计算模拟方法提高深时食物网稳定性演变的时间分辨率:以煤山剖面二叠纪‒三叠纪生态记录为例
黄元耕 , 辛佰仑 , 郭镇 , 李子珩 , 乔慧捷 , 黄鑫月 , 陈中强
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 951 -963.
计算模拟方法提高深时食物网稳定性演变的时间分辨率:以煤山剖面二叠纪‒三叠纪生态记录为例
Modeling Method Enhances Temporal Resolution of Deep⁃Time Food Web Stability Evolution: A Case Study on Permian⁃Triassic Ecological Record from the Meishan Section
,
约2.52亿年前发生的二叠纪‒三叠纪(P-Tr)之交生物大灭绝是地质历史上规模最大的生态危机事件,被认为是当代生态危机参照案例.不过,整合多个门类、系统刻画生物群落食物网结构整体演变过程的研究仍然匮乏.特别是,化石记录的不完备性及其在地层记录的低时间分辨率成为人们“以古鉴今”的卡点.本研究基于浙江煤山P-Tr界线金钉子剖面丰富的化石物种出现记录,利用PyRate贝叶斯模拟方法对所有物种在剖面上真实首现与末现时间进行了重新估算.结果显示,物种多样性的下降分为3个阶段,第1和第3阶段迅速下降,第2阶段缓慢下降.在此基础上,探讨以不同时间分辨率划分古群落的方案,从50 ka每个群落,不断提高时间分辨率,到1 ka每群落,分析各种划分方案下相邻群落物种组成的相似度.随着时间分辨率的提高,煤山剖面相邻群落的物种组成越来越像,对于1~4 ka每群落的方案,5%以上相邻群落在物种组成上完全一样.因此选取5 ka每群落的时间分辨率,构建了连续的古群落序列,量化评估了群落组成和模拟食物网稳定性/抗灾能力在P-Tr之交的演变过程.结果表明,生态结构以及群落稳定性在第1和第2阶段的变化不大,在第3阶段骤然变化.古群落在第1和第2阶段尚具备较强的抗灾能力,可能因为这两个阶段消失的主要为冗余物种,群落的生态结构和功能维持了完整,随着第3阶段多种功能群的消失,生态结构才完全崩溃重组.本文探讨了煤山古群落划分的不同时间分辨率方案,重建了5 ka分辨率下的古生态结构演变过程,为开展高分辨率深时生态系统演化及古今对比研究提供了新思路.
The Permian-Triassic (P-Tr) mass extinction, which occurred approximately 252 million years ago, represents the largest ecological crisis in Earth's geological history and is often regarded as a reference case for modern ecological crises. However, studies that integrate multiple taxa and systematically characterize the overall evolutionary trajectory of food web structures in communities remain scarce. In particular, the incompleteness of fossil records and their low temporal resolution within stratigraphic records pose significant challenges to using deep-time crises as analogs for modern ecological crises. This study focuses on the fossil-rich Meishan Section in Zhejiang Province, the global stratotype section and point (GSSP) for the P-Tr boundary. Using Bayesian modeling with the PyRate method, we recalculated the true first and last appearances of all fossil species within this section. The results reveal a three-phase decline in species diversity: rapid drops in the first and third phases, with a gradual decline in the second phase. Building on these results, we explored schemes for delineating paleocommunities at varying temporal resolutions, ranging from 50 ka per community down to 1 ka per community. We then analyzed species composition similarity between adjacent communities under each scheme. As the temporal resolution increases, adjacent communities exhibit increasingly similar species compositions. Notably, for resolutions of 1-4 ka years per community, over 5% of adjacent communities show identical species compositions. Adopting a temporal resolution of 5 ka per community, we constructed a continuous sequence of paleocommunities and quantitatively assessed the evolutionary dynamics of community composition, simulated food web stability, and resistance across the P-Tr boundary. The results indicate minimal changes in ecological structure and community stability during the first and second phases, followed by abrupt shifts in the third phase. Communities in the first and second phases retained relatively high resistance, likely due to the loss of redundant species that did not compromise the integrity of ecological structure and function. In contrast, the third phase witnessed the collapse and reorganization of ecological structures as multiple functional groups disappeared. This study provides a detailed examination of paleocommunity delineation at varying temporal resolutions and reconstructs the evolutionary trajectory of paleoecological structures at a resolution of 5 ka. These findings offer a novel approach for investigating high-resolution deep-time ecosystem evolution and facilitate comparative studies between ancient and modern ecological systems.
大灭绝 / 生态结构 / 古群落 / 食物网 / 稳定性 / 生态系统 / 地层学.
mass extinction / ecological structure / paleocommunities / food webs / stability / ecosystems / stratigraphy
| [1] |
Algeo, T. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates. Journal of Earth Science, 21(1): 107-110. https://doi.org/10.1007/s12583⁃010⁃0182⁃1 |
| [2] |
Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian⁃Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 65-83. https://doi.org/10.1016/j.palaeo.2010.07.007 |
| [3] |
Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes Due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11): 1023⁃1026 https://doi.org/10.1130/G31203.1 |
| [4] |
Barnosky, A. D., Matzke, N., Tomiya, S., et al., 2011. Has the Earth’s Sixth Mass Extinction already Arrived? Nature, 471(7336), 51-57. https://doi.org/10.1038/nature09678 |
| [5] |
Bond, D. P. G., Grasby, S. E., 2017. On the Causes of Mass Extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology, 478: 3-29. https://doi.org/10.1016/j.palaeo.2016.11.005 |
| [6] |
Cao, C. Q., Zheng, Q. F., 2009. Geological event sequences of the Permian⁃Triassic transition recorded in the microfacies in Meishan. Science in China (Series D), 39(4): 481-487 (in Chinese). |
| [7] |
Chen, Z.⁃Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475 |
| [8] |
Chen, Z.⁃Q., Huang, Y.G., 2022. How to Evaluate Quantitatively Collapse and Recovery Processes of Ecosystems during and after Mass Extinctions? Earth Science, 47(10): 3827-3829 (in Chinese). |
| [9] |
Chen, Z.⁃Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian⁃Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth⁃Science Reviews, 149: 67-107. https://doi.org/10.1016/j.earscirev.2014.10.005 |
| [10] |
Chen, Z.⁃Q., Zhao, L. S., Wang, X. D., et al., 2018. Great Paleozoic⁃Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang. Journal of Earth Science, 29(4): 721-732. https://doi.org/10.1007/s12583⁃018⁃0797⁃1 |
| [11] |
Chu, D. L., Corso, J. D., Shu, W. C., et al., 2021. Metal⁃Induced Stress in Survivor Plants Following the End⁃Permian Collapse of Land Ecosystems. Geology, 49(6): 657-661. https://doi.org/10.1130/g48333.1 |
| [12] |
Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo⁃Triassic Mass Extinction. Science, 348(6231): 229-232. https://doi.org/10.1126/science.aaa019 |
| [13] |
Clarkson, M. O., Wood, R. A., Poulton, S. W., et al., 2016. Dynamic Anoxic Ferruginous Conditions during the End⁃Permian Mass Extinction and Recovery. Nature Communications, 7(1): 12236. doi: 10.1038/ncomms12236. https://doi.org/10.1038/ncomms12236 |
| [14] |
Del Rey, A., Deckart, K., Arriagada, C., et al., 2016. Resolving the Paradigm of the Late Paleozoic⁃Triassic Chilean Magmatism: Isotopic Approach. Gondwana Research, 37: 172-181. https://doi.org/10.1016/j.gr.2016.06.008 |
| [15] |
Dunne, J. A., Williams, R. J., Martinez, N. D., 2004. Network Structure and Robustness of Marine Food Webs. Marine Ecology Progress Series, 273: 291-302. https://doi.org/10.3354/meps273291 |
| [16] |
Erwin, D. H., Bowring, S. A., Jin, Y. G., 2002. End⁃Permian Mass Extinctions: A Review. In: Koeberl, C., MacLeod, K. G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond. Geological Society of America, Boulder. https://doi.org/10.1130/0⁃8137⁃2356⁃6.363 |
| [17] |
Foster, W. J., Danise, S., Twitchett, R. J., 2017. A Silicified Early Triassic Marine Assemblage from Svalbard. Journal of Systematic Palaeontology, 15(10): 851-877. https://doi.org/10.1080/14772019.2016.1245680 |
| [18] |
Foster, W. J., Frank, A. B., Li, Q. J., et al., 2024. Thermal and Nutrient Stress Drove Permian⁃Triassic Shallow Marine Extinctions. Cambridge Prisms: Extinction, 2: e9. https://doi.org/10.1017/ext.2024.9 |
| [19] |
Garbelli, C., Angiolini, L., Brand, U., et al., 2016. Neotethys Seawater Chemistry and Temperature at the Dawn of the End Permian Mass Extinction. Gondwana Research, 35: 272-285. https://doi.org/10.1016/j.gr.2015.05.012 |
| [20] |
Gilarranz, L. J., Rayfield, B., Liñán⁃Cembrano, G., et al., 2017. Effects of Network Modularity on the Spread of Perturbation Impact in Experimental Metapopulations. Science, 357(6347): 199-201. https://doi.org/10.1126/science.aal4122 |
| [21] |
Grasby, S. E., Liu, X. J., Yin, R. S., et al., 2020. Toxic Mercury Pulses into Late Permian Terrestrial and Marine Environments. Geology, 48(8): 830-833. https://doi.org/10.1130/g47295.1 |
| [22] |
Grasby, S. E., Shen, W. J., Yin, R. S., et al., 2017. Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 45(1): 55-58. https://doi.org/10.1130/G38487.1 |
| [23] |
Grilli, J., Rogers, T., Allesina, S., 2016. Modularity and Stability in Ecological Communities. Nature Communications, 7: 12031. https://doi.org/10.1038/ncomms12031 |
| [24] |
Huang, Y. G., Chen, Z. Q., Algeo, T. J., et al., 2019. Two⁃Stage Marine Anoxia and Biotic Response during the Permian⁃Triassic Transition in Kashmir, Northern India: Pyrite Framboid Evidence. Global and Planetary Change, 172: 124-139. https://doi.org/10.1016/j.gloplacha.2018.10.002 |
| [25] |
Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2021. Ecological Dynamics of Terrestrial and Freshwater Ecosystems across Three Mid⁃Phanerozoic Mass Extinctions from Northwest China. Proceedings of the Royal Society B: Biological Sciences, 288: rspb.20210148. https://doi.org/10.1098/rspb.2021.0148 |
| [26] |
Huang, Y. G., Chen, Z. Q., Roopnarine, P. D., et al., 2023. The Stability and Collapse of Marine Ecosystems during the Permian⁃Triassic Mass Extinction. Current Biology, 33(6): 1059-1070.https://doi.org/10.1016/j.cub.2023.02.007 |
| [27] |
Huang, Y. G., Chen, Z. Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China: Pyrite Framboid Evidence. Geological Society of America Bulletin, 129(1-2): 229-243. https://doi.org/10.1130/b31458.1 |
| [28] |
Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian⁃Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432 |
| [29] |
Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian⁃Triassic Mass Extinction. Geology, 40(3): 195-198. https://doi.org/10.1130/G32707.1 |
| [30] |
Kaiho, K., Aftabuzzaman, M., Jones, D. S., et al., 2021. Pulsed Volcanic Combustion Events Coincident with the End⁃Permian Terrestrial Disturbance and the Following Global Crisis. Geology, 49(3): 289-293. https://doi.org/10.1130/g48022.1 |
| [31] |
Knoll, A. H., Bambach, R. K., Canfield, D. E., et al., 1996. Comparative Earth History and Late Permian Mass Extinction. Science, 273: 452-457. https://doi.org/10.1126/science.273.5274.452 |
| [32] |
Newman, M. E., 2006. Modularity and Community Structure in Networks. Proceedings of the National Academy of Sciences, 103(23): 8577-8582. https://doi.org/10.1073/pnas.0601602103 |
| [33] |
Payne, J. L., Clapham, M. E., 2012. End⁃Permian Mass Extinction in the Oceans: An Ancient Analog for the Twenty⁃First Century? Annual Review of Earth and Planetary Sciences, 40: 89-111. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105329 |
| [34] |
Qiu, Z. P., 2019. Carbonate Thermoluminescence from Meishan Section, Zhejiang Province and Its Implication for Environmental Changes during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [35] |
Roopnarine, P. D., 2009. Ecological Modeling of Paleocommunity Food Webs. In: Dietl, G. P., Flessa, K. W., eds., Conservation Paleobiology: Using the Past to Manage for the Future. Yale University Press, Yale, 195-220. |
| [36] |
Roopnarine, P. D., 2010. Graphs, Networks, Extinction and Paleocommunity Food Webs. In: Alroy, J., Hunt, G., eds., Quantitative Methods in Paleobiology. Yale University Press, Yale, 143-161. |
| [37] |
Roopnarine, P. D., Angielczyk, K. D., Wang, S. C., et al., 2007. Trophic Network Models Explain Instability of Early Triassic Terrestrial Communities. Proceedings of the Royal Society B: Biological Sciences, 274(1622): 2077-2086. https://doi.org/10.1098/rspb.2007.0515 |
| [38] |
Roopnarine, P. D., Angielczyk, K. D., Olroyd, S. L., et al., 2017. Comparative Ecological Dynamics of Permian⁃Triassic Communities from the Karoo, Luangwa, and Ruhuhu Basins of Southern Africa. Journal of Vertebrate Paleontology, 37(Suppl.): 254-272. https://doi.org/10.1080/02724634.2018.1424714 |
| [39] |
Roopnarine, P. D., Dineen, A. A., 2018. Coral Reefs in Crisis: The Reliability of Deep⁃Time Food Web Reconstructions as Analogs for the Present. In: Tyler, C. L., Schneider, C. L., eds., Marine Conservation Paleobiology. Springer International Publishing, Cham, 105-141. https://doi.org/10.1007/978⁃3⁃319⁃73795⁃9_6 |
| [40] |
Sanei, H., Grasby, S. E., Beauchamp, B., 2012. Latest Permian Mercury Anomalies. Geology, 40(1): 63-66. https://doi.org/10.1130/G32596.1 |
| [41] |
Sephton, M. A., Jiao, D., Engel, M. H., et al., 2015. Terrestrial Acidification during the End⁃Permian Biosphere Crisis? Geology, 43(2): 159-162. https://doi.org/10.1130/G36227.1 |
| [42] |
Shen, J., Chen, J., Algeo, T. J., et al., 2019. Evidence for a Prolonged Permian⁃Triassic Extinction Interval from Global Marine Mercury Records. Nature Communications, 10(1): 1563. https://doi.org/10.1038/s41467⁃019⁃09620⁃0 |
| [43] |
Shen, S. Z., Fan, J. X., Wang, X. D., et al., 2022. How to Build a High⁃Resolution Digital Geological Timeline? Earth Science, 47(10): 3766-3769 (in Chinese with English abstract). |
| [44] |
Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End⁃Permian Mass Extinction. Science, 334(6061): 1367-1372. https://doi.org/10.1126/science.1213454 |
| [45] |
Shen, S. Z., Zhang, F. F., Wang, W. Q., et al., 2024. Deep⁃Time Major Biological and Climatic Events versus Global Changes: Progresses and Challenges. China Science Bulletin, 69(2): 268-285 (in Chinese with English abstract). |
| [46] |
Silvestro, D., Salamin, N., Antonelli, A., et al., 2019. Improved Estimation of Macroevolutionary Rates from Fossil Data Using a Bayesian Framework. Paleobiology, 45(4): 546-570. https://doi.org/10.1017/pab.2019.23 |
| [47] |
Silvestro, D., Salamin, N., Schnitzler, J., 2014a. PyRate: A New Program to Estimate Speciation and Extinction Rates from Incomplete Fossil Data. Methods in Ecology and Evolution, 5(10): 1126-1131. https://doi.org/10.1111/2041⁃210X.12263 |
| [48] |
Silvestro, D., Schnitzler, J., Liow, L. H., et al., 2014b. Bayesian Estimation of Speciation and Extinction from Incomplete Fossil Occurrence Data. Systematic Biology, 63(3): 349-367. https://doi.org/10.1093/sysbio/syu006 |
| [49] |
Song, H. J., 2012. Extinction and Recovery of Foraminifera and Calcareous Algae during the Permian⁃Triassic Transition (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [50] |
Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian⁃Triassic Crisis. Nature Geoscience, 6: 52-56. https://doi.org/10.1038/ngeo1649 |
| [51] |
Song, Y., Tian, Y., Yu, J. X., et al., 2022. Wildfire Response to Rapid Climate Change during the Permian⁃Triassic Biotic Crisis. Global and Planetary Change, 215: 103872. https://doi.org/10.1016/j.gloplacha.2022.103872 |
| [52] |
Stouffer, D. B., Bascompte, J., 2011. Compartmentalization Increases Food⁃Web Persistence. Proceedings of the National Academy of Sciences, 108(9): 3648-3652. https://doi.org/10.1073/pnas.1014353108 |
| [53] |
Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126 |
| [54] |
Wang, X. D., Cawood, P. A., Zhao, H., et al., 2018. Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 496: 159-167. https://doi.org/10.1016/j.epsl.2018.05.044 |
| [55] |
Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End⁃Permian Mass Extinction. Paleobiology, 40(1): 113-129. https://doi.org/10.1666/13022 |
| [56] |
Ward, P. D., Montgomery, D. R., Smith, R., 2000. Altered River Morphology in South Africa Related to the Permian⁃Triassic Extinction. Science, 289(5485): 1740-1743. https://doi.org/10.1126/science.289.5485.1740 |
| [57] |
Wu, C. L., Liu, G., 2019. Big Data and Future Development of Geological Science. Geological Bulletin of China, 38(7): 1081-1088 (in Chinese with English abstract). |
| [58] |
Xie, S. C., Pancost, R. D., Huang, J., et al., 2007. Changes in the Global Carbon Cycle Occurred as Two Episodes during the Permian⁃Triassic Crisis. Geology, 35(12): 1083-1086. https://doi.org/10.1130/G24224A.1 |
| [59] |
Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian⁃Triassic Boundary. Episodes, 24(2): 102-114. https://doi.org/10.18814/epiiugs/2001/v24i2/004 |
| [60] |
Zhang, F. F., Algeo, T. J., Romaniello, S. J., et al., 2018. Congruent Permian⁃Triassic δ238U Records at Panthalassic and Tethyan Sites: Confirmation of Global⁃Oceanic Anoxia and Validation of the U⁃Isotope Paleoredox Proxy. Geology, 46(4): 327-330. https://doi.org/10.1130/g39695.1 |
| [61] |
Zhang, H., Cai, Y. F., Jiao, S. L., et al., 2024. Global Warming Event and the Changeover of Terrestrial Ecosystems during the Permian⁃Triassic Transition. Quaternary Sciences, 44(5): 1093-1107 (in Chinese with English abstract). |
| [62] |
Zhang, H., Zhang, F. F., Chen, J. B., et al., 2021. Felsic Volcanism as a Factor Driving the End⁃Permian Mass Extinction. Science Advances, 7(47): eabh1390. https://doi.org/10.1126/sciadv.abh1390 |
| [63] |
Zhang, K. X., Lai, X. L., Tong, J. N., et al., 2009. Progresses on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3): 474-486 (in Chinese with English abstract). |
| [64] |
Zhou, W. F., Algeo, T. J., Luo, G. M., et al., 2021. Hydrocarbon Compound Evidence in Marine Successions of South China for Frequent Wildfires during the Permian⁃Triassic Transition. Global and Planetary Change, 200: 103472. https://doi.org/10.1016/j.gloplacha.2021.103472 |
国家自然科学基金重点项目(41930322)
面上项目(42377205)
广东省自然科学基金项目(2024A1515012584)
古生物学与油气地层应用全国重点实验室开放课题项目(223111)
/
| 〈 |
|
〉 |