纳米离子探针分析技术在地质微生物学和生物沉积学研究中的应用与展望
仇鑫程 , 杨浩 , 郑子杰 , 方谦 , 陈中强
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1220 -1233.
纳米离子探针分析技术在地质微生物学和生物沉积学研究中的应用与展望
NanoSIMS Techniques and Its Important Implications in Geomicrobiology and Biosedimentology
纳米离子探针(NanoSIMS)技术具有高空间分辨率和高化学灵敏度的特点,是目前国际上最先进的原位微区分析手段之一.它能在纳米尺度上进行元素和同位素分布的原位分析,为揭示微生物与环境的相互作用提供了革命性技术;因此在地质微生物学和生物沉积学研究中展现出重要应用潜力甚至在某些方向的研究中不可或缺.本文在介绍NanoSIMS的工作原理基础上,综述了NanoSIMS技术在地质微生物学领域最前沿的重要应用,重点解剖其在现代微生物群落功能研究、深时碳酸盐矿物沉淀、生物地球化学循环、地球早期生命信号的识别以及地外生命探索等方面的应用实例.总之,NanoSIMS技术的发展与应用推动了地质微生物学研究迈向更高空间分辨率的微观世界,为探索地球生命起源和地外星球宜居性提供了前所未有的机遇.同时,本文论述了NanoSIMS在样品制备、信噪比、定量分析等方面的挑战,并展望了该技术优化方向,如技术升级、多技术联用和算法改进等,希望为多学科原位微区分析提供重要技术支撑,并进一步推动地质微生物学和生物沉积学及相关交叉学科的发展.
NanoSIMS (nanoscale secondary ion mass spectrometry) technology, with its high spatial resolution and chemical sensitivity, demonstrates significant potential for implications in researches of geomicrobiology. This technology enables in-situ analysis of elemental and isotopic distributions at the nanoscale, offering a revolutionary tool for uncovering interactions between microorganisms and their environments. This article reviews the applications and advancements of NanoSIMS technology in the field of geomicrobiology. It provides a detailed overview of the principles of NanoSIMS and its applications in areas such as identifying biogenic minerals from ancient microorganisms, exploring extraterrestrial life, carbonate mineral precipitation, biogeochemical cycles, and functional studies of modern microbial communities. The development of NanoSIMS has propelled geomicrobiology towards greater precision and resolution, presenting unprecedented opportunities to study the origin of life, microbial activity in extreme environments, and global biogeochemical cycles. At the same time, this article identifies challenges related to sample preparation, signal-to-noise ratio, and quantitative analysis, while also suggesting directions for optimization, such as technological upgrades, multi-technique integration, and algorithmic improvements. In the future, the continued evolution of NanoSIMS will provide critical support for investigating early life on Earth, global elemental cycles, and extraterrestrial life, further advancing geomicrobiology and its related interdisciplinary fields.
地质微生物 / 纳米离子探针 / 早期生命演化 / 天体生物学 / 微生物矿化 / 地球化学循环 / 现代微生物 / 沉积学.
geomicrobiology / NanoSIMS / early life evolution / astrobiology / microbial mineralization / geochemical cycles / modern microbiology / sedimentology
| [1] |
Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite Reef from the Early Archaean Era of Australia. Nature, 441: 714-718. https://doi.org/10.1038/nature04764 |
| [2] |
Altermann, W., Kazmierczak, J., 2003. Archean Microfossils: A Reappraisal of Early Life on Earth. Research in Microbiology, 154(9): 611-617. https://doi.org/10.1016/j.resmic.2003.08.006 |
| [3] |
Arandia⁃Gorostidi, N., Weber, P. K., Alonso⁃Sáez, L., et al., 2017. Elevated Temperature Increases Carbon and Nitrogen Fluxes between Phytoplankton and Heterotrophic Bacteria through Physical Attachment. The ISME Journal, 11(3): 641-650. https://doi.org/10.1038/ismej.2016.156 |
| [4] |
Brasier, M., McLoughlin, N., Green, O., et al., 2006. A Fresh Look at the Fossil Evidence for Early Archaean Cellular Life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 887-902. https://doi.org/10.1098/rstb.2006.1835 |
| [5] |
Bryant, R. N., Houghton, J. L., Jones, C., et al., 2023. Deconvolving Microbial and Environmental Controls on Marine Sedimentary Pyrite Sulfur Isotope Ratios. Science, 382(6673): 912-915. https://doi.org/10.1126/science.adg6103 |
| [6] |
Burne, R. V., Moore, L. S., 1987. Microbialites: Organosedimentary Deposits of Benthic Microbial Communities. Palaios, 2(3): 241. https://doi.org/10.2307/3514674 |
| [7] |
Canfield, D. E., 2001. Biogeochemistry of Sulfur Isotopes. Reviews in Mineralogy and Geochemistry, 43(1): 607-636. https://doi.org/10.2138/gsrmg.43.1.607 |
| [8] |
Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009. Redox Sensitive Trace Elements as Paleoenvironments Proxies. Geological Review, 55(1): 91-99 (in Chinese with English abstract). |
| [9] |
Chen, J., Yao, S. P., 2005. Geomicrobiology and Its Progress. Geological Journal of China Universities, 11(2): 154-166 (in Chinese with English abstract). |
| [10] |
Chen, Y., Hu, Z. C., Jia, L. H., et al., 2021. Progress of Microbeam Analytical Technologies in the Past Decade (2011-2020) and Prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 1-35 (in Chinese with English abstract). |
| [11] |
Chen, Z. Q., Zhou, C., Stanley, G. J., 2017. Biosedimentary Records of China from the Precambrian to Present. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 1-6. https://doi.org/10.1016/j.palaeo.2017.03.002 |
| [12] |
Chen, Z. Q., Tu, C. Y., Pei, Y., et al., 2019. Biosedimentological Features of Major Microbe⁃Metazoan Transitions (MMTs) from Precambrian to Cenozoic. Earth⁃ Science Reviews, 189: 21-50. https://doi.org/10.1016/j.earscirev.2019.01.015 |
| [13] |
Green, J., Hoehler, T., Neveu, M., et al., 2021. Call for a Framework for Reporting Evidence for Life beyond Earth. Nature, 598: 575-579. https://doi.org/10.1038/s41586⁃021⁃03804⁃9 |
| [14] |
Grotzinger, J. P., Rothman, D. H., 1996. An Abiotic Model for Stromatolite Morphogenesis. Nature, 383: 423-425. https://doi.org/10.1038/383423a0 |
| [15] |
Guo, Z. X., Papineau, D., O’Neil, J., et al., 2024. Abiotic Synthesis of Graphitic Carbons in the Eoarchean Saglek⁃Hebron Metasedimentary Rocks. Nature Communications, 15: 5679. https://doi.org/10.1038/s41467⁃024⁃50134⁃1 |
| [16] |
Halevy, I., Fike, D. A., Pasquier, V., et al., 2023. Sedimentary Parameters Control the Sulfur Isotope Composition of Marine Pyrite. Science, 382(6673): 946-951. https://doi.org/10.1126/science.adh1215 |
| [17] |
Hansen, C. J., Castillo⁃Rogez, J., Grundy, W., et al., 2021. Triton: Fascinating Moon, Likely Ocean World, Compelling Destination!. The Planetary Science Journal, 2(4): 137. https://doi.org/10.3847/psj/abffd2 |
| [18] |
Hao, J. L., Zhang, L. P., Li, Z. Y., et al., 2024. Sulfur Isotopic Analysis of Sedimentary Pyrite at Micro⁃Nano Scale and Its Implications to Oil/Gas Generation in the Dongying Depression. Acta Petrologica Sinica, 40(1): 313-322 (in Chinese with English abstract). |
| [19] |
Harazim, D., Virtasalo, J. J., Denommee, K. C., et al., 2020. Exceptional Sulfur and Iron Isotope Enrichment in Millimetre⁃Sized, Early Palaeozoic Animal Burrows. Scientific Reports, 10: 20270. https://doi.org/10.1038/s41598⁃020⁃76296⁃8 |
| [20] |
Hu, H. W., Zhang, L. M., He, J. Z., 2013. Application of Nano⁃Scale Secondary Ion Mass Spectrometry to Microbial Ecology Study. Acta Ecologica Sinica, 33(2): 348-357 (in Chinese with English abstract). |
| [21] |
Hu, Y. L., Wang, W., Zhao, X. Y., et al., 2025. Extreme Sulfur Isotope Heterogeneity in Individual Ediacaran Pyrite Grains Revealed by NanoSIMS Analysis. Marine and Petroleum Geology, 171: 107201. https://doi.org/10.1016/j.marpetgeo.2024.107201 |
| [22] |
Imachi, H., Nobu, M. K., Nakahara, N., et al., 2020. Isolation of an Archaeon at the Prokaryote⁃Eukaryote Interface. Nature, 577: 519-525. https://doi.org/10.1038/s41586⁃019⁃1916⁃6 |
| [23] |
Jia, X., Kivelson, M. G., 2021. The Magnetosphere of Ganymede. In: Maggiolo, R., André, N., Hasegawa, H., et al., eds., Magnetospheres in the Solar System. Wiley, Hoboken, 557-573. https://doi.org/10.1002/9781119815624.ch35 |
| [24] |
Jørgensen, B. B., Findlay, A. J., Pellerin, A., 2019. The Biogeochemical Sulfur Cycle of Marine Sediments. Frontiers in Microbiology, 10: 849. https://doi.org/10.3389/fmicb.2019.00849 |
| [25] |
Jørgensen, B. B., Kasten, S., 2006. Sulfur Cycling and Methane Oxidation. In: Schulz, H. D., Zabel, M., eds., Marine Geochemistry. Springer⁃Verlag, Berlin, 271-309. https://doi.org/10.1007/3⁃540⁃32144⁃6_8 |
| [26] |
Li, Q. L., Yang, W., Liu, Y., et al., 2013. Ion Microprobe Microanalytical Techniques and Their Applications in Earth Sciences. Bulletin of Mineralogy, Petrology and Geochemistry, 32(3): 310-327 (in Chinese with English abstract). |
| [27] |
Li, W. J., Jiang, H. C., 2018. Geomicrobiology: A New Interdisciplinary Subject. Acta Microbiologica Sinica, 58(4): 521-524 (in Chinese with English abstract). |
| [28] |
Li, X. H., Li, Q. L., 2016. Major Advances in Microbeam Analytical Techniques and Their Applications in Earth Science. Science Bulletin, 61(23): 1785-1787. https://doi.org/10.1007/s11434⁃016⁃1197⁃5 |
| [29] |
Lin, W., Shen, J. X., Pan, Y. X., 2022. On Astrobiological Research in China. Earth Science, 47(11): 4108-4113 (in Chinese with English abstract). |
| [30] |
Lin, Y. T., El Goresy, A., Hu, S., et al., 2014. NanoSIMS Analysis of Organic Carbon from the Tissint Martian Meteorite: Evidence for the Past Existence of Subsurface Organic⁃Bearing Fluids on Mars. Meteoritics & Planetary Science, 49(12): 2201-2218. https://doi.org/10.1111/maps.12389 |
| [31] |
Lin, Z. Y., Sun, X. M., Strauss, H., et al., 2017. Multiple Sulfur Isotope Constraints on Sulfate⁃Driven Anaerobic Oxidation of Methane: Evidence from Authigenic Pyrite in Seepage Areas of the South China Sea. Geochimica et Cosmochimica Acta, 211: 153-173. https://doi.org/10.1016/j.gca.2017.05.015 |
| [32] |
Lopes, R. M. C., Kirk, R. L., Mitchell, K. L., et al., 2013. Cryovolcanism on Titan: New Results from Cassini RADAR and VIMS. Journal of Geophysical Research: Planets, 118(3): 416-435. https://doi.org/10.1002/jgre.20062 |
| [33] |
Lovelock, J. E., 1983. Gaia as Seen through the Atmosphere. In: Westbroek, P., Jong, E. W., eds., Biomineralization and Biological Metal Accumulation. Springer, Dordrecht, 15-25. https://doi.org/10.1007/978⁃ 94⁃009⁃7944⁃4_2 |
| [34] |
Marin⁃Carbonne, J., Decraene, M. N., Havas, R., et al., 2022. Early Precipitated Micropyrite in Microbialites: A Time Capsule of Microbial Sulfur Cycling. Geochemical Perspectives Letters, 21: 7-12. https://doi.org/10.7185/geochemlet.2209 |
| [35] |
Mayali, X., 2020. NanoSIMS: Microscale Quantification of Biogeochemical Activity with Large⁃Scale Impacts. Annual Review of Marine Science, 12: 449-467. https://doi.org/10.1146/annurev⁃marine⁃010419⁃010714 |
| [36] |
McLoughlin, N., Wilson, L. A., Brasier, M. D., 2008. Growth of Synthetic Stromatolites and Wrinkle Structures in the Absence of Microbes⁃Implications for the Early Fossil Record. Geobiology, 6(2): 95-105. https://doi.org/10.1111/j.1472⁃4669.2007.00141.x |
| [37] |
Moorbath, S., 2005. Dating Earliest Life. Nature, 434(7030): 155. https://doi.org/10.1038/434155a |
| [38] |
Musat, N., Halm, H., Winterholler, B., et al., 2008. A Single⁃Cell View on the Ecophysiology of Anaerobic Phototrophic Bacteria. Proceedings of the National Academy of Sciences, 105(46): 17861-17866. https://doi.org/10.1073/pnas.0809329105 |
| [39] |
Oehler, D. Z., Robert, F., Walter, M. R., et al., 2010. Diversity in the Archean Biosphere: New Insights from NanoSIMS. Astrobiology, 10(4): 413-424. https://doi.org/10.1089/ast.2009.0426 |
| [40] |
Papineau, D., She, Z., Dodd, M. S., et al., 2022. Metabolically Diverse Primordial Microbial Communities in Earth’s Oldest Seafloor⁃Hydrothermal Jasper. Science Advances, 8(15): eabm2296. https://doi.org/10.1126/sciadv.abm2296 |
| [41] |
Pasquier, V., Bryant, R. N., Fike, D. A., et al., 2021. Strong Local, Not Global, Controls on Marine Pyrite Sulfur Isotopes. Science Advances, 7(9): eabb7403. https://doi.org/10.1126/sciadv.abb7403 |
| [42] |
Postberg, F., Khawaja, N., Abel, B., et al., 2018. Macromolecular Organic Compounds from the Depths of Enceladus. Nature, 558: 564-568. https://doi.org/10.1038/s41586⁃018⁃0246⁃4 |
| [43] |
Qiu, X.C., 2022. Geomicrobiological Process and Paleoceanographical Analysis of Early Triassic Microbialites and Fish⁃Bearing Calcareous Nodules in South China (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [44] |
Raven, M. R., Sessions, A. L., Fischer, W. W., et al., 2016. Sedimentary Pyrite δ34S Differs from Porewater Sulfide in Santa Barbara Basin: Proposed Role of Organic Sulfur. Geochimica et Cosmochimica Acta, 186: 120-134. https://doi.org/10.1016/j.gca.2016.04.037 |
| [45] |
Schopf, J. W., 2006. Fossil Evidence of Archaean Life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470): 869-885. https://doi.org/10.1098/rstb.2006.1834 |
| [46] |
Schuhmacher, M., Rasser, B., De Chambost, E., et al., 1999. Recent Instrumental Developments in Magnetic Sector SIMS. Fresenius’ Journal of Analytical Chemistry, 365(1): 12-18. https://doi.org/10.1007/s002160051438 |
| [47] |
Steinhauser, M. L., Bailey, A. P., Senyo, S. E., et al., 2012. Multi⁃Isotope Imaging Mass Spectrometry Quantifies Stem Cell Division and Metabolism. Nature, 481: 516-519. https://doi.org/10.1038/nature10734 |
| [48] |
Sun, S., Wang, C. S., 2008. Gaia Theory and Earth System Science. Acta Geologica Sinica, 82(1): 1-8 (in Chinese with English abstract). |
| [49] |
Thomazo, C., Vennin, E., Brayard, A., et al., 2016. A Diagenetic Control on the Early Triassic Smithian⁃Spathian Carbon Isotopic Excursions Recorded in the Marine Settings of the Thaynes Group (Utah, USA). Geobiology, 14(3): 220-236. https://doi.org/10.1111/gbi.12174 |
| [50] |
Wacey, D., Gleeson, D., Kilburn, M. R., 2010. Microbialite Taphonomy and Biogenicity: New Insights from NanoSIMS. Geobiology, 8(5): 403-416. https://doi.org/10.1111/j.1472⁃4669.2010.00251.x |
| [51] |
Walter, M. R., Buick, R., Dunlop, J. S. R., 1980. Stromatolites 3, 400⁃3, 500 Myr Old from the North Pole Area, Western Australia. Nature, 284(5755): 443-445. https://doi.org/10.1038/284443a0 |
| [52] |
Wang, W., Hu, Y. L., Muscente, A. D., et al., 2021. Revisiting Ediacaran Sulfur Isotope Chemostratigraphy with in Situ nanoSIMS Analysis of Sedimentary Pyrite. Geology, 49(6): 611-616. https://doi.org/10.1130/G48262.1 |
| [53] |
Wu, K. J., Zhou, L., Tahon, G., et al., 2024. Isolation of a Methyl⁃Reducing Methanogen Outside the Euryarchaeota. Nature, 632: 1124-1130. https://doi.org/10.1038/s41586⁃024⁃07728⁃y |
| [54] |
Xie, S. C., Gong, Y. M., Tong, J. N., et al., 2006. A Transition from Paleontology to Geobiology. Chinese Science Bulletin, 51(19): 2327-2336 (in Chinese). |
| [55] |
Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese). |
| [56] |
Yang, W., Hu, S., Zhang, J. C., et al., 2015. Nano SIMS Analytical Technique and Its Applications in Earth Sciences. Science in China (Series D), 45(9): 1335-1346 (in Chinese). |
| [57] |
Zhang, J. C., Lin, Y. T., Yang, W., et al., 2014. Improved Precision and Spatial Resolution of Sulfur Isotope Analysis Using NanoSIMS. Journal of Analytical Atomic Spectrometry, 29(10): 1934-1943. https://doi.org/10.1039/C4JA00140K |
国家自然科学基金项目(41930322)
国家自然科学基金项目(42302347)
国家自然科学基金项目(42472371)
/
| 〈 |
|
〉 |