地球生物学视角下的富锰沉积形成过程:原理、证据与模式

余文超 ,  Polgári Márta ,  周琦 ,  杜远生 ,  龚银 ,  杨名宇 ,  魏巍 ,  刘志臣 ,  许灵通 ,  甄鑫 ,  周高

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1142 -1161.

PDF (2120KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1142 -1161. DOI: 10.3799/dqkx.2025.002

地球生物学视角下的富锰沉积形成过程:原理、证据与模式

作者信息 +

Geobiological Perspective for the Formation of Manganiferous Deposit: Principle, Evidence, and Model

Author information +
文章历史 +
PDF (2170K)

摘要

锰是地球系统中重要的过渡金属元素,其地球化学行为主要受到生物与环境的协同控制.沉积/成岩环境中,氧化还原条件与pH值对于锰的沉积‒富集过程最为重要.在地质历史时期,大规模锰矿沉积的形成被认为与地球表层系统的氧化过程相关.锰矿的基础研究意义及重要经济属性则促使相关研究者尤为关注锰元素地球化学循环与锰矿成矿机制之间的联系.近年来,随着锰元素的地球生物学富集机制与循环过程相关研究的深入,研究者们逐渐认识到微生物活动在促进沉积物中锰质富集起到了关键控制作用.通过研究现代代表性沉积环境中所形成的富锰沉积物,明确了微生物作用与沉积环境效应共同控制了锰元素在沉积物中的富集过程.但是此前对于深时锰矿床中的地球生物学相关研究较为分散,对研究方法与成矿机制的综述工作尚存不足.本文通过检视世界范围内当前沉积型锰矿床中微生物成矿作用相关研究案例与研究进展,从中抽提出4个重要分析技术模块:(1)显微观察模块;(2)光谱分析模块;(3)同位素信号模块与(4)综合分析模块.以上4个技术模块的使用可有效识别出微生物成矿相关证据.当前锰矿床内微生物成矿作用相关证据包括:微生物成因显微结构与构造、广泛发育的生物成因自生矿物、具有显著生物信号的碳‒硫及其他稳定同位素特征、与微生物活动有关的元素或组分富集现象及生物标志物等有机地球化学信号等.综合沉积型锰矿床在地球生物学视角下的成矿过程,可总结出微生物参与下的锰矿两阶段成矿机制,包括第1阶段的氧化富集阶段与第2阶段的还原保存阶段.锰氧化微生物有可能与铁氧化微生物及光合作用微生物共同构成了复杂的微生物席体系.

Abstract

Manganese (Mn) is a crucial transition metal element within the Earth system, whose geochemical behavior is predominantly influenced by the synergistic interaction of biological and environmental factors. In sedimentary and diagenetic environments, redox conditions and pH levels play a pivotal role in controlling the processes of manganese precipitation and enrichment. Over geological history, the formation of large-scale manganese deposits has been closely linked to oxidation in Earth’s surface systems. The fundamental research significance and considerable economic value of manganese deposits have driven a sustained focus on the relationship between the geochemical cycling of manganese and the mechanisms underlying ore formation. Recent advances in studies on the geobiological enrichment mechanisms and cycling processes of manganese have highlighted the critical role of microbial activity in manganese enrichment within sediments. Research on manganiferous sediments in representative modern sedimentary environments indicates that the enrichment of manganese is jointly governed by microbial processes and sedimentary environmental factors. Nevertheless, studies on the geobiological aspects of ancient manganese deposits have been fragmented, and comprehensive reviews of research methods and ore-forming mechanisms remain inadequate. This study systematically reviews current research cases and progress on microbial mineralization in sedimentary manganese deposits worldwide, identifying four key analytical technology modules: (1) microscopic observation, (2) spectroscopic analysis, (3) isotopic signal analysis, and (4) integrative analysis. These modules collectively enable the effective extraction of evidence related to microbial mineralization processes. Key evidence includes microstructures and textures of microbial origin, extensively developed biogenic authigenic minerals, stable isotopic characteristics (e.g., carbon-sulfur isotopes) with distinct biological signals, elemental or compositional enrichment associated with microbial activity, and organic geochemical signatures such as biomarkers. A geobiological synthesis of the ore-forming processes in sedimentary manganese deposits reveals a two-stage ore-forming mechanism involving microbial participation. This mechanism comprises an initial oxidation-enrichment stage (Stage 1) and a subsequent preservation stage under reducing conditions (Stage 2). Manganese-oxidizing microbes likely function within complex microbial mat systems, interacting with iron-oxidizing microbes and photosynthetic microbes to facilitate manganese deposition.

Graphical abstract

关键词

锰矿沉积 / 微生物成矿 / 成矿机制 / 成矿模式 / 沉积学 / 矿床学.

Key words

manganese ore deposit / microbial metallogenesis / metallogenic mechanism / metallogenic model / sedimentology / mineral deposits

引用本文

引用格式 ▾
余文超,Polgári Márta,周琦,杜远生,龚银,杨名宇,魏巍,刘志臣,许灵通,甄鑫,周高. 地球生物学视角下的富锰沉积形成过程:原理、证据与模式[J]. 地球科学, 2025, 50(03): 1142-1161 DOI:10.3799/dqkx.2025.002

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

锰在地壳中的丰度排位第10,是仅次于铁的过渡金属元素(Maynard, 2003),其具有重要的经济利用价值,工业用途集中在传统冶金与新兴能源等领域,是一种战略性关键金属矿产(毛景文等, 2019; 王登红, 2019; 翟明国等, 2019).锰元素的化学性质与铁存在相似性,两种元素具有类似的核外电子轨道排布特征及离子半径,而高自旋态的3d轨道电子易发生电离而形成+2与+3价阳离子,锰元素也存在+4价阳离子,因此锰氧化物的复杂程度较铁更高(Maynard, 2014).锰在上述3种主要价态间的转换,构成了自然界中锰循环的物理化学基础机制.目前已知的天然氧化锰矿物有30多种,可进一步分为层状、隧道和低价矿物(Post, 1999),其中锰氧化物、碳酸盐和硅酸盐矿物为主要矿物类型(Hansel and Learman, 2015).氧化锰矿物相对常见的例子包括硬锰矿[psilomelane,Ba,Mn²⁺,(Mn⁴⁺)₈O₁₆(OH)₄]、水钠锰矿[birnessite,(Na,Ca)Mn₇O₁₄·2.8 H₂O]、软锰矿(pyrolusite,MnO₂)、纤锰矿(vernadite,MnO₂·nH₂O)、水锰矿(manganite,MnOOH)、黑锰矿(hausmannite,Mn₃O₄)以及钡镁锰矿[todorokite,(Ca,Na,K)(Mn⁴⁺,Mn³⁺)₆O₁₂·3.5H₂O],其多以细粒状、胶膜状、树枝状聚集体或球块状结核体等形态分布于土壤和沉积物中.这类矿物具有电荷零点低、表面积大、负电荷量高等特点,是土壤与沉积物中具有高度反应活性的一类矿物(刘凡等, 2008).锰碳酸盐矿物中,以菱锰矿(rhodochrosite, MnCO₃)最为常见,其在沉积岩(物)中多与含钙菱锰矿、锰白云石及含锰方解石等矿物共生;锰硅酸盐矿物常见的种类包括硅锰矿(rhodonite, MnSiO₃)和褐锰矿[braunite, (Mn,Si)₂O₃]等.

锰元素的地球化学行为主要受到生物与环境的协同作用控制,沉积/成岩环境的氧化还原条件与pH值对于锰的沉积‒富集过程最为重要,其他诸如温度、光照、盐度、锰离子浓度及水体悬浮物含量为次要因素(Roy, 2006Johnson et al., 2016b).因此,锰循环过程常与氧、碳、铁、硫等元素的地球化学循环紧密联系,它们一同在地球表面圈层系统演化与物质交换过程中扮演着重要角色(Johnson et al., 2016a).传统研究对锰元素地球化学性质与锰矿成矿机制的联系最为关注,特别是沉积型与风化淋滤型锰矿床作为锰矿的主要产出形式,得到了广泛关注和深入研究(Roy, 1988,19922006Fan et al., 1992Calvert and Pedersen, 1996Nicholson et al., 1997Fan and Yang, 1999Glasby, 2006; Maynard, 2010, 2014; 付勇等, 2014; Johnson et al., 2016a;董志国等, 2020; 杜远生等, 2023).前人的研究涉及了现代水下富锰沉积的形成机制,如现代大洋锰结核(Glasby, 2006Heller et al., 2018)、黑海(Thamdrup et al., 2000)、红海(Butuzova et al., 2009)、贝加尔湖(Granina et al., 2004)、波罗的海(Burke and Kemp, 2002Hermans et al., 2019)及一些陆地淡水湖泊(Herndon et al., 2018Wittkop et al., 2020).学者们不仅将现代研究案例所获得的认识广泛应用于解释地质历史时期大规模成锰事件,也开始尝试建立深时全球变化与大规模成锰事件之间的联系.例如地质历史时期大规模成锰事件与产氧光合作用(李艳等, 2022)、重要氧化事件(Maynard, 2010; Johnson et al., 2016b)、全球性或区域性构造事件(Haas, 2012Deng et al., 2016; 周琦等, 2016; Chen et al., 2018)、全球气候事件(齐靓等, 2015; Yu et al., 2016)或生物圈事件(Yu et al., 2019)的联系.

锰作为生物体维持生命活动所必须的微量元素,广泛存在于金属酶、酶的激活剂及细胞器(如植物的叶绿体)中,在包括光合作用、碳循环、抗氧化、氮固定等生理过程中扮演重要角色(Fischer et al., 2015Estes et al., 2017).由于在氧化环境中离子态锰元素含量极低,因此生物对于锰元素的利用效率很高(Tebo et al., 2005).在锰元素的水圈与岩石圈循环过程中,生物活动对锰的地球化学行为具有重要控制作用,特别是微生物积极参与了锰的氧化作用与还原作用过程,并可造成锰的富集,多种细菌、藻类、真菌均存在锰的生物化学利用途径(Tang et al., 2013Wang et al., 2017Zhou and Fu, 2020).

1 锰的地球生物学富集机制与循环过程

锰元素的微生物富集机制广泛地存在于自然界不同沉积环境中,锰循环的地球生物学过程由微生物锰氧化过程与异养的锰还原过程组成,该过程是地球表层不同圈层物质交换与能量交换的重要一环(Hansel and Learman, 2015).对锰的生物氧化‒固定途径的探索肇始于20世纪60年代对大洋锰结核的研究,研究者发现了锰结核形成过程中微生物群落对海水中溶解锰离子的氧化‒沉淀过程具有催化作用(Ehrlich, 1963Trimble and Ehrlich, 1968).此后,微生物对锰的氧化固定现象被广泛地报道于海洋(Hansel, 2017)、热泉(Shiraishi et al., 2019)、湖泊(Herndon et al., 2018)、土壤及风化壳(Vicenzi et al., 2016)、洋中脊玄武岩表面(Templeton et al., 2009)等环境中(表1).微生物氧化锰途径的反应速率较无机氧化反应可能要高出5个数量级,因此在适合微生物氧化锰作用发生的条件下,微生物途径可以占据主导地位(Morgan, 2005).人们对于微生物演化出锰氧化机制的原因尚存一定争议,目前所获得的证据还不能完全解释微生物参与下的锰循环对于微生物的意义,一些可能解释包括:(1)锰氧化物可能通过吸附、催化转化等界面反应机制,协助微生物抵御多重环境胁迫,包括但不限于:高浓度锰离子的细胞毒性、有机污染物及重金属的复合毒性效应、超氧化物自由基(O₂⁻)等活性氧物种引发的氧化应激损伤、紫外线辐射诱导的DNA光损伤等.这种矿物‒微生物协同防御体系可能涉及电子传递调控、自由基淬灭及物理屏蔽等多重保护机制;(2)高价锰氧化物能够促进生物体对有机营养物的利用.锰氧化物可以与复杂的有机物(或腐殖质)发生反应,使之降解为低分子量的有机物,从而增加有机养分的可利用性,为无氧呼吸储存电子受体或帮助分解有机质等(Tebo et al., 2004Hansel, 2017;段国文等, 2020);(3)化能自养微生物能够将Mn(II)氧化过程与需氧能量保存和自养碳固定耦合,该过程中CO2固定进入细胞生物质依赖于Mn(II)氧化 (Yu and Leadbetter, 2020).

生物对锰的氧化作用分为直接和间接两种途径,对应生物控制(biologically⁃controlled)、生物诱导(biologically⁃induced)及生物影响(biologically⁃influenced)的矿化作用分类体系(Dupraz et al., 2009).在微生物氧化的直接途径中,Mn(III)会以中间产物的形式短暂出现在反应体系中,该过程是以胞外聚合物的酶促反应为基本机制,目前认为可能参与锰氧化催化的酶有3类:多铜氧化酶(multicopper oxidase,简称MCO)、锰过氧化物酶(manganese peroxidases,简称MnPs)和锰过氧化氢酶(manganese catalase,简称MnC)(Webb et al., 2005Romano et al., 2017).不同种类的微生物可以通过胞外鞘、外膜多糖蛋白复合物或外生孢子的酶催化作用将环境中溶解态的Mn(II)氧化为高价态锰并形成氧化物或氢氧化物沉淀(Tebo et al., 2005).以多铜氧化酶的催化机制为例,这类氧化酶在其活性中心包含铜离子[Cu(II)],能够催化多种氧化反应.多铜氧化酶的铜离子结合域主要由组氨酸(His)、半胱氨酸(Cys)和甲硫氨酸(Met)等氨基酸残基组成,其中包括一个用于O₂还原的三核铜中心和一个靠近底物结合位点的单核Cu(II)(称为1型铜).在该机制中,1型铜通过从底物中提取电子,将其传递至三核铜中心,从而将O₂还原为H₂O,实现对多种有机和无机底物的催化氧化(Solomon et al., 1996).在间接途径中,微生物生理活动产生诸如过氧化氢的代谢产物以氧化锰离子,抑或是微生物新陈代谢活动引起微环境改变,使其变得有利于锰氧化过程,最终形成氧化物或氢氧化物沉淀(Hansel and Learman, 2015).在真菌主导的锰氧化物形成过程中,锰氧化物的聚集部位有显著差异,包括在菌丝表面、繁殖结构(如子实体)基部以及胞外聚合物上.所有真菌在相同的化学和物理条件下氧化锰(II)的主要产物为一种呈纳米颗粒状、结晶度较差的六方水钠锰矿(birnessite),类似于合成的δ⁃MnO₂.然而,不同真菌的系统发育特征及生长条件(浮游或附着)会影响初始鳞锰矿(phyllomanganate)向更有序的相(如A. strictum DS1bioAY4a生成的钡镁锰矿(todorokite)和Stagonospora SRC1lsM3a生成的三斜水钠锰矿)转化(Santelli et al., 2011).

锰的生物还原过程具有更加明确的目的性,热力学数据表明,Mn(IV)的还原作用较之Fe(III)和硫酸盐的还原作用可以提供更多的能量,因此锰还原微生物相对于铁还原微生物与硫酸盐还原微生物具有竞争优势(Hansel, 2017).此外,沉积物中的厌氧甲烷氧化过程不仅可以由硫酸盐促进,还可以通过还原锰氧化物来实现(Beal et al., 2009),包括现代黑海与贝加尔湖中均可发现该机制形成的锰碳酸盐矿物(Michaelis et al., 2002Krylov et al., 2018).虽然在全球范围不同环境中的富锰沉积物内均发现了大量锰还原微生物群落(Vandieken et al., 2012Blöthe et al., 2015),但目前尚未发现单一途径的锰还原微生物——能够进行锰还原反应的微生物同时也可以还原其他物质,如硫、氮、有机质等化合物及铀、铬、钴等氧化还原敏感元素(Canfield et al., 2005Hansel, 2017).从反应机制上而言,由于Mn(IV)氧化物的溶解性低,微生物还原锰氧化物反应主要依赖固态电子转移途径(Canfield et al., 2005),该反应的主要障碍在于氧化物无法直接接触到微生物内部的膜域电子传递链(Richter et al., 2012).为克服这个障碍,不同微生物种类演化出3种生理机制(Thamdrup, 2000):(1)使用外部(如腐殖质或黄素)或内部(如吩嗪)的可溶性电子穿梭机制(Nealson and Saffarini, 1994);(2)在氧化物表面利用分子形成螫合物或络合物(Gralnick and Newman, 2007);(3)细菌外膜或胞外聚合物的酶促反应直接导致电子转移 (Bücking et al., 2012Saffarini et al., 2015).锰的还原过程被认为分为两个步骤:第一步为固态的Mn(IV)氧化物或氢氧化物在内源有机配体的作用下发生溶解并被还原为Mn(III)中间体;第二步为溶解态的Mn(III)再被还原为Mn(II)离子(Lin et al., 2012).在该过程中,微生物因为具有特殊表面结构、较大的比表面积、表面携带各类带负电荷官能团(如羧基和羟基等)等特点,可以为Mn2+离子及CO32- 离子提供丰富的吸附点位(Banfield et al., 2001),使这些离子富集在细胞表面形成高的局部浓度,从而促进菱锰矿的形成(王霄等, 2018).

2 现代富锰沉积物形成中的地球生物学过程

现代富锰沉积物的研究表明,微生物作用与沉积环境效应共同控制了锰元素在沉积物中的异常富集.微生物在现代环境中形成富锰沉积物的过程已有多方面证据的支持:(1)能观察到被锰氧化物包裹的细菌,说明微生物活动直接或间接导致锰氧化物沉淀;(2)从天然样品中能够分离和/或鉴定出具有锰沉淀能力的微生物种类或群落;(3)锰的沉淀过程常常呈现出类似米氏‒曼坦反应(Michaelis⁃Menten kinetics)对氧气的依赖性,表明其背后可能存在酶促机制;(4)微生物毒素能有效抑制锰氧化物的形成(Mandernack et al., 1995aTebo et al., 2005Hansel and Learman, 2015).微生物活动由此被认为是现代土壤、沉积物、湖泊、海洋环境乃至人类活动中锰元素富集的主要驱动因素.

现代大洋锰结核的成因与形成机制是当前研究热点之一,此前一般认为大洋锰结核是无机氧化还原条件(如周期性深海富氧底流活动)控制下形成的特殊沉积物(Kerr, 1984),但大洋锰结核在无机条件下的生长速率与目前观测到的生长速率出现显著差异(无机条件生长速率为数毫米/百万年,观测生长速率为数毫米/千年),研究者转而开始探究深海微生物活动主导的生物聚锰途径.来自赤道太平洋地区(Blöthe et al., 2015)、南太平洋地区(Tully and Heidelberg, 2013)、朝鲜海沟(Cho et al., 2018)等多处大洋锰结核的地球生物学证据证明了深海微生物富锰途径广泛存在于大洋锰结核的形成过程中,并可能主导了锰结核的生长.通过原位微生物群落培养及基因测序等分析手段,研究者们发现锰结核与周围沉积物中微生物群落的类型和丰度存在显著差异,且锰结核内部与外部的微生物群落也存在差异,锰结核内存在大量锰氧化细菌种类,以此推断微生物的锰氧化过程是锰结核生长的重要机制(Blöthe et al., 2015Cho et al., 2018).除微生物聚锰机制外,末次冰期前后海洋底层水氧化还原条件的改变也是富锰沉积形成的重要控制因素(Volz et al., 2020).末次冰期时海洋底层水氧含量大幅下降,造成沉积物中氧化带深度相比于现代大幅减少,沉积物中溶解Mn(II)离子在孔隙水中发生向上迁移.当末次冰期结束后,海洋底层水氧含量恢复,沉积物中氧化‒还原界面向深部迁移,最终导致锰元素在沉积物表层富集,形成锰质结核.

除大洋锰结核外,其他现代盆地内富锰/锰矿沉积同样显示出微生物活动与沉积环境因素的共同控制作用.例如现代黑海盆地中,海水中锰离子的微生物氧化‒还原途径被认为是黑海锰循环的重要一环,而强烈氧化还原分层的水体结构决定了富锰层位的展布与深度.锰循环主要发生在氧化还原界面附近(该界面深度为15~50 m不等),在深层缺氧水体中,溶解态锰以Mn²⁺离子形式存在,并与方硫锰矿相(hauerite)接近饱和状态.基于锰元素垂直混合模型所推导出的水体中锰去除速率与测量的细菌Mn氧化速率一致,表明微生物参与下的锰氧化过程是黑海中最重要的锰固定机制(Lewis and Landing, 1991).在黑海底部的厌氧沉积物中,有机碳氧化速率随着深度的增加迅速衰减,沉积物中异化锰还原是最重要的末端电子受体过程,而硫酸盐还原则主导了更深层的有机碳氧化过程.锰还原过程由中等浓度的锰氧化物支持,且导致了碳酸盐沉淀.同时锰还原过程的普遍程度会随着底水氧气浓度的波动而变化(Thamdrup et al., 2000Henkel et al., 2019).现代波罗的海以全球范围内最大面积的低氧底层水域(氧气浓度<2 mg/L)而闻名,来自北海的季节性洋流会引发富氧底流,造成波罗的海深部间歇性氧化环境的产生(Hermans et al., 2019).间歇性氧化事件激发了表层沉积物中硫氧化细菌如贝格阿托氏菌属(Beggiatoaceae)及铁锰氧化细菌的活性,并在沉积物中沉淀了薄层的氧化层/亚氧化层(Kuliński et al., 2022).表层沉积物显示出锰的显著富集,铁氧化物和磷的富集程度则较低,锰元素主要赋存于富含磷的菱锰矿和Mn(II)磷酸盐中,铁氧化物形成受限可归因于从深层沉积物中释放的大量还原剂(如硫化物),这些还原剂使Fe(II)以FeS的形式得以保存,并限制了氧气向沉积物中的渗透(Sjöberg et al., 2018Hermans et al., 2019).

在存在氧化还原水体分层现象的淡水湖泊环境中,同样可以观察到微生物参与下的锰循环过程.美国纽约州Fayetteville Green Lake中溶解态锰含量在溶解氧下降和还原性硫化物增加之间的深度出现峰值,这被归因于湖水中微生物介导的锰循环过程,即表层氧化水体中难溶性高价态锰氧化物与底层缺氧水体中可溶性Mn²⁺之间的转化使得锰元素在氧化带和缺氧带之间充当了由微生物介导的氧化还原“穿梭体”(Havig et al., 2015).前人针对该湖泊的研究还揭示了富锰碳酸盐矿物(如含锰微晶方解石集合体)在缺氧的深湖环境沉积物中存在,并将其解释为锰碳酸盐矿物在水柱的化学跃变层中沉淀,然后穿过富硫还原环境的盆地沉降到湖泊沉积物中(Havig et al., 2015Herndon et al., 2018).Wittkop et al. (2020)针对美国明尼苏达州的Brownie Lake还原性水体及沉积物中的锰碳酸盐矿物研究时,进一步阐明了淡水湖泊中锰碳酸盐矿物直接沉淀过程受到了微生物‒环境协同作用机制的控制.在Brownie Lake的化学跃层中,当溶解氧浓度降至5 μmol/L以下时,Mn碳酸盐达到过饱和,此时锰氧化物的还原增加了溶解锰的浓度.当源自表层水的方解石在化学跃层更酸性的水中溶解时,这种过饱和现象进一步增强.在同一区域,硫酸盐还原和微需氧甲烷氧化增加了具有负δ13C值的溶解无机碳.沉积性锰富集可能通过原生碳酸盐相发育或在溶解氧浓度低于5 μmol/L的环境中发生.原生Mn碳酸盐可能起源于高浓度溶解锰(>200 μM)环境,并在锰和铁通过硫循环、光铁能自养作用或微需氧铁氧化作用分离的条件下形成.浅层溶解线(lysocline)的存在通过提供额外的溶解无机碳和晶体生长的成核位点促进了含锰碳酸盐矿物的沉淀.上述研究案例提供了锰碳酸盐在现代淡水湖泊水柱中形成,并在缺氧水体控制的湖底沉积物中累积的相关证据.

微生物氧化锰离子过程不仅可以在富氧水体中发生(如西印度群岛及赤道太平洋地区;Moffett, 1994),也可以在次氧化水体中发生(如黑海,Clement et al., 2009),相较锰的无机氧化机制,微生物过程对于环境中游离氧含量的要求更低.最近的研究更表明,在缺乏游离氧的情况下,厌氧光合作用微生物也可以氧化Mn(II)形成氧化锰矿物(Daye et al., 2019).需要指出,锰元素的生物(以微生物富集为主)富集机制与无机富集机制并不矛盾,在很多情况下利用锰元素进行生理活动的微生物与氧化还原条件主导的锰富集机制之间存在协同作用(Hansel, 2017),特别是针对现代深海Mn(II)氧化机制的研究表明,在不同热液活动地区有机及无机氧化机制同时存在,但两种途径对锰固定作用的相对重要性及反应效率存在重要差异.在美国加利福尼亚湾Guaymas盆地与Carmen盆地中,Guaymas盆地底部热液喷口附近的热液羽流中Mn(II)离子去除速率高达每小时2 nmol/L,而在背景深海水及Carmen盆地中的Mn(II)离子氧化速率则较为缓慢,这被解释为在缺氧条件以及存在生物毒物叠氮化钠时微生物锰氧化机制受到抑制的结果(Dick et al., 2009).在黑海亚氧带所进行的Mn²⁺离子去除和氧化测量实验中,Mn(II)计算氧化速率常数比胶体MnO₂表面自催化计算Mn(II)氧化速率常数大5~6个数量级,加上叠氮化物、戊二醛和甲醛对Mn(II)去除的显著抑制作用,这些证据均表明Mn(II)氧化主要是由生物活动催化的过程(Tebo, 1991).

在现代富锰沉积物中,可观察到伴随着锰氧化物矿物沉淀发生的其他重金属元素富集的现象,这些金属元素的稳定同位素正被越来越多地应用于古老的含锰沉积岩系中,但相关解释一般仍是基于无机同位素分馏机制,微生物作用的介入所可能导致的生物分馏作用需要引起重视.例如,Miletto et al. (2021)对海洋锰氧化细菌以及天然微生物群落的研究表明,微生物介导的锰氧化过程可在海洋环境中氧化三价铬并导致显著同位素分馏(0.8‰±0.1‰),该过程仅需海洋出现氧气绿洲而无需大气氧化,研究者由此建议重新审视海洋沉积物中铬同位素组成的变化与大气氧化过程的联系.因此,针对微生物参与下的锰矿床内金属稳定同位素分馏体系及其对结果解释产生的相关影响需要谨慎考量.

3 深时锰矿沉积中地球生物学成矿证据的识别与解释

对于现代富锰沉积物的研究可利用微生物学及高精度水体‒沉积物取样分析等研究方法,观测水体、沉积物、孔隙水等研究对象中特定元素的变化规律与微生物组成,从而揭示微生物成锰作用主导下的富锰沉积物形成机制.但是对于地质历史时期的锰矿,由于缺乏活体微生物群落方面证据,其微生物成因的判断更加依赖于精细的沉积学与矿物学分析.Polgári et al. (2019)总结了目前针对锰矿沉积中微生物证据的关键技术方法,在该技术体系之上,本文做出了相应补充和完善,提出4个重要的技术模块:(1)显微观察模块.以40倍、100倍、200倍、400倍和1 000倍等合适放大倍数来识别生物矿化的结构和微形态特征.(2)光谱分析模块.用于原位确定生物矿物和有机物质,主要依靠阴极发光(CL)显微镜、拉曼(Raman)光谱、傅里叶变换衰减全反射红外光谱(ATR⁃FTIR)和气相色谱‒质谱(GC⁃MS)联用技术等.(3)同位素信号模块.通过质谱法测定如C、S和Fe等与生命过程密切相关的同位素组成.(4)综合分析模块.结合矿物学、沉积学及地球生物学对观测现象及数据进行综合性解释.

通过上述技术手段,需要着重关注目前在沉积型碳酸锰矿床中已经发现的微生物成矿作用关键证据,其中包括:(1)锰矿石中可观察到大量微生物成因显微构造.其中包括丝状、针状、椭球状、蠕虫状、串珠状、脑状及叠层石状等精细结构.在纹层状锰矿石中保存的旋回性显微层理最具代表性,其中可在偏光显微镜或扫描电镜下观察到细粒黏土矿物层与含锰碳酸盐矿物层的交织状结构(图1图2).这些保存良好并已矿化的多种形态残留物在不同时空锰矿床中均被发现,具有可对比性.残留物内部具有精细结构,在样品中密集交织.高分辨率光学显微镜及扫描电镜观察揭示了这些微生物特征结构属于矿化的微生物席结构的一部分.上述证据表明这些结构展现了原始微生物细胞的形态,而非“假性”生物结构(即生物只是偶然保存在岩石中,没有具体参与成矿).进一步而言,这些微生物席结构可能是锰矿形成过程的重要组成部分,并在成岩作用后仍保留其结构,原始细胞的表面以及作为其生物群落基质的EPS(胞外多聚物)在成岩过程中发生了矿化.(2)锰矿石中广泛发育有生物成因自生矿物.在镜下可发现如钙菱锰矿、铁白云石、锰方解石、蒙脱石、莓状黄铁矿等矿物,这些矿物中多见有机质包裹体或团块甚至微生物化石(图3).微生物活动引起的自生矿物沉淀是一种普遍的生物化学过程(Konhauser and Urrutia, 1999).一些已经提出的证据有助于判定微细粒级硅铝酸盐矿物是碎屑成因或自生成因.例如,碎屑黏土矿物表现出离散的颗粒边界现象,其长轴与主要沉积结构近似平行,而自生黏土矿物则具有特定的颗粒形状(Kang et al., 2024).铁硫化物(如黄铁矿、白铁矿)成因可能更为复杂,莓状黄铁矿与同沉积或早期埋藏期的微生物硫酸盐还原作用相关,但是在早期成岩作用阶段,也可能与有机质及孔隙水发生反应,形成白铁矿及自生石英的复杂矿物组合(Jiao et al., 2023).(3)矿石一般具有显著生物信号的同位素特征.锰含量较高的矿石样品中经常伴随有显著偏负的无机碳同位素信号,其值域范围多在-5‰至-15‰.这与有机碳同位素信号进入菱锰矿碳酸根有关(图4a)亦与甲烷作为锰氧化物还原剂的氧化还原过程相关(Huang et al., 2023).从世界范围内不同时空的碳酸锰矿床中的无机碳同位素记录来看,较高品位锰矿石(MnO>10%的矿石)中锰含量与无机碳同位素间呈现显著负相关关系.而在较低品位锰矿石 (MnO<10%的矿石)中,不存在任何显著的线性关系.有机碳同位素记录在不同时空的锰矿床中则具有极大差异,这可能反映了不同锰矿床中的有机质来源的差异(图4b).此外还可能观测到偏高的黄铁矿硫同位素组成(+20‰至+50‰,与增强的微生物硫酸盐还原作用有关)等(Wang et al., 2019).氧同位素作为潜在判断锰氧化物生物成因标志的可能性也被提出,无机化学法和微生物法合成的锰酸盐的分子氧同位素分馏估算值分别为-13‰和-22‰,存在差别(Mandernack et al., 1995b).相关研究进一步限定了Mn(II)氧化过程中氧原子掺入的动力学同位素分馏因子:O₂来源为-17.3‰至-25.9‰,水来源为-1.9‰至+1.8‰.这具有评估两种主要生物Mn(II)氧化途径(以O₂作为氧化剂的直接酶促氧化及以超氧阴离子为氧化剂的间接酶促氧化)的潜力(Sutherland et al., 2018).(4)一些与微生物活动有关的元素或组分在矿层中出现富集现象.一般而言针对碎屑输入与沉积过程富集对特定元素的影响可通过校正方法进行近似排除,例如参考细粒沉积岩中氧化还原指标使用时的相关校正步骤(Tribovillard et al., 2006).生物成因的锰氧化物对金属离子的吸附量可能远大于其相应化学合成的锰氧化物,可以针对一般碎屑来源含量较低的重金属元素(如Zn、Cu、Cd、Ni、Pb、Mo、U等)进行选择性吸附,并与生命活动相关组分(P、TOC)含量上升相伴.(5)通过生物标志物等有机地球化学研究手段对矿(岩)石样品中残存的微生物活动分子化石进行甄别.Wang et al.(2008)对成冰系大塘坡组开展了生物标志物研究,发现了该组锰矿层中残留的正构烷烃、各类甾烷、三环萜烷、藿烷和新藿烷、伽马蜡烷等生物标志物,并依据其组分特征将其解释为间冰期光合作用真核微生物生态系统复苏的证据.但是相对而言目前已报道的古老沉积型锰矿中生物标志物相关证据仍然较少见,这可能是由于后期成岩作用或构造作用改造引起的成熟度过高所导致的.目前该方面仍然是锰矿沉积地球生物学研究的短板,亟待更多的研究案例验证.

上述关键证据的交互验证与综合解释可辨识出富锰沉积物(岩)在同生沉积阶段和成岩作用阶段所形成的矿物组合与沉积结构,能够提供锰矿层形成过程的环境条件信息.可以认为,锰矿石中所保存的同生矿物和成岩矿物复杂体系揭示了锰矿层的形成是一个微生物参与下的沉积‒成矿复杂过程.

目前全球已明确存在微生物成矿作用证据的沉积型锰矿床最早出现在新元古代成冰纪,而更年轻锰矿床中微生物成矿证据的报道大幅增加,其中最重要的一些研究案例包括:(1)中国南方成冰系大塘坡组锰矿沉积(Fan et al., 1999Yu et al., 2019);(2)中国西南部埃迪卡拉系陡山沱组锰矿沉积(Zhang et al., 2021a,2022);(3)巴西西南部Mato Grosso do Sul地区埃迪卡拉系Urucum组锰矿沉积(Biondi and Lopez, 2017Biondi et al., 2020);(4)伊朗西南部Fars省Neyriz中生代混杂岩带中锰矿沉积(Rajabzadeh et al., 2017);(5)中国广西中部忻城石炭系巴平组锰矿沉积(Yu et al., 2021b);(6)中国西北部西昆仑至西天山地区石炭系喀拉阿特河组及阿克沙克组锰矿沉积(Dong et al., 2024);(7)中国贵州北部遵义二叠系茅口组锰矿沉积(Yu et al., 2021a);(8)匈牙利西部Úrkút地区下侏罗统Úrkút组中锰矿沉积(Polgári et al., 2012a,20162021b);(9)摩洛哥北部中‒上侏罗统Jbel Moussa群铁‒锰结壳层(Reolid et al., 2011).上述锰矿沉积虽然在时空分布及盆地大地构造背景上存在显著差异,但各矿床的成矿过程均与微生物成矿作用存在紧密联系.

4 地球生物学视角下的锰矿沉积成矿模式

针对现代及地质历史时期的成锰盆地的沉积环境研究进行综述,可以发现这些盆地与外部广海连通作用往往较差,因此形成较为局限的盆地水体环境.如在拉张的大地构造背景下发育的裂谷或弧后盆地(Haas, 2012; 周琦等, 2016; Rajabzadeh et al., 2017Chen et al., 2018; 杜远生等, 2023),或者在碳酸盐台地内部出现的台洼(Meng et al., 2022Yu et al., 2024).上述环境有利于锰质在水体中的初始累积.由于微生物活动本身并不产生锰,因此锰质的初始来源一般由盆地内的热液系统和盆地外的陆表径流系统所提供(Roy, 2006).在陆表径流系统中,锰主要以碎屑、胶体甚至纳米颗粒矿物的形式迁移和赋存.然而,由于陆表径流系统通常伴随大量碎屑物质的输入,陆表来源的锰很难直接沉积形成高品位、大规模的矿床.热液系统作为初始锰来源则更为直观,在拉张构造背景的盆地中往往发育有热液活动,如现代红海底部(Butuzova et al., 2009)及大洋海沟(Mandernack and Tebo, 1993)的热液活动会向底层海水中输入大量锰质.需要指出,当陆源锰质随径流进入盆地内部的深部缺氧水体后,还原作用形成的溶解锰离子可能与热液来源锰质合并成为潜在成矿来源.热液来源锰质的证据在很多沉积型锰矿床中得以保留,如我国的成冰系大塘坡组(Yu et al., 2016Wang et al., 2019Wei et al., 2024)、石炭系喀拉阿特河组及阿克沙克组(Dong et al., 2023)、二叠系茅口组(Yu et al., 2024) 锰矿沉积等,以及巴西西埃迪卡拉系Urucum组 (Biondi and Lopez, 2017),匈牙利侏罗系Úrkút组锰矿(Polgári et al., 2012b)等重要矿床中.

在上述适宜的盆地背景条件下,盆地内水体从还原环境向氧化环境的转换过程是控制大规模锰矿成矿的关键机制.在缺氧水体中,Mn²⁺的浓度会显著升高.然而要实现固相锰矿物的沉淀和积累,必须具备氧化条件.目前已在不少研究案例中发现了初始锰氧化物在锰碳酸盐矿物中的残余现象,研究者将其解释为水体中的溶解锰初始沉淀为锰氧化物矿物,之后在早期成岩过程中转换为锰碳酸盐矿物(Fang et al., 2020Yu et al., 2021b).水体的氧化机制较为复杂,可能的因素包括洋流变化、海平面波动或光合作用微生物活动导致溶解氧浓度增加等(Roy, 2006).以华南地区最为重要的成冰系大塘坡组锰矿为例,当660 Ma前后Sturtian冰期的冰盖系统消退后,大量的冰川融水、微生物光合作用及水圈‒大气圈的物质交换导致当时海洋表面广泛存在一个氧化淡水层(Shields, 2005Hoffman et al., 2017),此时南华盆地内古海洋水体结构出现显著物理分层及氧化还原分层现象(Liu et al., 2014,2018Yang et al., 2017).当前研究表明锰矿层形成所需的盆地中心氧化条件是由冰川消融形成的间歇性氧化底流造成的,底流可能以重力流的形式影响盆地内水文结构,造成盆地底部水体的间歇性氧化环境(Yu et al., 2016,2022Wang et al., 2020Wei et al., 2024).另一个例子来自黔北遵义地区中二叠统茅口组锰矿,对其开展的生物地层学研究表明,遵义锰矿的形成发生在中‒晚Capitanian期两次缺氧事件之间的氧化间隔期(Meng et al., 2022Song et al., 2023).沉积学证据显示,区域上茅口组第一段和第二段存在极大的沉积环境差异,由茅口组第一段浅色生物碎屑灰岩相变为第二段内深色、薄层状具水平层理的硅质岩及富硅泥灰岩,指示浪基面以下的平静沉积环境,此时浅水沉积物的缺失可能与海水缺氧区扩张及碳酸盐台地退缩有关.但在茅口组第三段,深水盆地相的锰矿沉积与浅水碳酸盐台地沉积共存,表明此时存在浅部的强氧化环境.在大量锰矿样品中,均可见钙质化石的碎片,形成类似细粒重力流碳酸盐岩,表明来自碳酸盐台地的浊流导致盆地深部水体发生间歇性氧化(Yu et al., 2024).

通过解析此前的沉积型锰矿成矿模式研究案例,可总结出锰矿微生物参与下的两阶段成矿机制(Polgári et al., 2012bYu et al., 2019)(图5):第1阶段为氧化阶段,在氧化‒次氧化条件下的化能自养阶段,微生物将水体中的金属离子(如Mn2+离子)沉淀为固态氧化物或氢氧化物形式.第2阶段为还原阶段,在次氧化‒无氧条件下的异养阶段,形成含锰和/或含铁碳酸盐矿物,如锰方解石、菱锰矿、白云铁矿和菱铁矿等.在一些锰矿床中,还可以进一步辨识出与铁氧化细菌和锰氧化细菌相关的微生物成矿体系,分别由氧化铁和氧化锰的代谢过程主导(Polgári et al., 2012aBiondi et al., 2020; Yu et al., 2021b).相关研究表明3种类型的铁氧化微生物代谢主导了成矿过程中铁元素的活动:(1)好氧铁氧化菌通过细胞周质空间多铜氧化酶介导的Fe(II)生物氧化;(2)硝酸盐还原耦合铁氧化微生物在次氧化条件下的异化铁代谢;(3)不产氧光合细菌利用光能驱动的Fe(II)‒有机配体络合氧化.这些代谢途径通过产生铁氧化物纳米颗粒、调控铁载体配位环境及诱导铁相变等机制,共同构成微生物铁泵的生物成矿效应(Polgári et al., 2012a).此外,蓝细菌的活跃活动可能伴随着锰矿沉积过程,导致碳酸盐矿物(如锰方解石和方解石)的沉淀(Yu et al., 2019).蓝细菌在光照区大量生长,通过光合作用“微生物通气”向系统中提供氧气,并通过酶促Mn(II)氧化作用将锰沉淀为生物氧化物,与碳酸盐形成交织状或似层状显微结构.此外,蓝细菌活动还可能促进关键元素(如Ca、P、Si)的富集(Polgári et al., 2019).微生物参与下的锰成矿过程成矿效率非常高,据估算,匈牙利侏罗系Úrkút矿床累积5 800万吨铁矿与锰矿仅需数百年至数千年的时间(Polgári et al., 2012a).需要指出,深时锰矿床中的部分研究案例借鉴了现代淡水湖泊环境中富锰沉积物的直接沉淀机制(Chen et al., 2022).在这类现代模式案例中充分考虑了地球生物学过程对富锰沉积物的关键控制作用(Herndon et al., 2018; Wittkop et al., 2020),如果直接沉淀模式在深时锰矿床中存在,其背后的地球生物学过程还有待进一步查明.

5 结论与展望

锰的地球生物学迁移和循环是地球表层不同圈层物质与能量交换的重要组成部分,微生物通过氧化和还原过程在不同环境(海洋、热泉、湖泊、土壤、风化壳等)中驱动锰的富集.锰的地球生物学循环主要由微生物主导的氧化和还原作用驱动,其速率远高于无机过程.微生物通过多铜氧化酶等酶催化锰氧化过程,直接或间接生成锰氧化物,而还原过程则通过固态电子转移机制将Mn(IV)还原为Mn(II).在现代沉积环境中,微生物对锰的氧化和还原作用共同控制了锰元素的分布与富集.微生物活动是锰固定与矿化的主要驱动力,尤其在氧化还原界面附近发挥了重要作用.地质历史时期形成的锰矿床中,微生物成因证据包括显微构造(如微层理旋回)、特定自生矿物(如含锰方解石、锰白云石、菱锰矿等)及异常同位素特征(如显著偏负的无机碳同位素信号)等.这些证据表明以菱锰矿为主的锰矿形成是微生物参与下的沉积‒成岩复杂过程,可划分为两个主要阶段:氧化阶段微生物在氧化环境中沉淀锰氧化物,还原阶段通过异养作用形成锰碳酸盐矿物.

锰的地球生物学循环与微生物成矿机制相辅相成,不仅深刻影响了地球化学过程,还为理解现代及深时地球系统中的沉积环境演化提供了重要抓手.富锰沉积形成过程中的地球生物学视角突破了传统矿床学与沉积学的无机环境机制.未来研究应进一步关注微生物富锰机制的启动时间,定量化微生物活动对区域乃至全球尺度锰循环的控制效应,深入理解微生物活动对富锰矿沉积中其他元素富集所起到的作用,同时,亟待厘清相关元素指标、同位素指标与氧化还原条件、微生物选择性吸收等过程的复杂关系.

参考文献

[1]

Banfield, M. J., Salvucci, M. E., Baker, E. N., et al., 2001. Crystal Structure of the NADP (H)⁃Dependent Ketose Reductase from Bemisia Argentifolii at 2.3 Å Resolution. Journal of Molecular Biology, 306: 239-250. https://doi.org/10.1006/jmbi.2000.4381

[2]

Beal, E. J., House, C. H., Orphan, V. J., 2009. Manganese⁃ and Iron⁃Dependent Marine Methane Oxidation. Science, 325(5937): 184-187. https://doi.org/10.1126/science.1169984

[3]

Biondi, J. C., Lopez, M., 2017. Urucum Neoproterozoic⁃Cambrian Manganese Deposits (MS, Brazil): Biogenic Participation in the Ore Genesis, Geology, Geochemistry, and Depositional Environment. Ore Geology Reviews, 91: 335-386. https://doi.org/10.1016/j.oregeorev.2017.09.018

[4]

Biondi, J. C., Polgári, M., Gyollai, I., et al., 2020. Biogenesis of the Neoproterozoic Kremydilite Manganese Ores from Urucum (Brazil): A New Manganese Ore Type. Precambrian Research, 340: 105624. https://doi.org/10.1016/j.precamres.2020.105624

[5]

Blöthe, M., Wegorzewski, A., Müller, C., et al., 2015. Manganese⁃Cycling Microbial Communities Inside Deep⁃Sea Manganese Nodules. Environmental Science & Technology, 49(13): 7692-7700. https://doi.org/10.1021/es504930v

[6]

Bücking, C., Schicklberger, M., Gescher, J., 2012. Microbial Metal Respiration: From Geochemistry to Potential Applications. Springer, Berlin, 49-82.

[7]

Burke, I. T., Kemp, A. E. S., 2002. Microfabric Analysis of Mn⁃Carbonate Laminae Deposition and Mn⁃Sulfide Formation in the Gotland Deep, Baltic Sea. Geochimica et Cosmochimica Acta, 66(9): 1589-1600. https://doi.org/10.1016/S0016⁃7037(01)00860⁃2

[8]

Butuzova, G. Y., Drits, V. A., Morozov, A. A., et al., 2009. Sediment⁃Hosted Mineral Deposits. Blackwell Publishing Ltd., Oxford, 57-72.

[9]

Calvert, S. E., Pedersen, T. F., 1996. Sedimentary Geochemistry of Manganese; Implications for the Environment of Formation of Manganiferous Black Shales. Economic Geology, 91: 36-47. https://doi.org/10.2113/gsecongeo.91.1.36

[10]

Canfield, D. E., Erik, K., Bo, T., 2005. Advances in Marine Biology. Academic Press, London.

[11]

Chen, F. G., Pufahl, P. K., Wang, Q. F., et al., 2022. A New Model for the Genesis of Carboniferous Mn Ores, Longtou Deposit, South China Block. Economic Geology, 117: 107-125. https://doi.org/10.5382/econgeo.4855

[12]

Chen, F. G., Wang, Q. F., Yang, S. J., et al., 2018. Space⁃Time Distribution of Manganese Ore Deposits along the Southern Margin of the South China Block, in the Context of Palaeo⁃Tethyan Evolution. International Geology Review, 60(1): 72-86. https://doi.org/10.1080/00206814.2017.1320689

[13]

Cho, H., Kim, K. H., Son, S. K., et al., 2018. Fine⁃Scale Microbial Communities Associated with Manganese Nodules in Deep⁃Sea Sediment of the Korea Deep Ocean Study Area in the Northeast Equatorial Pacific. Ocean Science Journal, 53(2): 337-353. https://doi.org/10.1007/s12601⁃018⁃0032⁃0

[14]

Clement, B. G., Luther, G. W., Tebo, B. M., 2009. Rapid, Oxygen⁃Dependent Microbial Mn(II) Oxidation Kinetics at Sub⁃Micromolar Oxygen Concentrations in the Black Sea Suboxic Zone. Geochimica et Cosmochimica Acta, 73(7): 1878-1889. https://doi.org/10.1016/j.gca.2008.12.023

[15]

Daye, M., Klepac⁃Ceraj, V., Pajusalu, M., et al., 2019. Light⁃Driven Anaerobic Microbial Oxidation of Manganese. Nature, 576: 311-314. https://doi.org/10.1038/s41586⁃019⁃1804⁃0

[16]

Deng, X. D., Li, J. W., Vasconcelos, P., 2016. 40Ar/39Ar Dating of Supergene Mn⁃Oxides from the Zunyi Mn Deposit, Guizhou Plateau, SW China: Implications for Chemical Weathering and Paleoclimatic Evolution Since the Late Miocene. Chemical Geology, 445(16): 185-198. https://doi.org/10.1016/j.chemgeo.2016.02.009

[17]

Dick, G. J., Clement, B. G., Webb, S. M., et al., 2009. Enzymatic Microbial Mn(II) Oxidation and Mn Biooxide Production in the Guaymas Basin Deep⁃Sea Hydrothermal Plume. Geochimica et Cosmochimica Acta, 73(21): 6517-6530. https://doi.org/10.1016/j.gca.2009.07.039

[18]

Dong, Z. G., Peng, Z. D., Robbins, L. J., et al., 2023. Episodic Ventilation of Euxinic Bottom Waters Triggers the Formation of Black Shale⁃Hosted Mn Carbonate Deposits. Geochimica et Cosmochimica Acta, 341: 132-149. https://doi.org/10.1016/j.gca.2022.11.027

[19]

Dong, Z. G., Zhang, B. L., Gyollai, I., et al., 2024. Microbial Contribution to the Formation of the Carboniferous Sedimentary Manganese Deposits in Northwestern China. Ore Geology Reviews, 170: 106124. https://doi.org/10.1016/j.oregeorev.2024.106124

[20]

Dong, Z. G., Zhang, L. C., Wang, C. L., et al., 2020. Progress and Problems in Understanding Sedimentary Manganese Carbonate Metallogenesis. Mineral Deposits, 39(2): 237-255 (in Chinese with English abstract).

[21]

Du, Y. S., Yu, W. C., Zhou, Q., et al., 2023. Discussion about the Coupling Relationship between the Breakup of Supercontinent and the Large⁃Scale Manganese Accumulation in China. Journal of Palaeogeography (Chinese Edition), 25(6): 1211-1234 (in Chinese with English abstract).

[22]

Duan, G. W., Geng, X. Y., Wei, X. Y., et al., 2020. Advances in Physiological and Ecological Functions of Manganese Oxidizing Bacteria and the Underlying Molecular Mechanisms. Microbiology China, 47(9): 3039-3053 (in Chinese with English abstract).

[23]

Dupraz, C., Reid, R. P., Braissant, O., et al., 2009. Processes of Carbonate Precipitation in Modern Microbial Mats. Earth⁃Science Reviews, 96(3): 141-162. https://doi.org/10.1016/j.earscirev.2008. https://doi.org/10.005

[24]

Ehrlich, H. L., 1963. Bacteriology of Manganese Nodules: I. Bacterial Action on Manganese in Nodule Enrichments. Applied and Environmental Microbiology, 11: 15-19. https://doi.org/10.1128/am.11.1.15⁃19.1963

[25]

Estes, E. R.,eer, P. F., Nordlund, D., et al., 2017. Biogenic Manganese Oxides as Reservoirs of Organic Carbon and Proteins in Terrestrial and Marine Environments. Geobiology, 15(1): 158-172. https://doi.org/10.1111/gbi.12195

[26]

Fan, D. L., Liu, T. B., Ye, J., 1992. The Process of Formation of Manganese Carbonate Deposits Hosted in Black Shale Series. Economic Geology, 87: 1419-1429. https://doi.org/10.2113/gsecongeo.87.5.1419

[27]

Fan, D. L., Yang, P. J., 1999. Introduction to and Classification of Manganese Deposits of China. Ore Geology Reviews, 15(1-3): 1-13. https://doi.org/10.1016/ S0169⁃1368(99)00011⁃6

[28]

Fan, D. L., Ye, J., Yin, L. M., et al., 1999. Microbial Processes in the Formation of the Sinian Gaoyan Manganese Carbonate Ore, Sichuan Province, China. Ore Geology Reviews, 15(1-3): 79-93. https://doi.org/10.1016/S0169⁃1368(99)00016⁃5

[29]

Fang, H., Tang, D. J., Shi, X. Y., et al., 2020. Manganese⁃Rich Deposits in the Mesoproterozoic Gaoyuzhuang Formation (Ca. 1.58 Ga), North China Platform: Genesis and Paleoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 559: 109966. https://doi.org/10.1016/j.palaeo.2020.109966

[30]

Fischer, W. W., Hemp, J., Johnson, J. E., 2015. Manganese and the Evolution of Photosynthesis. Origins of Life and Evolution of Biospheres, 45(3): 351-357. https://doi.org/10.1007/s11084⁃015⁃9442⁃5

[31]

Fu, Y., Xu, Z. G., Pei, H. X., et al., 2014. Study on Metallogenic Regularity of Manganese Ore Deposits in China. Acta Geologica Sinica, 88(12): 2192-2207 (in Chinese with English abstract).

[32]

Gao, Z. F., Zhu, X. K., Wang, D., et al., 2021. Insights into Hydrothermal Controls and Processes Leading to the Formation of the Late Ediacaran Gaoyan Stratiform Manganese⁃Carbonate Deposit, Southwest China. Ore Geology Reviews, 139: 104524. https://doi.org/10.1016/j.oregeorev.2021.104524

[33]

Glasby, G. P., 2006. Manganese: Predominant Role of Nodules and Crusts. In: Schulz, H. D., Zabel, M., eds., Marine Geochemistry. Springer, Berlin, 371-427.

[34]

Gralnick, J. A., Newman, D. K., 2007. Extracellular Respiration. Molecular Microbiology, 65: 1-11. https://doi.org/10.1111/j.1365⁃2958.2007.05778.x

[35]

Granina, L., Müller, B., Wehrli, B., 2004. Origin and Dynamics of Fe and Mn Sedimentary Layers in Lake Baikal. Chemical Geology, 205(1-2): 55-72. https://doi.org/10.1016/j.chemgeo.2003.12.018

[36]

Gutzmer, J., Beukes, N. J., 1998. The Manganese Formation of the Neoproterozoic Penganga Group, India; Revision of an Enigma. Economic Geology, 93(7): 1091-1102. https://doi.org/10.1016/S1342⁃937X(05)70812⁃1

[37]

Haas, J., 2012. Influence of Global, Regional, and Local Factors on the Genesis of the Jurassic Manganese Ore Formation in the Transdanubian Range, Hungary. Ore Geology Reviews, 47: 77-86. https://doi.org/10.1016/j.oregeorev.2011.08.006

[38]

Hansel, C. M., 2017. Advances in Microbial Physiology, 70. Academic Press, London.

[39]

Hansel, C. M., Learman, D., 2015. Ehrlich’s Geomicrobiology. CRC Press, Boca Raton, 401-452.

[40]

Havig, J. R., McCormick, M. L., Hamilton, T. L., et al., 2015. The Behavior of Biologically Important Trace Elements across the Oxic/Euxinic Transition of Meromictic Fayetteville Green Lake, New York, USA. Geochimica et Cosmochimica Acta, 165: 389-406. https://doi.org/10.1016/j.gca.2015.06.024

[41]

Hein, J. R., Fan, D. L., Ye, J., et al., 1999. Composition and Origin of Early Cambrian Tiantaishan Phosphorite⁃Mn Carbonate Ores, Shaanxi Province, China. Ore Geology Reviews, 15(1-3): 95-134. https://doi.org/10.1016/S0169⁃1368(99)00017⁃7

[42]

Heller, C., Kuhn, T., Versteegh, G. J. M., et al., 2018. The Geochemical Behavior of Metals during Early Diagenetic Alteration of Buried Manganese Nodules. Deep Sea Research Part I: Oceanographic Research Papers, 142: 16-33. https://doi.org/10.1016/j.dsr.2018.09.008

[43]

Henkel, J. V., Dellwig, O., Pollehne, F., et al., 2019. A Bacterial Isolate from the Black Sea Oxidizes Sulfide with Manganese (IV) Oxide. Proceedings of the National Academy of Sciences, 116(25): 12153-12155. https://doi.org/10.1073/pnas.1906000116

[44]

Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., et al., 2019. Impact of Natural Re⁃Oxygenation on the Sediment Dynamics of Manganese, Iron and Phosphorus in a Euxinic Baltic Sea Basin. Geochimica et Cosmochimica Acta, 246: 174-196. https://doi.org/10.1016/j.gca.2018.11.033

[45]

Herndon, E. M., Havig, J. R., Singer, D. M., et al., 2018. Manganese and Iron Geochemistry in Sediments Underlying the Redox⁃Stratified Fayetteville Green Lake. Geochimica et Cosmochimica Acta, 231: 50-63. https://doi.org/10.1016/j.gca.2018.04.013

[46]

Hoffman, P. F., Abbot, D. S., Ashkenazy, Y., et al., 2017. Snowball Earth Climate Dynamics and Cryogenian Geology⁃Geobiology. Science Advances, 3(11): e1600983. https://doi.org/10.1126/sciadv.1600983

[47]

Huang, Q., Jiang, S. Y., Pi, D. H., et al., 2023. Thermochemical Oxidation of Methane by Manganese Oxides in Hydrothermal Sediments. Communications Earth & Environment, 4: 224. https://doi.org/10.1038/s43247⁃023⁃00891⁃6

[48]

Huang, Q., Pi, D. H., Jiang, S. Y., et al., 2022. The Dual Role of Microbes in the Formation of the Malkantu Manganese Carbonate Deposit, NW China: Petrographic, Geochemical, and Experimental Evidence. Chemical Geology, 606: 120992. https://doi.org/10.1016/j.chemgeo.2022.120992

[49]

Jiao, L. X., She, Z. B., Papineau, D., et al., 2023. Evidence for High⁃Frequency Oxygenation of Ediacaran Shelf Seafloor during Early Evolution of Complex Life. Communications Earth & Environment, 4: 429. https://doi.org/10.1038/s43247⁃023⁃01080⁃1

[50]

Johnson, J. E., Savalia, P., Davis, R., et al., 2016a. Real⁃Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction. Environmental Science & Technology, 50(8): 4248-4258. https://doi.org/10.1021/acs.est.5b04834

[51]

Johnson, J. E., Webb, S. M., Ma, C., et al., 2016b. Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record. Geochimica et Cosmochimica Acta, 173: 210-231. https://doi.org/10.1016/j.gca.2015.10.027

[52]

Kang, Y., Zhu, R., Liu, K., et al., 2024. Detrital and Authigenic Clay Minerals in Shales: A Review on Their Identification and Applications. Heliyon, 10(20): e39239. https://doi.org/10.1016/j.heliyon.2024.e39239

[53]

Kerr, R. A., 1984. Manganese Nodules Grow by Rain from Above: The Rain of Plant and Animal Remains Falling into the Deep Sea not only Provides Metals to Nodules but also Determines Nodule Growth Rates and Composition. Science, 223(4636): 576-577. https://doi.org/10.1126/science.223.4636.576

[54]

Konhauser, K. O., Urrutia, M. M., 1999. Bacterial Clay Authigenesis: A Common Biogeochemical Process. Chemical Geology, 161(4): 399-413. https://doi.org/10.1016/S0009⁃2541(99)00118⁃7

[55]

Krylov, A. A., Hachikubo, A., Minami, H., et al., 2018. Authigenic Rhodochrosite from a Gas Hydrate⁃Bearing Structure in Lake Baikal. International Journal of Earth Sciences, 107(6): 2011-2022. https://doi.org/10.1007/s00531⁃018⁃1584⁃z

[56]

Kuleshov, V. N., Bych, A. F., 2002. Isotopic Composition (δ13C, δ18O) and Origin of Manganese Carbonate Ores of the Usa Deposit (Kuznetskii Alatau). Lithology and Mineral Resources, 37(4): 330-343. https://doi.org/10.1023/A:1019995322515

[57]

Kuliński, K., Rehder, G., Asmala, E., et al., 2022. Biogeochemical Functioning of the Baltic Sea. Earth System Dynamics, 13: 633-685. https://doi.org/10.5194/esd⁃13⁃633⁃2022

[58]

Lewis, B. L., Landing, W. M., 1991. The Biogeochemistry of Manganese and Iron in the Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 38: S773-S803. https://doi.org/10.1016/ S0198⁃0149(10)80009⁃3

[59]

Li, Y., Zhuang, Z. Y., Ye, H., et al., 2022. Evolution of Manganese⁃Bearing Minerals in Deep⁃Time Earth and Oxygenic Photosynthesis. Bulletin of Mineralogy, Petrology and Geochemistry, 41(2): 203-212 (in Chinese with English abstract).

[60]

Lin, H., Szeinbaum, N. H., DiChristina, T. J., et al., 2012. Microbial Mn(IV) Reduction Requires an Initial One⁃Electron Reductive Solubilization Step. Geochimica et Cosmochimica Acta, 99: 179-192. https://doi.org/10.1016/j.gca.2012.09.020

[61]

Liu, C., Wang, Z. R., MacDonald, F. A., 2018. Sr and Mg Isotope Geochemistry of the Basal Ediacaran Cap Limestone Sequence of Mongolia: Implications for Carbonate Diagenesis, Mixing of Glacial Meltwaters, and Seawater Chemistry in the Aftermath of Snowball Earth. Chemical Geology, 491: 1-13. https://doi.org/10.1016/j.chemgeo.2018.05.008

[62]

Liu, C., Wang, Z. R., Raub, T. D., et al., 2014. Neoproterozoic Cap⁃Dolostone Deposition in Stratified Glacial Meltwater Plume. Earth and Planetary Science Letters, 404: 22-32. https://doi.org/10.1016/j.epsl.2014.06.039

[63]

Liu, F., Feng, X. H., Chen, X. H., et al., 2008. Advances in the Study of Biological Genesis of Manganese Oxide Minerals and Their Characteristics. Earth Science Frontiers, 15(6): 66-73 (in Chinese with English abstract).

[64]

Mandernack, K. W., Fogel, M. L., Tebo, B. M., et al., 1995b. Oxygen Isotope Analyses of Chemically and Microbially Produced Manganese Oxides and Manganates. Geochimica et Cosmochimica Acta, 59(21): 4409-4425. https://doi.org/10.1016/0016⁃7037(95)00299⁃F

[65]

Mandernack, K. W., Post, J., Tebo, B. M., 1995a. Manganese Mineral Formation by Bacterial Spores of the Marine Bacillus, Strain SG⁃1: Evidence for the Direct Oxidation of Mn(II) to Mn(IV). Geochimica et Cosmochimica Acta, 59(21): 4393-4408. https://doi.org/10.1016/0016⁃7037(95)00298⁃E

[66]

Mandernack, K. W., Tebo, B. M., 1993. Manganese Scavenging and Oxidation at Hydrothermal Vents and in Vent Plumes. Geochimica et Cosmochimica Acta, 57(16): 3907-3923. https://doi.org/10.1016/0016⁃7037(93)90343⁃U

[67]

Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).

[68]

Maynard, B., 2014. Treatise of Geochemistry 2nd Edition, Vol. 7, Sediments, Diagenesis, and Sedimentary Rocks. Pergamon, Oxford, 289-308.

[69]

Maynard, J. B., 2003. Treatise on Geochemistry. Pergamon, Oxford, 289-308.

[70]

Maynard, J. B., 2010. The Chemistry of Manganese Ores through Time: A Signal of Increasing Diversity of Earth⁃Surface Environments. Economic Geology, 105: 535-552. https://doi.org/10.2113/gsecongeo.105.3.535

[71]

Meng, Q., Xue, W. Q., Chen, F. Y., et al., 2022. Stratigraphy of the Guadalupian (Permian) Siliceous Deposits from Central Guizhou of South China: Regional Correlations with Implications for Carbonate Productivity during the Middle Permian Biocrisis. Earth⁃Science Reviews, 228: 104011. https://doi.org/10.1016/j.earscirev.2022.104011

[72]

Michaelis, W., Seifert, R., Nauhaus, K., et al., 2002. Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of Methane. Science, 297(5583): 1013-1015. https://doi.org/10.1126/science.1072502

[73]

Miletto, M., Wang, X. L., Planavsky, N. J., et al., 2021. Marine Microbial Mn(II) Oxidation Mediates Cr(III) Oxidation and Isotope Fractionation. Geochimica et Cosmochimica Acta, 297: 101-119. https://doi.org/10.1016/j.gca.2021.01.008

[74]

Moffett, J. W., 1994, A Radiotracer Study of Cerium and Manganese Uptake onto Suspended Particles in Chesapeake Bay. Geochimica et Cosmochimica Acta, 58: 695-703. https://doi.org/10.1016/0016⁃7037(94)90499⁃5

[75]

Morgan, J. J., 2005. Kinetics of Reaction between O2 and Mn(II) Species in Aqueous Solutions. Geochimica et Cosmochimica Acta, 69(1): 35-48. https://doi.org/10.1016/j.gca.2004.06.013

[76]

Nealson, K. H., Saffarini, D., 1994. Iron and Manganese in Anaerobic Respiration: Environmental Significance, Physiology, and Regulation. Annual Review of Microbiology, 48: 311-343. https://doi.org/10.1146/annurev.mi.48.100194.001523

[77]

Nicholson, K., Hein, J. R., Bühn, B., et al., 1997. Precambrian to Modern Manganese Mineralization: Changes in Ore Type and Depositional Environment. Geological Society, London, Special Publications, 119(1): 1-3. https://doi.org/10.1144/GSL.SP.1997.119.01.01

[78]

Okita, P. M., 1992. Manganese Carbonate Mineralization in the Molango District, Mexico. Economic Geology, 87: 1345-1366. https://doi.org/10.2113/gsecongeo.87.5.1345

[79]

Polgári, M., Gyollai, I., Fintor, K., et al., 2019. Microbially Mediated Ore⁃Forming Processes and Cell Mineralization. Frontiers in Microbiology, 10: 2731. https://doi.org/10.3389/fmicb.2019.02731

[80]

Polgári, M., Hein, J. R., Tóth, A., et al., 2012a. Microbial Action Formed Jurassic Mn⁃Carbonate Ore Deposit in Only a Few Hundred Years (Úrkút, Hungary). Geology, 40(10): 903-906. https://doi.org/10.1130/G33304.1

[81]

Polgári, M., Hein, J. R., Vigh, T., et al., 2012b. Microbial Processes and the Origin of the ÚRKÚT Manganese Deposit, Hungary. Ore Geology Reviews, 47: 87-109. https://doi.org/10.1016/j.oregeorev.2011.10.001

[82]

Polgári, M., Németh, T., Pál⁃Molnár, E., et al., 2016. Correlated Chemostratigraphy of Mn⁃Carbonate Microbialites (Úrkút, Hungary). Gondwana Research, 29(1): 278-289. https://doi.org/10.1016/j.gr.2014.12.002

[83]

Polgari, M., Okita, P. M., Hein, J. R., 1991. Stable Isotope Evidence for the Origin of the Urkut Manganese Ore Deposit, Hungary. Journal of Sedimentary Research, 61.

[84]

Post, J. E., 1999. Manganese Oxide Minerals: Crystal Structures and Economic and Environmental Significance. Proceedings of the National Academy of Sciences, 96(7): 3447-3454. https://doi.org/10.1073/pnas.96.7.3447

[85]

Qi, L., Yu, W. C., Du, Y. S., et al., 2015. Paleoclimate Evolution of the Cryogenian Tiesi’ao Formation⁃Datangpo Formation in Eastern Guizhou Province: Evidence from the Chemical Index of Alteration. Bulletin of Geological Science and Technology, 34(6): 47-57 (in Chinese with English abstract).

[86]

Rajabzadeh, M. A., Haddad, F., Polgári, M., et al., 2017. Investigation on the Role of Microorganisms in Manganese Mineralization from Abadeh⁃Tashk Area, Fars Province, Southwestern Iran by Using Petrographic and Geochemical Data. Ore Geology Reviews, 80: 229-249. https://doi.org/10.1016/j.oregeorev.2016.06.035

[87]

Reolid, M., El Kadiri, K., Abad, I., et al., 2011. Jurassic Microbial Communities in Hydrothermal Manganese Crust of the Rifian Calcareous Chain, Northern Morocco. Sedimentary Geology, 233(1-4): 159-172. https://doi.org/10.1016/j.sedgeo.2010.11.008

[88]

Richter, K., Schicklberger, M., Gescher, J., 2012. Dissimilatory Reduction of Extracellular Electron Acceptors in Anaerobic Respiration. Applied and Environmental Microbiology, 78(4): 913-921. https://doi.org/10.1128/aem.06803⁃11

[89]

Romano, C. A., Zhou, M. W., Song, Y., et al., 2017. Biogenic Manganese Oxide Nanoparticle Formation by a Multimeric Multicopper Oxidase Mnx. Nature Communications, 8: 746. https://doi.org/10.1038/s41467⁃017⁃00896⁃8

[90]

Roy, S., 1988. Manganese Metallogenesis: A Review. Ore Geology Reviews, 4(1-2): 155-170. https://doi.org/10.1016/0169⁃1368(88)90011⁃X

[91]

Roy, S., 1992. Environments and Processes of Manganese Deposition. Economic Geology, 87: 1218-1236. https://doi.org/10.2113/gsecongeo.87.5.1218

[92]

Roy, S., 2006. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System. Earth⁃Science Reviews, 77(4): 273-305. https://doi.org/10.1016/j.earscirev.2006.03.004

[93]

Saffarini, D., Brockman, K., Beliaev, A., et al., 2015. Bacteria⁃Metal Interactions. Springer International Publishing, Cham, 21-40.

[94]

Santelli, C. M., Webb, S. M., Dohnalkova, A. C., et al., 2011. Diversity of Mn Oxides Produced by Mn(II)⁃Oxidizing Fungi. Geochimica et Cosmochimica Acta, 75: 2762-2776. https://doi.org/10.1016/j.gca.2011.02.022

[95]

Shields, G. A., 2005. Neoproterozoic Cap Carbonates: A Critical Appraisal of Existing Models and the Plumeworld Hypothesis. Terra Nova, 17(4): 299-310. https://doi.org/10.1111/j.1365⁃3121.2005.00638.x

[96]

Shiraishi, F., Matsumura, Y., Chihara, R., et al., 2019. Depositional Processes of Microbially Colonized Manganese Crusts, Sambe Hot Spring, Japan. Geochimica et Cosmochimica Acta, 258: 1-18. https://doi.org/10.1016/j.gca.2019.05.023

[97]

Sjöberg, S., Callac, N., Allard, B., et al., 2018. Microbial Communities Inhabiting a Rare Earth Element Enriched Birnessite⁃Type Manganese Deposit in the Ytterby Mine, Sweden. Geomicrobiology Journal, 35(8): 657-674. https://doi.org/10.1080/01490451.2018.1444690

[98]

Solomon, E. I., Sundaram, U. M., Machonkin, T. E., 1996. Multicopper Oxidases and Oxygenases. Chemical Reviews, 96(7): 2563-2606. https://doi.org/10.1021/cr950046o

[99]

Song, H. Y., Algeo, T. J., Song, H. J., et al., 2023. Global Oceanic Anoxia Linked with the Capitanian (Middle Permian) Marine Mass Extinction. Earth and Planetary Science Letters, 610: 118128. https://doi.org/10.1016/j.epsl.2023.118128

[100]

Sutherland, K. M., Wankel, S. D., Hansel, C. M., 2018. Oxygen Isotope Analysis of Bacterial and Fungal Manganese Oxidation. Geobiology, 16(4): 399-411. https://doi.org/10.1111/gbi.12288

[101]

Tan, Z. Z., Jia, W. L., Li, J., et al., 2021. Geochemistry and Molybdenum Isotopes of the Basal Datangpo Formation: Implications for Ocean⁃Redox Conditions and Organic Matter Accumulation during the Cryogenian Interglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 563: 110169. https://doi.org/10.1016/j.palaeo.2020.110169

[102]

Tang, Y. Z., Zeiner, C. A., Santelli, C. M., et al., 2013. Fungal Oxidative Dissolution of the Mn(II)⁃Bearing Mineral Rhodochrosite and the Role of Metabolites in Manganese Oxide Formation. Environmental Microbiology, 15(4): 1063-1077. https://doi.org/10.1111/1462⁃2920.12029

[103]

Tebo, B. M., 1991. Manganese(II) Oxidation in the Suboxic Zone of the Black Sea. Deep Sea Research Part A Oceanographic Research Papers, 38: S883-S905. https://doi.org/10.1016/S0198⁃0149(10)80015⁃9

[104]

Tebo, B. M., Bargar, J. R., Clement, B. G., et al., 2004. Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Annual Review of Earth and Planetary Sciences, 32: 287-328. https://doi.org/10.1146/annurev.earth.32.101802.120213

[105]

Tebo, B. M., Johnson, H. A., McCarthy, J. K., et al., 2005. Geomicrobiology of Manganese(II) Oxidation. Trends in Microbiology, 13(9): 421-428. https://doi.org/10.1016/j.tim.2005.07.009

[106]

Templeton, A. S., Knowles, E. J., Eldridge, D. L., et al., 2009. A Seafloor Microbial Biome Hosted within Incipient Ferromanganese Crusts. Nature Geoscience, 2: 872-876. https://doi.org/10.1038/ngeo696

[107]

Thamdrup, B., 2000. Bacterial Manganese and Iron Reduction in Aquatic Sediments. In: Schink, B., ed., Advances in Microbial Ecology. Springer, Boston, 41-84.

[108]

Thamdrup, B., Rosselló⁃Mora, R., Amann, R., 2000. Microbial Manganese and Sulfate Reduction in Black Sea Shelf Sediments. Applied and Environmental Microbiology, 66(7): 2888-2897. https://doi.org/10.1128/aem.66.7.2888⁃2897.2000

[109]

Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232(1-2): 12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012

[110]

Trimble, R., Ehrlich, H., 1968. Bacteriology of Manganese Nodules: III. Reduction of MnO2 by Two Strains of Nodule Bacteria. Applied and Environmental Microbiology, 16: 695-702. https://doi.org/10.1128/am.16.5.695⁃702.1968

[111]

Tully, B. J., Heidelberg, J. F., 2013. Microbial Communities Associated with Ferromanganese Nodules and the Surrounding Sediments. Frontiers in Microbiology, 4: 161. https://doi.org/10.3389/fmicb.2013.00161

[112]

Vandieken, V., Pester, M., Finke, N., et al., 2012. Three Manganese Oxide⁃Rich Marine Sediments Harbor Similar Communities of Acetate⁃Oxidizing Manganese⁃ Reducing Bacteria. The ISME Journal, 6(11): 2078-2090. https://doi.org/10.1038/ismej.2012.41

[113]

Vicenzi, E. P., Grissom, C. A., Livingston, R. A., et al., 2016. Rock Varnish on Architectural Stone: Microscopy and Analysis of Nanoscale Manganese Oxide Deposits on the Smithsonian Castle, Washington, DC. Heritage Science, 4(1): 26. https://doi.org/10.1186/s40494⁃016⁃0093⁃2

[114]

Volz, J. B., Liu, B., Köster, M., et al., 2020. Post⁃Depositional Manganese Mobilization during the Last Glacial Period in Sediments of the Eastern Clarion⁃ Clipperton Zone, Pacific Ocean. Earth and Planetary Science Letters, 532: 116012. https://doi.org/10.1016/j.epsl.2019.116012

[115]

Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract).

[116]

Wang, P., Algeo, T. J., Zhou, Q., et al., 2019. Large Accumulations of 34S⁃Enriched Pyrite in a Low⁃Sulfate Marine Basin: The Sturtian Nanhua Basin, South China. Precambrian Research, 335: 105504. https://doi.org/10.1016/j.precamres.2019.105504

[117]

Wang, P., Du, Y. S., Yu, W. C., et al., 2020. The Chemical Index of Alteration (CIA) as a Proxy for Climate Change during Glacial⁃Interglacial Transitions in Earth History. Earth⁃Science Reviews, 201: 103032. https://doi.org/10.1016/j.earscirev.2019.103032

[118]

Wang, R., Wang, S., Tai, Y. P., et al., 2017. Biogenic Manganese Oxides Generated by Green Algae Desmodesmus Sp. WR1 to Improve Bisphenol a Removal. Journal of Hazardous Materials, 339: 310-319. https://doi.org/10.1016/j.jhazmat.2017.06.026

[119]

Wang, T. G., Li, M. J., Wang, C. J., et al., 2008. Organic Molecular Evidence in the Late Neoproterozoic Tillites for a Palaeo⁃Oceanic Environment during the Snowball Earth Era in the Yangtze Region, Southern China. Precambrian Research, 162(3-4): 317-326. https://doi.org/10.1016/j.precamres.2007.09.009

[120]

Wang, X., Li, Y., Li, Y. Z., et al., 2018. Effects of Mg2+ and SO4 2- on the Formation of Manganese Carbonate Induced by Microorganisms in Shallow Water. Earth Science, 43(S1): 145-156 (in Chinese with English abstract).

[121]

Webb, S. M., Dick, G. J., Bargar, J. R., et al., 2005. Evidence for the Presence of Mn(III) Intermediates in the Bacterial Oxidation of Mn(II). Proceedings of the National Academy of Sciences, 102(15): 5558-5563. https://doi.org/10.1073/pnas.0409119102

[122]

Wei, W., Yu, W. C., Du, Y. S., et al., 2024. A New Salinity⁃Based Model for Cryogenian Mn⁃Carbonate Deposits. Precambrian Research, 403: 107309. https://doi.org/10.1016/j.precamres.2024.107309

[123]

Wittkop, C., Swanner, E. D., Grengs, A., et al., 2020. Evaluating a Primary Carbonate Pathway for Manganese Enrichments in Reducing Environments. Earth and Planetary Science Letters, 538: 116201. https://doi.org/10.1016/j.epsl.2020.116201

[124]

Wu, C. Q., Zhang, Z. W., Xiao, J. F., et al., 2016. Nanhuan Manganese Deposits within Restricted Basins of the Southeastern Yangtze Platform, China: Constraints from Geological and Geochemical Evidence. Ore Geology Reviews, 75: 76-99. https://doi.org/10.1016/j.oregeorev.2015.12.003

[125]

Wu, C., Luo, Y. X., Xue, S. G., et al., 2023. Research Progress of Heavy Metal Biomineralization Induced by Iron and Manganese⁃Oxidizing Bacteria in Soils. Acta Pedologica Sinica, 60(4): 953-968 (in Chinese with English abstract).

[126]

Yang, J., Jansen, M. F., Macdonald, F. A., et al., 2017. Persistence of a Freshwater Surface Ocean after a Snowball Earth. Geology, 45: 615-618. https://doi.org/10.1130/G38920.1

[127]

Yu, H., Leadbetter, J. R., 2020. Bacterial Chemolithoautotrophy via Manganese Oxidation. Nature, 583: 453-458. https://doi.org/10.1038/s41586⁃020⁃2468⁃5

[128]

Yu, W. C., Algeo, T. J., Du, Y. S., et al., 2016. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post⁃Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023

[129]

Yu, W. C., Algeo, T. J., Zhou, Q., et al., 2022. Evaluation of Alkalinity Sources to Cryogenian Cap Carbonates, and Implications for Cap Carbonate Formation Models. Global and Planetary Change, 217: 103949. https://doi.org/10.1016/j.gloplacha.2022.103949

[130]

Yu, W. C., Liu, Z. C., Zhang, B. L., et al., 2024. A Distinct Manganese Deposit on a Middle Permian Carbonate Platform in South China. Chemical Geology, 662: 122227. https://doi.org/10.1016/j.chemgeo.2024.122227

[131]

Yu, W. C., Polgári, M., Fintor, K., et al., 2021a. Contribution of Microbial Processes to the Enrichment of Middle Permian Manganese Deposits in Northern Guizhou, South China. Ore Geology Reviews, 136: 104259. https://doi.org/10.1016/j.oregeorev.2021.104259

[132]

Yu, W. C., Polgári, M., Gyollai, I., et al., 2019. Microbial Metallogenesis of Cryogenian Manganese Ore Deposits in South China. Precambrian Research, 322: 122-135. https://doi.org/10.1016/j.precamres.2019.01.004

[133]

Yu, W. C., Polgári, M., Gyollai, I., et al., 2021b. Microbial Metallogenesis of Early Carboniferous Manganese Deposit in Central Guangxi, South China. Ore Geology Reviews, 136: 104251. https://doi.org/10.1016/j.oregeorev.2021.104251

[134]

Zhai, M. G., Wu, F. Y., Hu, R. Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111 (in Chinese with English abstract).

[135]

Zhang, B. L., Wang, C. L., Robbins, L., et al., 2020. Petrography and Geochemistry of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains, Xinjiang Province, China: Implications for the Depositional Environment and the Origin of Mineralization. Economic Geology, 115: 1559-1588. https://doi.org/10.5382/econgeo.4729

[136]

Zhang, B., Cao, J., Hu, K., et al., 2022. Microbially⁃Mediated Mn Redox Cycling and Mn Carbonate Precipitation in the Marinoan Glacial Aftermath, South China. Global and Planetary Change, 217: 103950. https://doi.org/10.1016/j.gloplacha.2022.103950

[137]

Zhang, B., Cao, J., Liao, Z. W., et al., 2021a. Dynamic Biogeochemical Cycling and Mineralization of Manganese of Hydrothermal Origin after the Marinoan Glaciation. Chemical Geology, 584: 120502. https://doi.org/10.1016/j.chemgeo.2021.120502

[138]

Zhang, Y., Li, J., Chen, L., et al., 2021b. Manganese Carbonate Stromatolites of the Ediacaran Doushantuo Formation in Chengkou, Northern Yangtze Craton, China. Journal of Palaeogeography, 10(1): 22. https://doi.org/10.1186/s42501⁃021⁃00099⁃9

[139]

Zhou, H., Fu, C., 2020. Manganese⁃Oxidizing Microbes and Biogenic Manganese Oxides: Characterization, Mn(II) Oxidation Mechanism and Environmental Relevance. Reviews in Environmental Science and Bio/Technology, 19(3): 489-507. https://doi.org/10.1007/s11157⁃020⁃09541⁃1

[140]

Zhou, Q., Du, Y. S., Yuan, L. J., et al., 2016. The Structure of the Wuling Rift Basin and Its Control on the Manganese Deposit during the Nanhua Period in Guizhou⁃Hunan⁃Chongqing Border Area, South China. Earth Science, 41(2): 177-188 (in Chinese with English abstract).

基金资助

国家重点研发项目(2024YFF0808000)

湖北省地质局科研项目(KJ2024⁃29)

贵州省地矿局科研项目(黔地矿科合[2021]4号)

AI Summary AI Mindmap
PDF (2120KB)

153

访问

0

被引

详细

导航
相关文章

AI思维导图

/