比(如有绞腕足和双壳),牙形石生物磷灰石具有微观结构更致密、化学组成更稳定、地层产出更连续、演化更快,且在全球更广泛分布等特点(Wenzel et al., 2000Joachimski et al., 2004).例如,在经历了二叠纪‒三叠纪之交生物大灭绝事件后,牙形类动物演化依然迅速且仍然在全球海洋广泛分布(Orchard,2007),而腕足类作为第二大牺牲者在二叠系‒三叠系界线之上的地层中已经非常稀少(Carlson, 2018).牙形石的以上特点使得它在高时间分辨率古海洋化学重建研究方面具备独特优势.基于此,牙形石地球化学手段(例如,稀土元素、氧同位素、锶同位素、钙同位素)在重大地质事件与生物‒环境协同演变过程研究中扮演了独特角色,在重建古海洋化学成分演变规律,解析全球气候、大陆风化、海水氧化还原状态等方面发挥着重要作用.

近十余年来,牙形石地球化学研究及应用有了长足发展,特别是在牙形石微观结构、微量元素及同位素分析测试手段和地球化学行为等方面取得了重要突破,大量原创性的重要成果陆续发表.以微小的牙形石为载体,开展系统的地球化学研究,不仅是地球生物学学科发展的内在动力,也是促进交叉学科发展和服务国家重大科学目标的必然要求.本文首先回顾了牙形石形貌结构、古生态等基本特征,然后综述了全岩和微区原位牙形石地球化学研究的技术方法、所取得的重要认识及薄弱之处,以及未来工作重点.

1 牙形石形貌及结构

牙形石地球化学信号的保存、提取以及地质应用依赖于对牙形石形貌结构等特征的充分分析.牙形石个体微小(一般<0.1 mm至约3 mm),形态变化多样,大致可以分为单锥型、复合型(包括齿棒状和齿片状)和平台型3大类,总体而言,复合型由单锥型演化而来,而平台型则源于复合型牙形石,它们共同组成了牙形类动物的多分子器官(Purnell and von Bitter, 1992Purnell et al., 2000Turner et al., 2010Henderson, 2021)(图1).

Hinde(1879)报道了北美地区泥盆系牙形石自然集群之后,Schmidt(1934)Scott (1934)Rhodes(1952)亦分别报道了石炭系的牙形石自然集群.而多分子分类方法的出现成为牙形石分类理念上的重大革新之一(Bergström and Sweet, 1966Webers, 1966).如Goudemand et al.(2011)根据在我国广西发现的早三叠世牙形石自然集群(包括齿串及离散多分子材料),结合其他时代的牙形石自然集群材料,对牙形石多分子器官重建模型、多分子器官位置等进行了较详尽的研究(图2).电子背散射衍射分析(EBSD)、X射线衍射分析(XRD)、扫描电子显微技术(SEM)、透射电子显微技术(TEM)、同步辐射X射线断层显微技术(SRCT)、原子探针断层扫描技术(APT)等先进的形貌分析技术,为深入解析牙形石的个体发育、显微结构及其化学成分特征提供了宝贵的数据资料(Trotter et al., 2007Murdock et al., 2013Gao et al., 2024).

牙形石个体一般由乳白色牙冠、玻璃质牙冠和牙基3部分组成(图1),它们在晶体大小、形状、取向、孔隙度等方面有明显差异(Trotter et al., 2007Zhang et al., 2017).乳白色牙冠由一系列细颗粒(~100~200 µm)晶体组成,缺乏生长层,具有相对较高的结晶度和更致密的微观结构;玻璃质牙冠中的晶体颗粒更粗糙、细小,具有明显的层状生长层,且生长层之间的空间有时可见次生矿物,其结晶度和致密程度次之;牙基的结晶度最低(近隐晶质),晶体排列不规则,孔隙度高,且相对富含有机质,因此更容易遭受成岩流体的改造.牙形石表层通常光滑,有时也可见牙形石表层附着不规则取向的晶体和假象,较为粗糙,可能与围岩经历的成岩改造有关(Königshof, 2003;Sanz⁃López and Blanco⁃Ferrera, 2012).在成岩作用过程中,压实和胶结作用会降低围岩孔隙度和渗透率,导致牙形石表层发生重结晶(Lara⁃Peña et al., 2024).

未经变质改造的牙形石一般呈琥珀光泽、浅褐黄色.牙形石颜色在经历热蚀变改造后会发生规律性变化.随着岩层温度的升高,牙形石内部有机质逐渐碳化直至分解挥发,使得牙形石颜色逐渐由琥珀褐色变为黑色,然后逐渐变浅直至无色透明.Epstein et al.(1975)提出将牙形石颜色变化指数(CAI)作为一种半定量的指标,用于指示牙形石遭受热蚀变的程度.在一定温度范围内,颜色越深(参照孟塞尔色卡)指示牙形石受到的热改造越严重(Pietzner et al., 1968Epstein et al., 1975).在有机质含量较低的碳酸盐岩沉积单元中,牙形石CAI指数直接与埋深和持续的埋藏时间有关,并与温度和受热时间成函数关系,因此是评估有机质成熟度和重建地质单元热演化的重要指标,在油气勘探领域应用广泛(García⁃López et al., 2001McMillan and Golding,2019).此外,牙形石对铁元素的吸附以及其中铁氧化物的渗透矿化也可能是导致CAI指数变化的原因之一(Golding and McMillan, 2021).需要指出的是,单个牙形石分子在遭受热变质作用时不同部位颜色变化的幅度是不同的,通常牙基颜色最先变深,而乳白色牙冠最晚变深,可能与不同部位有机质含量、铁含量以及微观结构的致密程度有关(Epstein et al., 1975Golding and McMillan, 2021).由于CAI比较依赖于观察者对牙形石颜色的主观判断和分类,McMillan and Golding(2019)提出使用拉曼光谱直接测试牙形石中有机质热蚀变程度,有望实现对牙形石热演化历史的更精确重建.

在远离造山作用影响的稳定沉积单元(如台地和盆地相区),地层的热变质和重结晶程度一般较低,所产出的牙形石CAI指数(≤3)和重结晶程度也较低,此时牙形石更接近原始状态,是用于古环境‒古气候研究的优良材料.而造山带区域产出的牙形石可能经历过明显的热变质和重结晶作用,因此需要利用一系列分析手段,例如透射电镜(TEM)、扫描电子显微镜(SEM)、激光拉曼光谱(LRS)、傅里叶红外光谱分析(FTIR)等,筛选出结构保存良好且未遭受明显成岩作用改造的牙形石用于古海洋化学分析(Trotter et al., 2007John et al., 2008Golding and McMillan, 2021).

2 牙形石古生态

牙形石广泛分布于多种类型的海相沉积岩内,常见于灰岩、泥灰岩,少见于白云岩、泥岩、硅质岩、页岩.有些牙形石属种可同时出现在多种类型沉积岩中,而有些仅产出于特定类型的沉积岩.根据不同沉积相区牙形石分布特征,可推测出牙形类动物群常栖息于潮下浅水碳酸盐岩台地相和台前碳酸盐凹陷相,而极浅水滨海潮坪和深水海盆都不适宜牙形类动物群的生存(张克信,1988;王安德和汪恒定,1990).根据不同相区地层中牙形石属种组合上的显著差异,可将牙形类动物分为自游泳型、浮游型和底栖型3种生态类型,前两者分布较广,可出现于多种沉积相带,而后者分布局限,只出现在特定的相带中(张克信,1988;Sweet, 1989;田树刚,1993).根据各沉积相带牙形石产出频率、分异度和种类,前人提出控制牙形类动物古生态习性的多种外部因素,包括水深、温度、含氧量、盐度、水动力条件、食物供应等因素,这也最终决定了牙形石的生物相(Biofacies)特征(王安德和汪恒定,1990;杨守仁等,2001;Herrmann et al., 2015Girard et al., 2020).以二叠纪‒三叠纪常见牙形石属种为例,Neospathodus大多生活于较深水环境,PachycladinaParachirognathus大多生活于浅水环境,而HindeodusIsarcicella则既可见于浅水也可见于深水环境(张克信,1988;Lai et al., 2001;杨守仁等,2001).中‒晚三叠世全球分布的Paragondolella、QuadralellaMazzaella也可能属于自游泳型,而相对局限分布的Budurovignathus可能属于浮游型或底栖型(Zhang and Sun, 2023).牙形石古地理研究显示,Gladigondolella属是典型的狭温性牙形石,主要存在于热带特提斯区,而NeogondolellaNeospathodus两属很多种则是广温性牙形石,可分布于热带特提斯区和环极冷水区(杨守仁等,2001).基于此,同一地层中产出的相同时代的不同牙形石属种可能具有不同的生物相特征,所记录的水温、海水碎屑含量、酸碱度和氧化还原状态等信息也可能有差异.因此,在牙形石微量元素和氧、锶、钙同位素研究中需要特别关注牙形石生态学和生物相等相关因素的影响.

磷酸盐氧同位素古温度重建方法为解析牙形石古生态特征提供了独特视角(Rigo and Joachimski, 2010Joachimski et al., 2012Rigo et al., 2012Sun et al., 2012,2020Wheeley et al., 2018Chen et al., 2021).氧同位素(δ18O)古温度研究显示,早三叠世Parachirognathus spp.和Platyvillosus spp.的δ18O数值比产自相同层位的Neospathodus高出~0.7‰,对应古温度低约3 ℃,由此推断前两类牙形类动物可能生活在较深部水体,而Neospathodus生活在较浅部水体(Sun et al., 2012).研究还表明gondolellids比产自相同层位的Neospathodus spp. 的δ18O数值高出~0.4‰,对应古温度低约2 ℃,表明前者生活在更深的水体中.Chen et al.(2021)指出Neogondolella生活在比neospathodids和Icriospathodus更深的水域中,两者温差约1.7 ℃.奥陶纪牙形石氧同位素研究表明具备较低δ18O数值的Drepanodus planus可能生活在陆架边缘‒斜坡相区的最表层水体,而最高δ18O数值的Tropodus sweeti可能生活在这一区域的最深部水体(Wheeley et al., 2018),两者所处水体温差约8 ℃.需要说明的是,随着环境条件的改变,同一属种牙形石的栖息地可能会发生变化.例如二叠纪‒三叠纪之交的Clarkina和晚三叠世的Norigondolella在全球升温和海平面升高的背景下从表层海水逐渐迁徙至深部水体(Joachimski et al., 2012Sun et al., 2020).总的来说,在牙形石地球化学的古环境‒古气候应用中应充分考虑牙形石属种(生态习性)这一变量因素,优选属种单一且地层延限较长的牙形石是降低该影响的有效方法.

3 牙形石稀土元素

稀土元素(REE)地球化学特征是重建古海洋环境的重要指标,通过研究现代海水、海洋沉积物和孔隙水中稀土元素的时空演变规律及其对应的环境特征,可以为探究古海洋环境演变提供了关键依据(Haley et al., 2004Chen et al., 2015).REE是元素周期表中从镧(La)至镥(Lu)、钪(Sc)、钇(Y)共17种元素的总称.REE在海水中的滞留时间较短(数十年),远远短于海水的混合时间,这意味着海水REE含量及其异常波动通常反映的是局部环境变化,如海水氧化还原状态等(王宇航等,2018).现代海水REE组成特征为较低的总稀土含量 (∑REE)、重稀土元素(HREE)富集、镧(La)正异常以及较高的Y/Ho比值(44~74)(Sholkovitz et al., 1994).海洋沉积物,如海相碳酸盐岩(珊瑚)、海相自生碳酸盐(鲕粒、胶结物)、磷块岩、大洋铁锰结合等,均是海水REE信号的重要记录者,常用于海水REE组成研究.例如,海洋珊瑚化石和微生物礁的REE标准化配分模式与现代海水类似,以极低的 ∑REE和 LREE强烈亏损为特点(Webb et al., 2000Webb and Kamber, 2000Nothdurft et al., 2004).

海洋生物成因磷酸盐(如牙形石)的稀土元素组成也常用于重建地质历史时期古海洋化学条件(Picard et al., 2002Lécuyer et al., 2004).生物活体磷酸盐组织中REE含量一般很低(数个ppm,即10‒6).前人提出牙形石中较高含量的REE是在成岩阶段富集而成的,其REE总含量往往可达数百个ppm(Trotter and Eggins, 2006Zhao et al., 2013).远洋硅质岩中产出的牙形石主微量元素面分析显示,REE在牙形石内部分布较为均匀且含量较低,在牙形石表层及沿着破裂面的自形磷灰石颗粒更加富集REE,反映了牙形石在成岩作用过程中对REE的显著吸收(Matsumoto et al., 2023).此外,同一岩层中产出的不同种属牙形石稀土元素表现出较显著的差异(如∑REE),可能与牙形石生物相、埋藏环境和渗透性等内外因素有关(Bright et al., 2009Medici et al., 2021).当牙形石对REE的吸收发生在水岩界面,或者接近水岩界面的位置时,其REE组成可能反映同时期海水化学组成,而如果主要来自沉积物孔隙水则会记录明显的碎屑和成岩改造信号(Chen et al., 2015Li et al., 2017).因此,埋藏环境和成岩过程很大程度上决定了牙形石中REE和其他微量元素的来源(Lumiste et al., 2023),而如何识别和提取最能反映古海水化学成分的信息成为了关键.

在早期研究中,牙形石REE测试采用的是全岩分析法,首先将整枚牙形石样品酸解,然后利用电感耦合等离子体质谱(ICP⁃MS)分析其组成(Lécuyer et al., 2004).考虑到牙形石不同部位的结构和化学特征可能有差异,全岩分析法并不能保证所提取信息的可靠性和代表性,也就无法准确区分海水和非海水信号.随着分析测试技术的发展,以激光剥蚀电感耦合等离子体质谱(LA⁃ICP⁃MS)为代表的微区原位分析手段使得在微米尺度开展牙形石REE研究成为可能.样品制备方面,将牙形石置于超纯水清洗,然后粘于载玻片上制靶,圈定测试点后即可开展微区原位激光剥蚀分析.Trotter and Eggins (2006)利用LA⁃ICP⁃MS开展了不同地质年代(奥陶纪、志留纪和二叠纪)单枚牙形石样品微区原位元素分析,发现牙形石不同部位(乳白色牙冠、玻璃质牙冠、基部)REE和其他微量元素分布存在显著差异,乳白色牙冠最低,牙基最高,且核部微量元素(如La、Sr、U和Th)含量较表层更高.相较于玻璃质牙冠和牙基,乳白色牙冠REE、Th、U含量更低,可能与其更致密的结构有关(对成岩流体的抵抗力更强).因此,乳白色牙冠最可能记录原始海水REE信息,此后常被用以开展REE分析(Trotter and Eggins, 2006Trotter et al., 2007).在国内,赵来时等(2009)率先开展了牙形石稀土元素地球化学研究,利用LA⁃ICP⁃MS微区原位分析手段,在煤山剖面二叠系‒三叠系“金钉子”附近开展了牙形石乳白色牙冠REE等微量元素组成变化研究,发现牙形石REE等微量元素含量在大灭绝事件前后发生了显著变化,提出了牙形石REE地球化学手段在重建古海洋环境变化(氧化还原状态和生态条件)中的重要作用.

近年来的研究尝试利用一系列地球化学判别指标(如ΣREE/Th、Y/Ho)来识别牙形石中掺杂的陆源碎屑信号、成岩改造信号,筛选出原始海水信号用于古环境重建(Zhao et al., 2013;Chen et al., 2015;Trotter et al., 2016;Zhang et al., 2016,2017Li et al., 2017Golding and McMillan, 2021Lumiste et al., 2023).Zhao et al. (2013)在二叠纪‒三叠纪之交牙形石乳白色牙冠中识别出了来自火山粘土的REE信号(低Eu/Eu*和LaN/YbN,高Th/La),提出在二叠纪末生物大灭绝过程中火山喷发形成的火山灰随大陆风化作用进入海洋,影响了海洋化学组成.Chen et al. (2015)研究提出牙形石在成岩作用过程中会从沉积物孔隙水中吸收REE,当来自陆源碎屑和铁‒锰氧化物的REE在成岩作用过程中被活化释放进入孔隙水并占据主导时原始海水REE信号就难以被捕捉.现代海洋研究也显示,沉积物中生物磷灰石的REE组成主要受孔隙水化学成分的影响,真实的海水信号已被掩盖(Deng et al., 2022).总的来说,牙形石REE对成岩作用改造和孔隙水化学组成非常敏感,尤其在陆源碎屑和铁‒锰氧化物参与的情况下,导致在碎屑含量较高的地层中产出的不同时代牙形石具有相似的REE组成特征,且牙形石表现出与围岩相似的地球化学特征(Zhang et al., 2016Matsumoto et al., 2023),包括ΣREE与碎屑元素(如Th)呈显著的正相关关系、中稀土元素(MREE)富集(“帽型”或“钟型”)、相似的Ce/Ce*比值,Y/Ho比值靠近陆源碎屑信号(~25~30)而远离海水信号(~60~70)(Kamber and Webb, 2001).

在陆源碎屑含量较低的地层中(如台地碳酸盐岩),利用一系列地球化学判别图解可从牙形石中提取出代表古海水信息的REE信号用于古环境分析.例如,牙形石稀土元素指标Ce/Ce*可指示水岩界面附近Fe⁃Mn氧化物的存在,常用于表征水岩界面附近水体氧化还原状态(Song et al., 2012Li et al., 2017Matsumoto et al., 2023).牙形石在成岩作用过程中对REE等微量元素的吸收开始于贫氧带(即Mn(IV)和Fe(III)还原带),主体发生在成岩作用晚期更深更缺氧的埋藏环境(Zhang et al., 2016).在华南浅水碳酸盐台地二叠系‒三叠系过渡地层(沿沟剖面)中陆源碎屑占比较低(Al<0.5%,质量分数),所产出的牙形石REE元素在二叠纪末生物大灭绝之前以水成信号为主(Y/Ho>50),此时牙形石Ce/Ce*指标仍可用于反映海水氧化还原状态变化,而在绝灭之后以成岩作用信号为主(Y/Ho<50),这与全球气候变暖导致的大陆风化作用增强有关(Li et al., 2017).

4 牙形石氧同位素古温度计

牙形石生物磷灰石在矿物学上比生物碳酸盐(如腕足类、双壳类)更稳定,与周围海水氧同位素(δ18O)呈平衡状态,其氧同位素组成(δ18O牙形石)是古温度记录的可靠载体(Kolodny et al., 1983Wenzel et al., 2000Joachimski et al., 2004Trotter et al., 2008).大量研究表明,牙形石氧同位素(δ18O牙形石)直接反映了牙形类动物生活水体的温度(即海水表层温度),对全球气候变化十分敏感,是高分辨率古气候重建的可靠指标(Wheeley et al., 2018).目前,δ18O牙形石指标在显生宙重大地质事件的古气候研究中被广泛使用,例如奥陶纪冰室气候、晚古生代大冰期、二叠纪末生物大灭绝事件等(Buggisch et al., 2008Trotter et al., 2008Chen et al., 2011Sun et al., 2012Liu et al., 2022).

利用δ18O牙形石计算古海水温度依据的是磷酸盐与水的氧同位素分馏方程.目前常用的方程包括:

T=113.3-4.38×(δ18O磷酸盐18O海水),
T=118.7-4.22×(δ18O磷酸盐18O海水),
T=117.4-4.50×(δ18O磷酸盐18O海水),

公式(1)~(3)分别来自Kolodny et al.(1983)Pucéat et al.(2010)Lécuyer et al.(2013).其中,T表示牙形石周围水体温度;δ18O磷酸盐表示牙形石氧同位素;δ18O海水表示牙形石周围水体的氧同位素值,彼时两者的氧是平衡关系.在全球无冰川的环境条件下(如早三叠世),常假定δ18O海水数值为‒1.0‰(VSMOW),而在冰室时期(如晚古生代大冰期)常被假定为+1‰(VSMOW)(Sun et al., 2012).

精细约束不同时代δ18O海水数值对于古气候重建十分必要,而目前不同时代δ18O海水的估算值可能有较大偏差.近年来以团簇同位素为代表的古温度重建指标成为了约束不同时代δ18O海水的有效依据(Henkes et al., 2018).例如,Cummins et al.(2014)提出志留纪赤道附近海域δ18O海水平均值为(‒1.1±1.3)‰,与全球无冰川背景下的数值接近(‒1‰);Price et al.(2020)提出早白垩世δ18O海水数值约在0‰至+1.5‰之间,而此前白垩纪研究常采用的数值是‒1‰;Thiagarajan et al.(2024)的研究显示奥陶纪δ18O海水随时间规律变化,波动范围约+4‰至 ‒4‰,而此前的推荐值是+1‰.总的来说,具体到某一地质历史时期,在采用何种δ18O海水数值(亦或采用动态变化的δ18O海水数值)用于古温度计算的问题上仍有较多不确定性,需要更多研究的精细约束.

对比上述古温度公式,可见它们重建所得的温度绝对数值有较明显差别(图3).以二叠纪‒三叠纪之交的升温事件为例,δ18O牙形石在晚二叠世末期约22‰,在早三叠世初期约17‰(Joachimski et al.,2012Sun et al., 2012),选用δ18O海水数值‒1.0‰,利用公式(1)~(3)分别求得的古温度升高范围为12.6 ℃至34.5 ℃、21.6 ℃至42.7 ℃、13.9 ℃至36.4 ℃,升温幅度分别为21.9 ℃、21.1 ℃、22.5 ℃.可以看出,利用不同古温度公式获得的升温幅度较为接近(<2 ℃),但绝对的温度数值有较大差异(~8~9 ℃).

此后,有学者对上述古温度公式做了进一步修正,主要基于研究中使用的同位素参考标准(NBS120b和NBS120c)以及提取方法的差异,例如在公式(1)和(2)中分别引入了校正系数“-1.4”和“+0.9”,单位为‰(Zhang et al., 2017).修正后的公式如下:

T=113.3-4.38×(δ18O磷酸盐-1.4-δ18O海水),
T=118.7-4.22×(δ18O磷酸盐+0.9-δ18O海水),

仍以晚二叠世末期和早三叠世初期δ18O牙形石变化为例,此时利用公式(4)和(5)计算所得的古温度升高范围为17.8~38.9 ℃、18.7~40.6 ℃,升温幅度分别为21.1 ℃、21.9 ℃(图3).修正后的古温度计算结果无论在绝对数值还是升高幅度上的差别都已经明显缩小(~1~2 ℃),用于古温度计算的可靠性明显提高.

根据前文所述,不同牙形石属种的古生态和周围水体温度可能有较大差别.因此,在不同时代、不同属种、不同区域/相区开展牙形石古生态研究对于准确重建古海水温度特别关键,但是相关研究仍然薄弱.Sun et al.(2020)对比了晚三叠世深水和浅水牙形石分子氧同位素数值,发现深水牙形石属种的δ18O数值更高,与浅水属种之间存在约0.8‰的系统差别,这为同一剖面不同属种δ18O牙形石的对比和整合提供了关键数据.

4.1 全岩及微区原位牙形石氧同位素

全岩牙形石氧同位素分析常用的是化学分离+高温还原+质谱分析法.具体来说,首先利用硝酸消解磷灰石,然后利用一系列化学试剂搭配离子交换树脂色谱柱依次去除非磷酸根(如碳酸根、羟基、有机质)中的氧和Ca2+,最后将磷酸根溶液中的氧转化为Ag3PO4晶体,通过TC⁃EA高温还原法,利用气体稳定同位素比质谱仪(IRMS)测定其中的氧同位素(Joachimski et al., 2009;杜勇等,2019).常用磷灰石氧同位素标样包括NBS 120c(21.7‰)和NBS 694 (18.9‰)等(Trotter et al., 2008Joachimski et al., 2009Lécuyer et al., 2013).

随着仪器设备和分析技术方法的不断革新,以高灵敏高分辨二次离子探针质谱(SHRIMP,空间分辨率~10~30 µm)、二次离子质谱(SIMS,空间分辨率~0.1~1.0 µm)、纳米离子探针(NanoSIMS,空间分辨率~50~200 nm)为代表的微区原位氧同位素分析技术在地球科学不同领域发挥着越来越重要的作用,从亚微米‒纳米研究尺度出发,为探明一系列复杂地学问题提供了关键视角(李秋立等,2013).微区原位牙形石氧同位素分析方法更加快速高效(王润等,2013),被越来越多地应用于重大地质事件的古气候重建研究,如奥陶纪降温事件等(Trotter et al., 2008Liu et al., 2022).

微区原位氧同位素分析常采用树脂制靶+圈定测试点+微区原位激光剥蚀分析模式.虽然在单枚牙形石上就可获取数个氧同位素数值,但为了提高数据的有效性,每个层位应优选CAI数值低、形态完整、单一属种的牙形石3~5枚,用于树脂靶制备(Wheeley et al., 2012;王润等,2013).考虑到激光剥蚀深度通常在纳米级别,为了提高分析数据的重现性和准确性,还应对样品精细抛光,然后参照牙形石显微结构研究结果圈定分析测试部位.微区原位氧同位素分析常采用国际标样Durango磷灰石,参考值是(9.81±0.25)‰(周丽芹等,2012).

牙形石乳白色牙冠常用于氧同位素古温度重建研究(Trotter et al., 2008;Liu et al., 2022).前人研究发现,牙形石不同部位可能具有不同的氧同位素组成,δ18O数值在乳白色牙冠最低,玻璃质牙冠次之,牙基最高,而导致这一差异性的原因仍不清楚(生物效应或成岩作用),相关研究仍然缺乏(Zhang et al., 2017Edwards et al., 2022).在实际应用中,应当选择在相同部位(如乳白色牙冠)开展氧同位素分析,以系统降低牙形石成岩作用或者生物效应对古温度曲线的影响,由此获取的古温度变化幅度和趋势更具参考价值.此外,进一步开展基于不同研究部位(如测试对象是乳白色牙冠、玻璃质牙冠、牙基、全岩分析)的古温度曲线重建和区域对比研究显得十分必要.

基于全岩和微区原位分析方法所得的δ18O牙形石数值可能存在系统差异,这可能与取样尺寸大小或者化学基质效应的差异有关(Sun et al., 2016).Chen et al.(2016)尝试利用煤山剖面二叠系‒三叠系界线附近牙形石全岩和微区原位分析所得δ18O牙形石数据探究不同测试方法所得结果之间的关系,提出两类结果遵循线性转换关系:δ18OSIMS=(0.96±0.08)×δ18OIRMS+(1.31±1.70),其中δ18OSIMS和δ18OIRMS分别表示使用SIMS和IRMS所得的牙形石氧同位素数据.这为不同分析测试方法所得δ18O牙形石数据的对比研究提供了参考路径.需要指出的是,随着研究的不断深入这一转换关系可能会有所变化,其稳健性也会随着数据统计量的增加进一步提高.

相较于微区原位氧同位素分析法,全岩牙形石氧同位素分析方法的显著优势在于:(1)可几乎完全地排除碳酸根、羟基、有机质中氧同位素的干扰,只提取磷酸根中的氧组分,用作氧同位素古温度计算,更真实地反映牙形石所处水体的温度;(2)弱化了牙形石内部不同部位和不同类型磷酸盐氧同位素差异的潜在影响,只获取牙形石整体均一化后的氧同位素值,数据更加稳定,重现性更高.但这种全岩氧同位素分析也引入了新的不利因素,例如,样品消耗量相对较大(通常需消耗牙形石数枚甚至十余枚以上),特别当需要优选同一属种的牙形石开展氧同位素分析时较难获取高分辨率的氧同位素(和古温度)演变曲线,尤其是在牙形石产出较为稀少的环境突变期.此外,该方法无法对牙形石不同部位磷酸根氧同位素差异开展有效评估,而通常这个差异可能是巨大的,例如,在奥陶纪牙形石中发现乳白色牙冠的氧同位素值高出玻璃质牙冠和牙基约2%(Wheeley et al., 2012),由此引入的古温度数值差异超过8 ℃. Elrick(2022)在早‒中奥陶世古温度重建研究中,由于获取的牙形石数量有限,因此混合了不同种牙形石开展化学前处理,虽然切除了致密性最低的牙基,却仍然混合了乳白色牙冠和玻璃质牙冠用于氧同位素分析,因此,仍然无法消除牙形石成分不均一的影响,且不同属种牙形石可能携带了不同深度水温信息,因此重建所得的古温度曲线仍有许多不确定因素.

相较于全岩氧同位素,微区原位牙形石氧同位素分析的显著优势在于:(1)在牙形石产出稀少的地层单元仍有机会建立高分辨率的古温度曲线;(2)由于样品消耗量较少,更有可能开展单一属种的氧同位素对比和基于此的古温度曲线重建工作,降低牙形石属种(生物相)对古海水表层温度曲线的影响;(3)可针对牙形石不同部位分别开展微区原位氧同位素分析,提取最能代表古海水信息的氧同位素数值用于古温度重建,降低成岩作用和牙形类动物生命效应等因素的影响;(4)无需矿物分离和化学预处理,分析测试流程相对快捷高效.但微区原位牙形石氧同位素分析方法尚不能消除非磷酸盐含氧基团(如CO2~3、 OH-)的影响(即基体效应),虽然它们的占比低于总氧含量的5%,对磷酸盐组分中氧同位素的影响可能也是微弱的(Wheeley et al., 2012Trotter et al., 2016).Edwards et al. (2022)发现玻璃质牙冠δ18O与OH/16O比值之间有微弱‒中等强度的相关性,可能源自牙形类动物的生命效应(随着玻璃质牙冠结晶温度的降低OH-含量逐渐升高),亦或与其经历的成岩改造有关.此外,近年来的微区原位研究显示,Durango磷灰石晶体内氧同位素组成的不均一性高达0.7‰~2.0‰(Sun et al., 2016),这给利用SIMS技术开展微区原位氧同位素引入了更多的不确定性.鉴于该标样仍是开展微区原位磷灰石氧同位素的常用标样,且被广泛应用,因此亟需新方案或新标样的补充.此外,还需要注意的是Durango是一种产自墨西哥塞罗德梅尔卡多铁矿的宝石级非生物成因磷灰石,形成于~31 Ma(McDowell et al., 2005),当用作牙形石生物磷灰石氧同位素测试标样时会带来基体不匹配的问题,其影响程度仍需评估.

4.2 牙形石氧同位素信号的评估与筛选

如何判别、评估、降低成岩作用对牙形石氧同位素古温度曲线的影响,是氧同位素古温度重建的关键.前人提出CAI<5的牙形石其δ18O受热蚀变改造程度仍然较低(Joachimski et al., 2009Trotter et al., 2015),因为热蚀变过程中生物磷灰石中的氧与外界的交换十分有限(Pucéat et al., 2004).实践中通常优选CAI<3的牙形石用于氧同位素分析.结晶度指数(crystallinity index, 简称CI)反映了矿物晶体尺寸的相对大小以及晶体中原子的有序程度(即结晶度变化),常用于指示成岩作用对磷灰石的改造程度(Shemesh et al., 1990).CI指标可通过傅里叶变换红外光谱(FTIR)、X射线衍射光谱(XRD)、拉曼光谱(RS)等技术来测定.然而,实践中发现生物磷灰石δ18O虽发生大幅度的波动,但未见明显的重结晶作用(Pucéat et al., 2004),这表明结晶度对于氧同位素保存情况的指示效果仍然有限.拉曼光谱偏移量SS1(Raman spectral shifts)表示牙形石磷酸根谱峰位置(ν1⁃PO43-)相对合成羟基磷灰石的偏移程度(SS1=ν1⁃PO43-band position(样品)-962.1),可用于评估牙形石生物磷灰石δ18O的保存情况(Zhang et al., 2017).例如,对奥陶纪锥形牙形石分子不同部位的统计分析表明,SS1与δ18O表现出显著的负相关性.

5 牙形石锶同位素

Sr同位素(87Sr/86Sr)在海洋生物化学循环过程中不发生分馏,主要受控于陆地和热液两端元Sr通量的变化(Peucker⁃Ehrenbrink and Fiske, 2019),其中大陆端元87Sr/86Sr组成较高(~0.712),热液端元较低(~0.703 5),常用于示踪海洋化学组成和大陆风化强度变化(Palmer and Edmond, 1989Taylor and Lasaga, 1999).此外,锶同位素地层学也是全球海相地层年代划分和对比的重要工具(McArthur et al., 2020).

碳酸盐矿物是海洋锶元素的重要载体,这是因为Sr2+与Ca2+半径接近且具有相同的电价,因此Sr2+更容易置换进入碳酸盐矿物晶格(Tang et al., 2008).形成于远离大陆或者陆源碎屑供给(如孤立台地和海山)的纯净碳酸盐岩是记录海洋锶同位素组成的优选材料,然而多数情况下碳酸盐岩中都或多或少地携带有粘土矿物,而这些风化来源的碎屑物通常都富含Sr,具有靠近大陆端元的高87Sr/86Sr组成,对海水端元Sr同位素组成(~0.707~0.709)的混染强烈(Faure and Powell, 2012).以晚泥盆世为例,在陆地植物迅速演化、强烈大陆风化和碎屑供给背景下,海洋中碳酸盐岩沉积可能受到强烈的陆源碎屑输入混染,导致适合开展古海洋锶同位素重建的碳酸盐岩稀缺,目前相关报道有限(黄思静,1997;Chen et al., 2013).此外,碳酸盐岩如果遭受明显的成岩作用改造,其碳酸盐组分在重结晶过程中会与周围流体发生强烈的元素交换,而流体受粘土矿物影响通常87Sr/86Sr比值较高,因此成岩改造会拉高碳酸盐岩87Sr/86Sr数值,使其无法真实反映海水锶同位素组成.低镁方解石质的壳体化石(如腕足)对成岩作用的抵抗力较强,是研究古海洋锶同位素组成的优良材料,常用于古海洋锶同位素重建(van Geldern et al., 2006Wang et al., 2021).

5.1 全岩及微区原位牙形石锶同位素

海相磷酸盐矿物比碳酸盐矿物更稳定,也是海洋锶储库的重要载体.牙形石生物成因磷灰石是一类可以保存原始海水锶同位素信息的矿物组分.牙形石中锶含量普遍较高,通常在上千个ppm,因此牙形石初始87Sr/86Sr比值不易受到外来Sr的混染,可有效记录原始海水Sr同位素信息(Armstrong et al., 2001John et al., 2008Saltzman et al., 2014Zhao et al., 2024).牙形石在全球寒武纪‒三叠纪海相地层中广泛分布,因此牙形石锶同位素研究有助于建立更高分辨率全球海洋锶同位素演变曲线.

研究显示,牙形石表层结构更容易遭受孔隙水锶同位素信号的混染,因此,牙形石核部比表层更容易记录原始海水Sr同位素组成,虽然这种差异仅在5×10-5Ebneth et al., 1997Trotter et al., 1998).此外,牙形石乳白色牙冠结构致密,更容易保存原始海水Sr同位素信息,其87Sr/86Sr比值更低,是Sr同位素分析的优选部位.牙形石生态特征对Sr同位素的保存可能有影响,例如浅水台地、孤立台地、海山附近的牙形石受碎屑影响较小,更有可能记录全球海水Sr同位素组成(Ebneth et al., 1997Veizer et al., 1999).对于产自同一沉积相区且形态相似的(如单锥型或平台型)的不同属种牙形石,它们记录到的海水Sr同位素信息的差异大小仍有待评估.

全岩牙形石锶同位素测试分析包括化学淋洗+消解提纯+质谱分析等流程.化学淋洗的主要目的是将牙形石表层移除,因为这一部位往往吸附有较多来自孔隙水的Sr,最终只保留牙形石内部组分用于Sr同位素分析.例如,John et al. (2008)在晚泥盆世研究中首先切除了牙形石基部,选用0.5%醋酸清除牙形石表层磷灰石,接着用稀硝酸消解、阳离子树脂纯化Sr元素,最后用热电离质谱仪(TIMS)分析Sr同位素组成,显著提升了全球海洋锶同位素曲线在下‒中弗拉斯阶的分辨率.Wang et al. (2023)在泥盆纪晚期生物大灭绝研究中使用了相似的全岩牙形石Sr同位素研究方法,结果显示牙形石Sr同位素在弗拉斯期‒法门期界线附近没有明显变化,维持在~0.708 0~0.708 2之间.与全岩牙形石氧同位素类似,全岩锶同位素对牙形石的消耗量也较大,将相近层位不同属种牙形石混合为一个样品用于化学前处理,成为了一种折中选择.

微区原位分析方法为牙形石锶同位素研究提供了新的技术路径.微区原位牙形石锶同位素常采取的是激光剥蚀多接收电感耦合等离子体质谱分析技术(LA⁃MC⁃ICP⁃MS,空间分辨率~20~ 50 µm) (Zhang et al., 2018).研究显示,牙形石乳白色牙冠相对于玻璃质牙冠具有更低的87Sr/86Sr比值,能更大程度记录海水锶同位素组成变化(Griffin et al., 2021).依据牙形石不同部位锶同位素组成特点,在牙形石乳白色牙冠(靠近核部组织)开展微区原位分析,可以有效提取最能代表海水锶同位素组成的信号,用于古环境重建研究(Zhao et al., 2024).样品制备方面,采用载玻片制靶+圈定测试点+微区原位激光剥蚀分析模式.优选单一属种、个体粗壮、CAI值较低(<3)的~3~5枚牙形石置于载玻片上制成样品靶,选择乳白色牙冠开展微区原位Sr同位素分析.目前微区原位牙形石锶同位素标样的选择还未有共识,前人使用过的标样包括Slyudyanka磷灰石(产自Slyudyanka杂岩体中的磷块岩,0.707 69±0.000 15 (2SD))和MAD磷灰石(产自马达加斯加,宝石级,0.711 80±0.000 11 (2SD))等(Yang et al., 2014Zhang et al., 2018).

相较于全岩牙形石锶同位素,微区原位牙形石锶同位素分析的优势在于:(1)在化石产出稀少的地层单元仍有机会建立高分辨率的锶同位素演变曲线;(2)可针对不同牙形石属种、牙形石不同部位(如,乳白色牙尖和玻璃质牙冠)开展微区原位锶同位素分析,降低成岩作用和牙形石生物相的影响(Griffin et al., 2021);(3)无需矿物分离和化学预处理,分析测试流程相对快捷高效.劣势在于:(1)LA⁃MC⁃ICP⁃MS分析精度和稳定性均略低于TIMS溶液法;(2)没有生物磷灰石类型的标样,存在标样基体不匹配的问题.

以晚泥盆世古海洋87Sr/86Sr重建为例,利用全岩碳酸盐岩和腕足壳体重建所得87Sr/86Sr演变曲线的分辨率较低,且刻画出的87Sr/86Sr数值范围和演变趋势略有不同(图4).腕足壳体87Sr/86Sr数值稳定在~0.708 0~0.708 2,在弗拉斯期‒法门期界线(FFB)附近数据稀疏,难以识别趋势变化(van Geldern et al., 2006).全岩碳酸盐岩87Sr/86Sr数值范围在~0.708 4~0.709 0,且在FFB数值最低,界线以上数值迅速升高(黄思静,1997;Chen et al.,2013).全岩牙形石87Sr/86Sr分辨率较高,数值主要集中在 ~0.708 0~0.708 2,最高可达~0.708 4,在FFB附近基本稳定(Zhang et al., 2020Wang et al., 2023).Zhao et al.(2024)报道的FFB附近高分辨率微区原位牙形石87Sr/86Sr数值介于 ~0.707 8~0.708 2,最低值~0.707 8~0.707 9,且Sr同位素组成略低于全岩牙形石,所刻画出的FFB时期古海洋87Sr/86Sr组成更加可靠,为泥盆纪晚期大灭绝事件的研究提供了关键数据.

5.2 牙形石锶同位素信号的评估与筛选

评估并获取可靠的牙形石锶同位素信号的主要途径包括牙形石样品的优选、碎屑信号和成岩作用信号的判别.通常优选远离陆源碎屑混染区域、CAI指数较低(<3)、受成岩改造较弱的牙形石部位用于TIMS或LA⁃MC⁃ICP⁃MS分析.此部位应具备的特点是表层光滑、原始显微结构清晰、无明显的重结晶、晶体完整无微裂隙、基质中不含明显硅酸盐矿物等(Trotter et al., 2007John et al., 2008).此外,开展碎屑元素指标(如Al、Th含量)、成岩作用指标(如Mn/Sr比值)与Sr元素含量和87Sr/86Sr比值的相关性分析有助于判断陆源碎屑和成岩作用改造对Sr同位素的影响(Zhang et al., 2016,2017).最后,将重建数据与全球锶同位素演变曲线做对比(McArthur et al., 2020),若长周期87Sr/86Sr演变趋势可全球对比,则可进一步佐证所得数据的有效性.

6 牙形石钙同位素

利用海相碳酸盐岩钙同位素(δ44/40Ca)重建古海水钙同位素组成,为探究地质历史关键时期钙元素源与汇之间的动态变化、钙‒碳循环以及可能由海水酸碱度变化引起的碳酸盐沉淀过程中钙同位素分馏程度的变化提供了重要依据(Farkaš et al., 2007Fantle, 2010).全岩碳酸盐岩富含钙元素,因此其δ44/40Ca组成对成岩改造有一定的抵抗力,再通过一系列成岩作用指标的判别(Higgins et al., 2018),能够有效提取代表古海水原始信息的同位素信号,为地质历史时期钙‒碳循环提供有效制约(Wang et al., 2019Zhao et al., 2020,2024Ye et al., 2023);虽然在极端地质事件中,如二叠纪‒三叠纪之交海洋酸化(Payne et al., 2010),海洋碳酸盐岩会发生大规模溶解,这一过程对碳酸盐岩Ca同位素组成的影响仍然不清楚(Teichert et al., 2009Fantle, 2010Griffith et al., 2015).碳酸盐质的生物化石壳体也常被用来进行钙同位素测试和古海洋分析,如腕足壳体(Farkaš et al., 2007)、有孔虫壳体(Gussone and Filipsson, 2010)、颗石藻类(De La Rocha and DePaolo, 2000)等.其中,腕足壳体对抗成岩作用的抵抗力更强,可能受成岩作用改造较小,因此也是钙同位素分析的良好载体,其δ44/40Ca数值可能比全岩碳酸盐岩数据更加稳定可靠(Brazier et al., 2015).但是,如前所述,并非所有地层中都能产出符合分析测试条件的腕足壳体,也较难重建高分辨率的Ca同位素演变曲线.

牙形石矿物组成更加稳定,且分布广泛,有望记录更可靠的高分辨率的古海水钙同位素信息(Hinojosa et al., 2012Jost et al., 2014).目前,牙形石钙同位素研究仅有零星报道,研究时段主要集中在二叠纪‒三叠纪之交(Hinojosa et al., 2012Song et al., 2021)、晚泥盆世(Balter et al., 2019)以及奥陶纪‒三叠纪长时间尺度(Le Houedec et al., 2017),主要用以示踪重大地质转折期古海洋酸化的时限、幅度和影响,解析牙形石的营养模式和生态位,重建显生宙更高分辨率古海水钙同位素演变曲线.作为古海洋Ca元素的又一重要载体,牙形石的钙同位素组成提供了(有别于碳酸盐岩)更加独特的约束古海洋钙循环过程的参数(Hinojosa et al., 2012),在地质历史时期古海洋化学演变研究中有着较大潜力.

目前,已发表的牙形石钙同位素研究均采用全岩钙同位素分析方法,流程大致包括牙形石样品酸消解、阳离子交换树脂色谱柱分离并提纯Ca,然后用于TIMS或MC⁃ICPMS上机测试(Romaniello et al., 2015).全岩钙同位素分析标样常用SRM1486和SRM915b,参考值分别为(-0.51±0.07)‰ (2SD)和(-0.08±0.01)‰ (2SD)(参考标准平均海水(SMOW),Heuser and Eisenhauer, 2008).考虑到成岩作用和热蚀变的潜在影响,CAI较低(<3)的牙形石仍然是化学分析的首选,并辅助以牙形石87Sr/86Sr比值、Mn/Sr、Sr/Ca和P/Ca比值等判别指标,有望筛选出最可靠的Ca同位素信号用于古环境重建研究(Le Houedec et al., 2017Song et al., 2021).目前,牙形石属种类型以及生物相差异对Ca同位素组成的影响还不清楚,牙形石个体不同部位Ca同位素的差异还缺乏更精细研究(如微区原位分析).前人尝试将同一岩层中产出的牙形石混合用于Ca同位素分析(Hinojosa et al., 2012;Song et al., 2021),但可能会混入更多非原始海水Ca同位素信息(如成岩作用和生命效应等),给研究工作带来了更多不确定因素.当前,磷酸盐微区原位Ca同位素的研究刚刚起步,相关研究仍较少(Zhang et al., 2019),尚未见牙形石微区原位Ca同位素研究的报道.随着技术方法的不断创新和研究的深入,我们期待微区原位分析方法能为解答牙形石Ca同位素的上述疑问及拓展应用提供关键技术支撑,为落实“双碳”目标和解析气候环境变化机制提供翔实的科学实证.

7 结论

(1)牙形石,这类由碳氟磷灰石构成的磷酸盐质微体化石,因其对成岩蚀变的强抵抗力而能够较好地保留原始海水信息.其元素和同位素组成,被视为记录古海洋化学信息的可靠载体.微区原位技术方法极大提升了牙形石地球化学研究的空间和时间分辨率,在解决重大地质事件古海洋‒古气候研究中发挥了独特优势.

(2)已有研究显示,牙形石的形貌结构、属种类型、生态习性、不同部位化学组成特征、元素和同位素在成岩作用过程中的地球化学行为以及分析测试手段等因素都会影响到牙形石地球化学信号的准确提取及应用.实践证明,通过优选牙形石分析测试部位(如CAI指数较低的牙形石、单一属种和特定部位(乳白色牙冠)),并采用一系列定性和定量分析测试手段(如光谱和质谱分析技术),通过多种指标判别评价牙形石地球化学信号,可有效获取最能代表原始海水地球化学组成的信息,用于全球或区域古海洋化学演变特征重建.

(3)未来应不断深入、优化和探索微区原位牙形石地球化学研究手段,重点在牙形石生态位、微观结构,以及不同元素及同位素地球化学体系在成岩作用过程中的地球化学行为、原始海水信号的判别等方面,以此不断促进牙形石生物地球化学的发展及应用,为解析牙形石生物地球化学循环机制提供新思路,这对加强和推广牙形石生物地球化学研究具有十分重要的科学意义.

参考文献

[1]

Armstrong, H. A., Pearson, D. G., Griselin, M., 2001. Thermal Effects on Rare Earth Element and Strontium Isotope Chemistry in Single Conodont Elements. Geochimica et Cosmochimica Acta, 65(3): 435-441. https://doi.org/10.1016/S0016⁃7037(00)00548⁃2

[2]

Balter, V., Martin, J. E., Tacail, T., et al., 2019. Calcium Stable Isotopes Place Devonian Conodonts as First Level Consumers. Geochemical Perspectives Letters, 10: 36-39. https://doi.org/10.7185/geochemlet.1912

[3]

Bergström, S. M., Sweet, W. C., 1966. Conodonts from the Lexington Limestone (Middle Ordovician) of Kentucky, and Its Lateral Equivalents in Ohio and Indiana. Bulletin of American Paleontology, 50: 271-441.

[4]

Brazier, J. M., Suan, G., Tacail, T., et al., 2015. Calcium Isotope Evidence for Dramatic Increase of Continental Weathering during the Toarcian Oceanic Anoxic Event (Early Jurassic). Earth and Planetary Science Letters, 411: 164-176. https://doi.org/10.1016/j.epsl.2014.11.028

[5]

Bright, C. A., Cruse, A. M., Lyons, T. W., et al., 2009. Seawater Rare⁃Earth Element Patterns Preserved in Apatite of Pennsylvanian Conodonts? Geochimica et Cosmochimica Acta, 73(6): 1609-1624. https://doi.org/10.1016/j.gca.2008.12.014

[6]

Buggisch, W., Joachimski, M. M., Sevastopulo, G., et al., 2008. Mississippian δ13Ccarb and Conodont Apatite δ18O Records: Their Relation to the Late Palaeozoic Glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 268(3-4): 273-292. https://doi.org/10.1016/j.palaeo.2008.03.043

[7]

Carlson, S. J., 2018. Revision and Review of the Order Pentamerida. In: Copper, P., ed., Brachiopods. CRC Press, Boca Raton, 53-58. https://doi.org/10.1201/9781315138602⁃10

[8]

Chen, B., Joachimski, M. M., Sun, Y. D., et al., 2011. Carbon and Conodont Apatite Oxygen Isotope Records of Guadalupian⁃Lopingian Boundary Sections: Climatic or Sea⁃Level Signal? Palaeogeography, Palaeoclimatology, Palaeoecology, 311(3-4): 145-153. https://doi.org/10.1016/j.palaeo.2011.08.016

[9]

Chen, D. Z., Wang, J. G., Racki, G., et al., 2013. Large Sulphur Isotopic Perturbations and Oceanic Changes during the Frasnian⁃Famennian Transition of the Late Devonian. Journal of the Geological Society, 170(3): 465-476. https://doi.org/10.1144/jgs2012⁃037

[10]

Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth⁃Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013

[11]

Chen, J. B., Zhao, L. S., Chen, Z. Q., et al., 2012. In Situ Rare Earth Elements in Conodont from Meishan Section in Zhejiang Province and Implications for Paleoenvironmental Evolution. Earth Science, 37(1): 25-34 (in Chinese with English abstract).

[12]

Chen, J., Shen, S. Z., Li, X. H., et al., 2016. High⁃Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End⁃Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 26-38. https://doi.org/10.1016/j.palaeo.2015.11.025

[13]

Chen, Y. L., Joachimski, M. M., Richoz, S., et al., 2021. Smithian and Spathian (Early Triassic) Conodonts from Oman and Croatia and Their Depth Habitat Revealed. Global and Planetary Change, 196: 103362. https://doi.org/10.1016/j.gloplacha.2020.103362

[14]

Cummins, R. C., Finnegan, S., Fike, D. A., et al., 2014. Carbonate Clumped Isotope Constraints on Silurian Ocean Temperature and Seawater δ18O. Geochimica et Cosmochimica Acta, 140: 241-258. https://doi.org/10.1016/j.gca.2014.05.024

[15]

De La Rocha, C. L., DePaolo, D. J., 2000. Isotopic Evidence for Variations in the Marine Calcium Cycle over the Cenozoic. Science, 289(5482): 1176-1178. https://doi.org/10.1126/science.289.5482.1176

[16]

Deng, Y., Guo, Q., Liu, C., et al., 2022. Early Diagenetic Control on the Enrichment and Fractionation of Rare Earth Elements in Deep⁃Sea Sediments. Science Advances, 8(25): eabn5466.https://doi.org/10.1126/sciadv.abn5466

[17]

Du, Y., Zhu, Y. Y., Song, H., et al., 2019. Analytical Method for δ18O of Phosphate in Trace Apatite. Earth Science, 44(2): 456-462 (in Chinese with English abstract).

[18]

Ebneth, S., Diener, A., Buhl, D., et al., 1997. Strontium Isotope Systematics of Conodonts: Middle Devonian, Eifel Mountains, Germany. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4): 79-96. https://doi.org/10.1016/S0031⁃0182(97)00057⁃6

[19]

Edwards, C. T., Jones, C. M., Quinton, P. C., et al., 2022. Oxygen Isotope (δ18O) Trends Measured from Ordovician Conodont Apatite Using Secondary Ion Mass Spectrometry (SIMS): Implications for Paleo⁃Thermometry Studies. GSA Bulletin, 134(1-2): 261-274. https://doi.org/10.1130/b35891.1

[20]

Elrick, M., 2022. Orbital⁃Scale Climate Changes Detected in Lower and Middle Ordovician Cyclic Limestones Using Oxygen Isotopes of Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 603: 111209. https://doi.org/10.1016/j.palaeo.2022.111209

[21]

Epstein, A. G., Epstein, J. B., Harris, L. D., 1975. Conodont Color Alteration; an Index to Organic Metamorphism. U.S. Geological Survey, Washington, D.C..

[22]

Fantle, M. S., 2010. Evaluating the Ca Isotope Proxy. American Journal of Science, 310(3): 194-230. https://doi.org/10.2475/03.2010.03

[23]

Farkaš, J., Böhm, F., Wallmann, K., et al., 2007. Calcium Isotope Record of Phanerozoic Oceans: Implications for Chemical Evolution of Seawater and Its Causative Mechanisms. Geochimica et Cosmochimica Acta, 71(21): 5117-5134. https://doi.org/10.1016/j.gca.2007.09.004

[24]

Faure, G., Powell, J. L., 2012. Strontium Isotope Geology. Springer, New York.

[25]

Gao, F., Xue, J., Hu, R., et al., 2024. Atom Probe Tomography Reveals Nano⁃Scale Organic Remaining in Conodont. Atomic Spectroscopy, 45(1): 1-8. https://doi.org/10.46770/as.2024.026

[26]

García⁃López, S., Bastida, F., Aller, J., et al., 2001. Geothermal Palaeogradients and Metamorphic Zonation from the Conodont Colour Alteration Index (CAI). Terra Nova, 13(2): 79-83. https://doi.org/10.1046/j.1365⁃3121.2001.00328.x

[27]

Girard, C., Cornée, J. J., Joachimski, M. M., et al., 2020. Paleogeographic Differences in Temperature, Water Depth and Conodont Biofacies during the Late Devonian. Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 108852. https://doi.org/10.1016/j.palaeo.2018.06.046

[28]

Golding, M. L., McMillan, R., 2021. The Impacts of Diagenesis on the Geochemical Characteristics and Color Alteration Index of Conodonts. Palaeobiodiversity and Palaeoenvironments, 101(3): 803-821. https://doi.org/10.1007/s12549⁃020⁃00447⁃y

[29]

Goudemand, N., Orchard, M. J., Urdy, S., et al., 2011. Synchrotron⁃Aided Reconstruction of the Conodont Feeding Apparatus and Implications for the Mouth of the First Vertebrates. Proceedings of the National Academy of Sciences, 108(21): 8720-8724.https://doi.org/10.1073/pnas.1101754108

[30]

Griffin, J. M., Montañez, I. P., Glessner, J. J. G., et al., 2021. Geologic Variability of Conodont Strontium Isotopic Composition Quantified by Laser Ablation Multiple Collection Inductively Coupled Plasma Mass Spectrometry. Palaeogeography, Palaeoclimatology, Palaeoecology, 568: 110308. https://doi.org/10.1016/j.palaeo.2021.110308

[31]

Griffith, E. M., Fantle, M. S., Eisenhauer, A., et al., 2015. Effects of Ocean Acidification on the Marine Calcium Isotope Record at the Paleocene⁃Eocene Thermal Maximum. Earth and Planetary Science Letters, 419: 81-92. https://doi.org/10.1016/j.epsl.2015.03.010

[32]

Gussone, N., Filipsson, H. L., 2010. Calcium Isotope Ratios in Calcitic Tests of Benthic Foraminifers. Earth and Planetary Science Letters, 290(1-2): 108-117. https://doi.org/10.1016/j.epsl.2009.12.010

[33]

Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012

[34]

Henderson, C. M., 2021. Conodonts. In: Selley, R., Plimer, I., Cocks, L., eds., Encyclopedia of Geology. Elsevier, Amsterdam, 435-445. https://doi.org/10.1016/b978⁃0⁃08⁃102908⁃4.00113⁃2

[35]

Henkes, G. A., Passey, B. H., Grossman, E. L., et al., 2018. Temperature Evolution and the Oxygen Isotope Composition of Phanerozoic Oceans from Carbonate Clumped Isotope Thermometry. Earth and Planetary Science Letters, 490: 40-50. https://doi.org/10.1016/j.epsl.2018.02.001

[36]

Herrmann, A. D., Barrick, J. E., Algeo, T. J., 2015. The Relationship of Conodont Biofacies to Spatially Variable Water Mass Properties in the Late Pennsylvanian Midcontinent Sea. Paleoceanography, 30(3): 269-283. https://doi.org/10.1002/2014PA002725

[37]

Heuser, A., Eisenhauer, A., 2008. The Calcium Isotope Composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostandards and Geoanalytical Research, 32(3): 311-315. https://doi.org/10.1111/j.1751⁃908x.2008.00877.x

[38]

Higgins, J. A., Blättler, C. L., Lundstrom, E. A., et al., 2018. Mineralogy, Early Marine Diagenesis, and the Chemistry of Shallow⁃Water Carbonate Sediments. Geochimica et Cosmochimica Acta, 220: 512-534. https://doi.org/10.1016/j.gca.2017.09.046

[39]

Hinde, G. J., 1879. On Conodonts from the Chazy and Cincinnati Group of the Cambro⁃Silurian, and from the Hamilton and Genesee⁃Shale Divisions of the Devonian, in Canada and the United States. Quarterly Journal of the Geological Society of London, 35(1-4): 351-369. https://doi.org/10.1144/gsl.jgs.1879.035.01⁃04.23

[40]

Hinojosa, J. L., Brown, S. T., Chen, J., et al., 2012. Evidence for End⁃Permian Ocean Acidification from Calcium Isotopes in Biogenic Apatite. Geology, 40(8): 743-746. https://doi.org/10.1130/g33048.1

[41]

Huang, S. J., 1997. Carbon and Strontium Isotopes of Late Paleozoic Marine Carbonates in the Upper Yangtze Platform. Acta Geologica Sinica, 71(1): 45-53 (in Chinese with English abstract).

[42]

Joachimski, M. M., Breisig, S., Buggisch, W., et al., 2009. Devonian Climate and Reef Evolution: Insights from Oxygen Isotopes in Apatite. Earth and Planetary Science Letters, 284(3-4): 599-609. https://doi.org/10.1016/j.epsl.2009.05.028

[43]

Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/g32707.1

[44]

Joachimski, M. M., van Geldern, R., Breisig, S., et al., 2004. Oxygen Isotope Evolution of Biogenic Calcite and Apatite during the Middle and Late Devonian. International Journal of Earth Sciences, 93(4): 542-553. https://doi.org/10.1007/s00531⁃004⁃0405⁃8

[45]

John, E. H., Cliff, R., Wignall, P. B., 2008. A Positive Trend in Seawater 87Sr/86Sr Values over the Early⁃ Middle Frasnian Boundary (Late Devonian) Recorded in Well⁃Preserved Conodont Elements from the Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(3-4): 166-175. https://doi.org/10.1016/j.palaeo.2008.04.031

[46]

Jost, A. B., Mundil, R., He, B., et al., 2014. Constraining the Cause of the End⁃Guadalupian Extinction with Coupled Records of Carbon and Calcium Isotopes. Earth and Planetary Science Letters, 396: 201-212. https://doi.org/10.1016/j.epsl.2014.04.014

[47]

Kamber, B. S., Webb, G. E., 2001. The Geochemistry of Late Archaean Microbial Carbonate: Implications for Ocean Chemistry and Continental Erosion History. Geochimica et Cosmochimica Acta, 65(15): 2509-2525. https://doi.org/10.1016/S0016⁃7037(01)00613⁃5

[48]

Kilic, A. M., 2024. Note on Lower Triassic Gondolelloid Conodont Rediversifications with Emphasis on the Spathian Recovery. Journal of Earth Science, 35(4): 1236-1242. https://doi.org/10.1007/s12583⁃023⁃1954⁃8

[49]

Kolodny, Y., Luz, B., Navon, O., 1983. Oxygen Isotope Variations in Phosphate of Biogenic Apatites, I. Fish Bone Apatite—Rechecking the Rules of the Game. Earth and Planetary Science Letters, 64(3): 398-404. https://doi.org/10.1016/0012⁃821X(83)90100⁃0

[50]

Königshof, P., 2003. Conodont Deformation Patterns and Textural Alteration in Paleozoic Conodonts: Examples from Germany and France. Palaeobiodiversity and Palaeoenvironments, 83(1-2): 149-156. https://doi.org/10.1007/bf03043310

[51]

Lai, X. L., Wignall, P., Zhang, K. X., 2001. Palaeoecology of the Conodonts Hindeodus and Clarkina during the Permian⁃Triassic Transitional Period. Palaeogeography, Palaeoclimatology, Palaeoecology, 171(1-2): 63-72. https://doi.org/10.1016/S0031⁃0182(01)00269⁃3

[52]

Lara⁃Peña, R. A., Blanco⁃Ferrera, S., Torres⁃Martínez, M. A., et al., 2024. CAI and Microtextures of Low⁃Grade Metamorphosed Conodonts Related to Lithological and Geological Controls. Palaeoworld, 33(4): 937-958. https://doi.org/10.1016/j.palwor.2023.06.010

[53]

Le Houedec, S., McCulloch, M., Trotter, J., et al., 2017. Conodont Apatite δ88/86Sr and δ44/40Ca Compositions and Implications for the Evolution of Palaeozoic to Early Mesozoic Seawater. Chemical Geology, 453: 55-65. https://doi.org/10.1016/j.chemgeo.2017.02.013

[54]

Lécuyer, C., Amiot, R., Touzeau, A., et al., 2013. Calibration of the Phosphate δ18O Thermometer with Carbonate⁃Water Oxygen Isotope Fractionation Equations. Chemical Geology, 347: 217-226. https://doi.org/10.1016/j.chemgeo.2013.03.008

[55]

Lécuyer, C., Reynard, B., Grandjean, P., 2004. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chemical Geology, 204(1-2): 63-102. https://doi.org/10.1016/j.chemgeo.2003.11.003

[56]

Li, Q. L., Yang, W., Liu, Y., et al., 2013. Ion Microprobe Microanalytical Techniques and Their Applications in Earth Sciences. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3): 310-327 (in Chinese with English abstract).

[57]

Li, Y., Zhao, L. S., Chen, Z. Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian⁃Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035

[58]

Liu, K., Jiang, M. S., Zhang, L. Y., et al., 2022. A New High⁃Resolution Palaeotemperature Record during the Middle⁃Late Ordovician Transition Derived from Conodont δ18O Palaeothermometry. Journal of the Geological Society, 179(4): jgs2021-jgs2148. https://doi.org/10.1144/jgs2021⁃148

[59]

Lumiste, K., Paiste, T., Paiste, P., et al., 2023. REE+Y Uptake in Bioapatite Revisited: Facies⁃Controlled Variability in Coeval Conodonts. Chemical Geology, 640: 121761. https://doi.org/10.1016/j.chemgeo.2023.121761

[60]

Matsumoto, H., Takahashi, S., Muto, S., et al., 2023. REE Geochemistry of Conodont Fossils from Pelagic Deep⁃Sea Sedimentary Rocks. Geochemical Journal, 57(6): 184-196. https://doi.org/10.2343/geochemj.gj23017

[61]

McArthur, J. M., Howarth, R. J., Shields, G. A., et al., 2020. Strontium Isotope Stratigraphy. In: Gradstein, F. M., ed., Geologic Time Scale 2020. Elsevier, Amsterdam, 211-238. https://doi.org/10.1016/b978⁃0⁃12⁃824360⁃2.00007⁃3

[62]

McDowell, F. W., McIntosh, W. C., Farley, K. A., 2005. A Precise 40Ar⁃39Ar Reference Age for the Durango Apatite (U⁃Th)/He and Fission⁃Track Dating Standard. Chemical Geology, 214(3-4): 249-263. https://doi.org/10.1016/j.chemgeo.2004.10.002

[63]

McMillan, R., Golding, M., 2019. Thermal Maturity of Carbonaceous Material in Conodonts and the Color Alteration Index: Independently Identifying Maximum Temperature with Raman Spectroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109290. https://doi.org/10.1016/j.palaeo.2019.109290

[64]

Medici, L., Savioli, M., Ferretti, A., et al., 2021. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis? Journal of Earth Science, 32(3): 501-511. https://doi.org/10.1007/s12583⁃020⁃1094⁃3

[65]

Murdock, D. J. E., Dong, X. P., Repetski, J. E., et al., 2013. The Origin of Conodonts and of Vertebrate Mineralized Skeletons. Nature, 502: 546-549. https://doi.org/10.1038/nature12645

[66]

Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/S0016⁃7037(03)00422⁃8

[67]

Orchard, M. J., 2007. Conodont Diversity and Evolution through the Latest Permian and Early Triassic Upheavals. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 93-117. https://doi.org/10.1016/j.palaeo.2006.11.037

[68]

Orchard, M. J., 2010. Triassic Conodonts and Their Role in Stage Boundary Definition. Geological Society, London, Special Publications, 334(1): 139-161. https://doi.org/10.1144/sp334.7

[69]

Palmer, M. R., Edmond, J. M., 1989. The Strontium Isotope Budget of the Modern Ocean. Earth and Planetary Science Letters, 92(1): 11-26. https://doi.org/10.1016/0012⁃821X(89)90017⁃4

[70]

Payne, J. L., Turchyn, A. V., Paytan, A., et al., 2010. Calcium Isotope Constraints on the End⁃Permian Mass Extinction. Proceedings of the National Academy of Sciences, 107(19): 8543-8548.https://doi.org/10.1073/pnas.0914065107

[71]

Peucker⁃Ehrenbrink, B., Fiske, G. J., 2019. A Continental Perspective of the Seawater 87Sr/86Sr Record: A Review. Chemical Geology, 510: 140-165. https://doi.org/10.1016/j.chemgeo.2019.01.017

[72]

Picard, S., Lécuyer, C., Barrat, J. A., et al., 2002. Rare Earth Element Contents of Jurassic Fish and Reptile Teeth and Their Potential Relation to Seawater Composition (Anglo⁃Paris Basin, France and England). Chemical Geology, 186(1-2): 1-16. https://doi.org/10.1016/S0009⁃2541(01)00424⁃7

[73]

Pietzner, H., 1968. Zur Chemischen Zusammensetzung und Mikromorphologie der Conodonten. Palaeontographica Abteilung A, (Lieferung 4-6): 115-152.

[74]

Price, G. D., Bajnai, D., Fiebig, J., 2020. Carbonate Clumped Isotope Evidence for Latitudinal Seawater Temperature Gradients and the Oxygen Isotope Composition of Early Cretaceous Seas. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: 109777. https://doi.org/10.1016/j.palaeo.2020.109777

[75]

Pucéat, E., Joachimski, M. M., Bouilloux, A., et al., 2010. Revised Phosphate⁃Water Fractionation Equation Reassessing Paleotemperatures Derived from Biogenic Apatite. Earth and Planetary Science Letters, 298(1-2): 135-142. https://doi.org/10.1016/j.epsl.2010.07.034

[76]

Pucéat, E., Reynard, B., Lécuyer, C., 2004. Can Crystallinity be Used to Determine the Degree of Chemical Alteration of Biogenic Apatites? Chemical Geology, 205(1-2): 83-97. https://doi.org/10.1016/j.chemgeo.2003.12.014

[77]

Purnell, M. A., Donoghue, P. C. J., Aldridge, R. J., 2000. Orientation and Anatomical Notation in Conodonts. Journal of Paleontology, 74(1): 113-122. https://doi.org/10.1017/s0022336000031292

[78]

Purnell, M. A., von Bitter, P. H., 1992. Blade⁃Shaped Conodont Elements Functioned as Cutting Teeth. Nature, 359: 629-631. https://doi.org/10.1038/359629a0

[79]

Rhodes, F. H. T., 1952. A Classification of Pennsylvanian Conodont Assemblages. Journal of Paleontology, 26(6): 886-901.

[80]

Rigo, M., Joachimski, M. M., 2010. Palaeoecology of Late Triassic Conodonts: Constraints from Oxygen Isotopes in Biogenic Apatite. Acta Palaeontologica Polonica, 55(3): 471-478. https://doi.org/10.4202/app.2009.0100

[81]

Rigo, M., Trotter, J. A., Preto, N., et al., 2012. Oxygen Isotopic Evidence for Late Triassic Monsoonal Upwelling in the Northwestern Tethys. Geology, 40(6): 515-518. https://doi.org/10.1130/g32792.1

[82]

Romaniello, S. J., Field, M. P., Smith, H. B., et al., 2015. Fully Automated Chromatographic Purification of Sr and Ca for Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 30(9): 1906-1912. https://doi.org/10.1039/C5JA00205B

[83]

Saltzman, M. R., Edwards, C. T., Leslie, S. A., et al., 2014. Calibration of a Conodont Apatite⁃Based Ordovician 87Sr/86Sr Curve to Biostratigraphy and Geochronology: Implications for Stratigraphic Resolution. Geological Society of America Bulletin, 126(11-12): 1551-1568. https://doi.org/10.1130/B31038.1

[84]

Sanz⁃López, J., Blanco⁃Ferrera, S., 2012. Overgrowths of Large Authigenic Apatite Crystals on the Surface of Conodonts from Cantabrian Limestones (Spain). Facies, 58(4): 707-726. https://doi.org/10.1007/s10347⁃012⁃0295⁃3

[85]

Schmidt, H., 1934. Conodonten⁃Funde in Ursprünglichem Zusammenhang. Palaeontologische Zeitschrift, 16(1): 76-85. https://doi.org/10.1007/BF03041668

[86]

Scott, H. W., 1934. The Zoological Relationships of the Conodonts. Journal of Paleontology, 8(4): 448-455. https://www.jstor.org/stable/1298133

[87]

Shemesh, A., 1990. Crystallinity and Diagenesis of Sedimentary Apatites. Geochimica et Cosmochimica Acta, 54(9): 2433-2438. https://doi.org/10.1016/0016⁃7037(90)90230⁃I

[88]

Sholkovitz, E. R., Landing, W. M., Lewis, B. L., 1994. Ocean Particle Chemistry: The Fractionation of Rare Earth Elements between Suspended Particles and Seawater. Geochimica et Cosmochimica Acta, 58(6): 1567-1579. https://doi.org/10.1016/0016⁃7037(94)90559⁃2

[89]

Song, H. J., Song, H. Y., Tong, J. N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038

[90]

Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio⁃Apatite for Multiple Oceanic Anoxic Events during Permian⁃Triassic Transition and the Link with End⁃Permian Extinction and Recovery. Earth and Planetary Science Letters, 353: 12-21. https://doi.org/10.1016/j.epsl.2012.07.005

[91]

Sun, Y. D., Orchard, M. J., Kocsis, Á. T., et al., 2020. Carnian⁃Norian (Late Triassic) Climate Change: Evidence from Conodont Oxygen Isotope Thermometry with Implications for Reef Development and Wrangellian Tectonics. Earth and Planetary Science Letters, 534: 116082. https://doi.org/10.1016/j.epsl.2020.116082

[92]

Sun, Y. D., Wiedenbeck, M., Joachimski, M. M., et al., 2016. Chemical and Oxygen Isotope Composition of Gem⁃Quality Apatites: Implications for Oxygen Isotope Reference Materials for Secondary Ion Mass Spectrometry (SIMS). Chemical Geology, 440: 164-178. https://doi.org/10.1016/j.chemgeo.2016.07.013

[93]

Sun, Y., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370.https://doi.org/10.1126/science.1224126

[94]

Sweet, W. C., 1989. The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long⁃Extinct Animal Phylum. Oxford University Press, Oxford.

[95]

Tang, J. W., Köhler, S. J., Dietzel, M., 2008. Sr2+/Ca2+ and 44Ca/40Ca Fractionation during Inorganic Calcite Formation: I. Sr Incorporation. Geochimica et Cosmochimica Acta, 72(15): 3718-3732. https://doi.org/10.1016/j.gca.2008.05.031

[96]

Taylor, A. S., Lasaga, A. C., 1999. The Role of Basalt Weathering in the Sr Isotope Budget of the Oceans. Chemical Geology, 161(1-3): 199-214. https://doi.org/10.1016/S0009⁃2541(99)00087⁃X

[97]

Teichert, B. M. A., Gussone, N., Torres, M. E., 2009. Controls on Calcium Isotope Fractionation in Sedimentary Porewaters. Earth and Planetary Science Letters, 279(3-4): 373-382. https://doi.org/10.1016/j.epsl.2009.01.011

[98]

Thiagarajan, N., Lepland, A., Ryb, U., et al., 2024. Reconstruction of Phanerozoic Climate Using Carbonate Clumped Isotopes and Implications for the Oxygen Isotopic Composition of Seawater. Proceedings of the National Academy of Sciences, 121(36): e2400434121.10.1073/pnas.2400434121

[99]

Tian, S. G., 1993. Late Permian⁃Earliest Triassic Conodont Palaeoecology in Northwestern Hunan. Acta Palaeontologica Sinica, 32(3): 332-345 (in Chinese with English abstract).

[100]

Trotter, J. A., Barnes, C. R., McCracken, A. D., 2016. Rare Earth Elements in Conodont Apatite: Seawater or Pore⁃Water Signatures? Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 92-100. https://doi.org/10.1016/j.palaeo.2016.09.007

[101]

Trotter, J. A., Eggins, S. M., 2006. Chemical Systematics of Conodont Apatite Determined by Laser Ablation ICPMS. Chemical Geology, 233(3-4): 196-216. https://doi.org/10.1016/j.chemgeo.2006.03.004

[102]

Trotter, J. A., Fitz Gerald, J. D., Kokkonen, H., et al., 2007. New Insights into the Ultrastructure, Permeability, and Integrity of Conodont Apatite Determined by Transmission Electron Microscopy. Lethaia, 40(2): 97-110. https://doi.org/10.1111/j.1502⁃3931.2007.00024.x

[103]

Trotter, J. A., Korsch, M. J., Nicoll, R. S., et al., 1998. Sr Isotopic Variations in Single Conodont Elements: Implications for Defining the Sr Seawater Curve. Bollettino⁃Societa Paleontologica Italiana, 37: 507-514.

[104]

Trotter, J. A., Williams, I. S., Barnes, C. R., et al., 2008. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science, 321(5888): 550-554. https://doi.org/10.1126/science.1155814

[105]

Trotter, J. A., Williams, I. S., Nicora, A., et al., 2015. Long⁃Term Cycles of Triassic Climate Change: A New δ18O Record from Conodont Apatite. Earth and Planetary Science Letters, 415: 165-174. https://doi.org/10.1016/j.epsl.2015.01.038

[106]

Turner, S., Burrow, C. J., Schultze, H. P., et al., 2010. False Teeth: Conodont⁃Vertebrate Phylogenetic Relationships Revisited. Geodiversitas, 32(4): 545-594. https://doi.org/10.5252/g2010n4a1

[107]

van Geldern, R., Joachimski, M. M., Day, J., et al., 2006. Carbon, Oxygen and Strontium Isotope Records of Devonian Brachiopod Shell Calcite. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(1-2): 47-67. https://doi.org/10.1016/j.palaeo.2006.03.045

[108]

Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009⁃2541(99)00081⁃9

[109]

Wang, A. D., Wang, H. D., 1990. Approach on Information Functions and Conodont Palaeocology. Experimental Petroleum Geology, 12(2): 182-190 (in Chinese with English abstract).

[110]

Wang, J. Y., Jacobson, A. D., Zhang, H., et al., 2019. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr Geochemistry across the End⁃Permian Mass Extinction Event. Geochimica et Cosmochimica Acta, 262: 143-165. https://doi.org/10.1016/j.gca.2019.07.035

[111]

Wang, R., Chen, J. B., Zhao, L. S., et al., 2013. In Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Implication for Paleo⁃Sea Surface Temperature. Global Geology, 32(4): 652-658 (in Chinese with English abstract).

[112]

Wang, W. Q., Katchinoff, J. A. R., Garbelli, C., et al., 2021. Revisiting the Permian Seawater 87Sr/86Sr Record: New Perspectives from Brachiopod Proxy Data and Stochastic Oceanic Box Models. Earth⁃Science Reviews, 218: 103679. https://doi.org/10.1016/j.earscirev.2021.103679

[113]

Wang, Y. H., Zhu, Y. Y., Huang, J. D., et al., 2018. Application of Rare Earth Elements of the Marine Carbonate Rocks in Paleoenvironmental Researches. Advances in Earth Science, 33(9): 922-932 (in Chinese with English abstract).

[114]

Wang, Y. Y., Liang, K., Xiao, Y. L., et al., 2023. Carbonate Lithium Isotope Systematics Indicate Cooling Triggered Mass Extinction during the Frasnian⁃Famennian Transition. Global and Planetary Change, 230: 104284. https://doi.org/10.1016/j.gloplacha.2023.104284

[115]

Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016⁃7037(99)00400⁃7

[116]

Webers, G. F., 1966. The Middle and Upper Ordovician Conodont Faunas of Minnesota. Minnesota Geological Survey, St. Paul.

[117]

Wenzel, B., Lécuyer, C., Joachimski, M. M., 2000. Comparing Oxygen Isotope Records of Silurian Calcite and Phosphate—δ18O Compositions of Brachiopods and Conodonts. Geochimica et Cosmochimica Acta, 64(11): 1859-1872. https://doi.org/10.1016/S0016⁃7037(00)00337⁃9

[118]

Wheeley, J. R., Jardine, P. E., Raine, R. J., et al., 2018. Paleoecologic and Paleoceanographic Interpretation of δ18O Variability in Lower Ordovician Conodont Species. Geology, 46(5): 467-470. https://doi.org/10.1130/g40145.1

[119]

Wheeley, J. R., Smith, M. P., Boomer, I., 2012. Oxygen Isotope Variability in Conodonts: Implications for Reconstructing Palaeozoic Palaeoclimates and Palaeoceanography. Journal of the Geological Society, 169(3): 239-250. https://doi.org/10.1144/0016⁃76492011⁃048

[120]

Yang, S. R., Hao, W. C., Jiang, D. Y., 2001. Palaeoenvironmental and Palaeogeographic Significance of the Triassic Conodonts. Journal of Palaeogeography (Chinese Edition), 3(1): 78-84 (in Chinese with English abstract).

[121]

Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2014. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U⁃Th⁃Pb Geochronology. Chemical Geology, 385: 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012

[122]

Ye, F. H., Zhao, L. S., Zhang, L., et al., 2023. Calcium Isotopes Reveal Shelf Acidification on Southern Neotethyan Margin during the Smithian⁃Spathian Boundary Cooling Event. Global and Planetary Change, 227: 104138. https://doi.org/10.1016/j.gloplacha.2023.104138

[123]

Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004

[124]

Zhang, K. X., 1988. Aleoecology of Changxingian Conodonts from Jiangsu, Zhejiang and Anhui, South China. Earth Science, 13(5): 537-543 (in Chinese with English abstract).

[125]

Zhang, L. Y., Chen, D. Z., Huang, T. Y., et al., 2020. An Abrupt Oceanic Change and Frequent Climate Fluctuations across the Frasnian⁃Famennian Transition of Late Devonian: Constraints from Conodont Sr Isotope. Geological Journal, 55(6): 4479-4492. https://doi.org/10.1002/gj.3657

[126]

Zhang, L., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049

[127]

Zhang, L., Cao, L., Zhao, L. S., et al., 2017. Raman Spectral, Elemental, Crystallinity, and Oxygen⁃Isotope Variations in Conodont Apatite during Diagenesis. Geochimica et Cosmochimica Acta, 210: 184-207. https://doi.org/10.1016/j.gca.2017.04.036

[128]

Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2018. Improved in Situ Sr Isotopic Analysis by a 257 nm Femtosecond Laser in Combination with the Addition of Nitrogen for Geological Minerals. Chemical Geology, 479: 10-21. https://doi.org/10.1016/j.chemgeo.2017.12.018

[129]

Zhang, W., Hu, Z. C., Liu, Y. S., et al., 2019. In Situ Calcium Isotopic Ratio Determination in Calcium Carbonate Materials and Calcium Phosphate Materials Using Laser Ablation⁃Multiple Collector⁃Inductively Coupled Plasma Mass Spectrometry. Chemical Geology, 522: 16-25. https://doi.org/10.1016/j.chemgeo.2019.04.027

[130]

Zhang, Z. T., Sun, Y. D., 2023. The Ladinian⁃Carnian Conodont Fauna at Yize, Yunnan, Southwestern China, with Implications for Conodont Palaeoecology and Palaeogeography. Geological Magazine, 160(4): 776-793. https://doi.org/10.1017/S0016756822001236

[131]

Zhao, H., Cui, Y., Zhang, L., et al., 2024. Calcium Isotope Evidence of Increased Carbonate Saturation State during the Frasnian⁃Famennian Boundary Event. Earth and Planetary Science Letters, 642: 118876. https://doi.org/10.1016/j.epsl.2024.118876

[132]

Zhao, H., Dahl, T. W., Chen, Z. Q., et al., 2020. Anomalous Marine Calcium Cycle Linked to Carbonate Factory Change after the Smithian Thermal Maximum (Early Triassic). Earth⁃Science Reviews, 211: 103418. https://doi.org/10.1016/j.earscirev.2020.103418

[133]

Zhao, L. S., Chen, Z. Q., Algeo, T. J., et al., 2013. Rare⁃Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis? Global and Planetary Change, 105: 135-151. https://doi.org/10.1016/j.gloplacha.2012.09.001

[134]

Zhao, L. S., Wu, Y. B., Hu, Z. C., et al., 2009. Trace Element Compositions in Conodont Phosphates Responses to Biotic Extinction Event: A Case Study for Main Act of Global Boundary Stratotype Section and Point of the Permian⁃Triassic. Earth Science, 34(5): 725-732 (in Chinese with English abstract).

[135]

Zhou, L. Q., Williams, I. S., Liu, J. H., et al., 2012. Methodology of SHRIMP In⁃Situ O Isotopes Analysis on Conodont. Acta Geologica Sinica, 86(4): 611-618 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(92055212)

国家自然科学基金项目(42073073)

国家自然科学基金项目(42477215)

国家自然科学基金项目(42372037)

国家自然科学基金项目(42472160)

中国地质大学(武汉)“地大学者”人才岗位科研启动经费(2023081)

国家资助博士后研究人员计划项目(GZC20232474)

中国博士后科学基金面上项目(2024M753028)

湖北省博士后创新人才培养项目A类(2004HBBHCXA084)

中国地质大学(武汉)地质过程与成矿预测全国重点实验室项目(MSFGPMR2024⁃104)

AI Summary AI Mindmap
PDF (3241KB)

89

访问

0

被引

详细

导航
相关文章

AI思维导图

/