矿物‒微生物相互作用研究的新利器:三维原子探针(APT)
方谦 , 杨僚 , 仇鑫程 , 杨浩 , 洪汉烈 , 陈中强
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1201 -1219.
矿物‒微生物相互作用研究的新利器:三维原子探针(APT)
A New Tool for Unraveling Mineral⁃Microbe Interactions: Atom Probe Tomography (APT)
矿物‒微生物相互作用是地球系统中最为活跃的地质动力之一,对地球演化过程具有深远的影响,也是矿物学和地质微生物学领域最重要的交叉研究方向之一.要全面正确理解微生物与矿物之间的相互作用,重点之一在于揭示超微尺度下微生物如何影响矿物表面结构和物质组成的变化.尽管近年来矿物‒微生物相互作用的研究取得了显著进展,但由于该相互作用涉及更小尺度的微观过程,在纳米甚至亚纳米尺度同时表征矿物结构、化学成分和微生物残存印记等方面仍面临巨大挑战,因此许多原理性和机制性问题依然亟待解决.近年来新兴的三维原子探针(APT)技术突破了这一分析极限,可在亚纳米(近原子)尺度实现对几乎所有元素/同位素同时成像与定量分析(检测限为10‒6),可为重建矿物‒微生物相互作用过程提供近原子尺度、高灵敏度分析.APT最初是在材料科学领域发展并得到广泛应用,近年来该技术在地球科学领域受到日益增多的关注.本文概述了APT的原理、发展和样品制备等基本内容,介绍了生物矿化的概念及相关研究,并重点讨论了APT技术在微生物矿化、地质微生物的残存信号识别、生物材料等矿物‒微生物相互作用领域的重要应用.最后,客观总结了当前APT技术在矿物‒微生物相互作用研究中的局限性和面临的问题,并展望这种超级原位微区分析技术在矿物‒微生物研究领域的未来发展方向.
Mineral-microbe interaction (MMI) is one of the most dynamic geological processes driving the evolution of Earth’s system, profoundly influencing Earth life’s evolutionary processes. MMIs are also a key research focus in mineralogy and geomicrobiology. To fully understand the interactions between microbes and minerals, one of the critical areas is to decode how microorganisms affect the structural and compositional changes on mineral surfaces at an ultra-microscopic scale. Although significant progress has been made in the MMI studies in recent years, major challenges still remain due to the microscopic processes occurring at nanoscale and even sub-nanoscale levels. Simultaneous characterization of mineral structures, chemical compositions, and microbial remnants at these scales remains difficult, leaving many fundamental mechanistic questions unresolved. The emerging three-dimensional atom probe technology (APT) overcomes these limitations. APT enables near-atomic scale imaging and quantitative analysis of nearly all elements/isotopes simultaneously, with a detection limit as low as 10⁻⁶. This provides near-atomic scale, high-sensitivity analysis for research into mineral-microbe interactions. Originally developed and widely applied in materials science, APT has attracted increasing attention in the field of Earth sciences in recent years. This paper provides an overview of the principles, development, and sample preparation involved in APT, introduces the concept of biomineralization and related studies, and focuses on the key applications of APT technology in fields such as microbial mineralization, identifying geological microbial remnants, and biomaterials related to mineral-microbe interactions. Finally, we objectively summarize the current limitations and challenges of APT technology in the study of mineral-microbe interactions and explore the future development directions of this advanced in-situ micro-area technique in the field of mineral-microbe research.
生物矿化 / 地质微生物 / 生物矿物 / 生物材料 / 跨圈层研究 / 纳米科学 / 矿物学.
biomineralization / geomicrobiology / biominerals / biomaterials / cross⁃sphere research / nanoscience / mineralogy
| [1] |
Baumgartner, J., Morin, G., Menguy, N., et al., 2013. Magnetotactic Bacteria Form Magnetite from a Phosphate⁃Rich Ferric Hydroxide via Nanometric Ferric (Oxyhydr)Oxide Intermediates. Proceedings of the National Academy of Sciences, 110(37): 14883-14888. https://doi.org/10.1073/pnas.1307119110 |
| [2] |
Branson, O., Bonnin, E. A., Perea, D. E., et al., 2016. Nanometer⁃Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation. Proceedings of the National Academy of Sciences, 113(46): 12934-12939. https://doi.org/10.1073/pnas.1522864113 |
| [3] |
Chan, M. A., Hinman, N. W., Potter⁃McIntyre, S. L., et al., 2019. Deciphering Biosignatures in Planetary Contexts. Astrobiology, 19(9): 1075-1102. https://doi.org/10.1089/ast.2018.1903 |
| [4] |
Chen, Y. S., Griffith, M. J., Cairney, J. M., 2021. Cryo Atom Probe: Freezing Atoms in Place for 3D Mapping. Nano Today, 37: 101107. https://doi.org/10.1016/j.nantod.2021.101107 |
| [5] |
Daulton, T. L., Little, B. J., Kim, J. W., et al., 2002. Quantitative Environmental Cell⁃Transmission Electron Microscopy: Studies of Microbial Cr(VI) and Fe(III) Reduction. JEOL News, 37(3): 6-13. |
| [6] |
DeRocher, K. A., Smeets, P. J. M., Goodge, B. H., et al., 2020. Chemical Gradients in Human Enamel Crystallites. Nature, 583: 66-71. https://doi.org/10.1038/s41586⁃020⁃2433⁃3 |
| [7] |
Dong, H. L., 2010. Mineral⁃Microbe Interactions: A Review. Frontiers of Earth Science in China, 4(2): 127-147. https://doi.org/10.1007/s11707⁃010⁃0022⁃8 |
| [8] |
Dong, H. L., Huang, L. Q., Zhao, L. D., et al., 2022. A Critical Review of Mineral⁃Microbe Interaction and Co⁃Evolution: Mechanisms and Applications. National Science Review, 9(10): nwac128. https://doi.org/10.1093/nsr/nwac128 |
| [9] |
Ferraz, M. P., Monteiro, F. J., Manuel, C. M., 2004. Hydroxyapatite Nanoparticles: A Review of Preparation Methodologies. Journal of Applied Biomaterials & Biomechanics, 2(2): 74-80 |
| [10] |
Fratzl, P., Weinkamer, R., 2007. Nature’s Hierarchical Materials. Progress in Materials Science, 52(8): 1263-1334. https://doi.org/10.1016/j.pmatsci.2007.06.001 |
| [11] |
Fu, L., Engqvist, H., Xia, W., 2020. Glass⁃Ceramics in Dentistry: A Review. Materials (Basel, Switzerland), 13(5): E1049. https://doi.org/10.3390/ma13051049 |
| [12] |
Fu, L., Williams, J., Micheletti, C., et al., 2021. Three⁃Dimensional Insights into Interfacial Segregation at the Atomic Scale in a Nanocrystalline Glass⁃Ceramic. Nano Letters, 21(16): 6898-6906. https://doi.org/10.1021/acs.nanolett.1c02051 |
| [13] |
Gao, F., Xue, J., Hu, R., et al., 2024. Atom Probe Tomography Reveals Nano⁃Scale Organic Remaining in Conodont. Atomic Spectroscopy, 45(1): 1-8. https://doi.org/10.46770/as.2024.026 |
| [14] |
Gault, B., Chiaramonti, A., Cojocaru⁃Mirédin, O., et al., 2021. Atom Probe Tomography. Nature Reviews Methods Primers, 1: 51. https://doi.org/10.1038/s43586⁃021⁃00047⁃w |
| [15] |
Gault, B., Moody, M. P., Cairney, J. M., et al., 2012. Atom Probe Microscopy. Springer, New York. https://doi.org/10.1007/978⁃1⁃4614⁃3436⁃8 |
| [16] |
Golla, U., Putnis, A., 2001. Valence State Mapping and Quantitative Electron Spectroscopic Imaging of Exsolution in Titanohematite by Energy⁃Filtered TEM. Physics and Chemistry of Minerals, 28(2): 119-129. https://doi.org/10.1007/s002690000136 |
| [17] |
Gordon, L. M., Cohen, M. J., MacRenaris, K. W., et al., 2015. Amorphous Intergranular Phases Control the Properties of Rodent Tooth Enamel. Science, 347(6223): 746-750. https://doi.org/10.1126/science.1258950 |
| [18] |
Gordon, L. M., Joester, D., 2011. Nanoscale Chemical Tomography of Buried Organic⁃Inorganic Interfaces in the Chiton Tooth. Nature, 469: 194-197. https://doi.org/10.1038/nature09686 |
| [19] |
Gordon, L. M., Tran, L., Joester, D., 2012a. Atom Probe Tomography of Apatites and Bone⁃Type Mineralized Tissues. ACS Nano, 6(12): 10667-10675. https://doi.org/10.1021/nn3049957 |
| [20] |
Gordon, L., Joester, D., Suram, S., et al., 2012b. Atom Probe Tomography of Organic/Inorganic Interfaces in Biominerals. Microscopy and Microanalysis, 18(S2): 1608-1609. https://doi.org/10.1017/s1431927612009890 |
| [21] |
Grandfield, K., Micheletti, C., Deering, J., et al., 2022. Atom Probe Tomography for Biomaterials and Biomineralization. Acta Biomaterialia, 148: 44-60. https://doi.org/10.1016/j.actbio.2022.06.010 |
| [22] |
Hao, J. Y., Deng, X. M., 2002. Research Progress of Composite Biomaterials. Polymer Bulletin, (5): 1-8 (in Chinese with English abstract). |
| [23] |
Hazen, R. M., Papineau, D., Bleeker, W., et al., 2008. Mineral Evolution. American Mineralogist, 93(11-12): 1693-1720. https://doi.org/10.2138/am.2008.2955 |
| [24] |
Höland, W., Rheinberger, V., Apel, E., et al., 2006. Clinical Applications of Glass⁃Ceramics in Dentistry. Journal of Materials Science: Materials in Medicine, 17(11): 1037-1042. https://doi.org/10.1007/s10856⁃006⁃0441⁃y |
| [25] |
Hu, H. W., Zhang, L. M., He, J. Z., 2013. Application of Nano⁃Scale Secondary Ion Mass Spectrometry to Microbial Ecology Study. Acta Ecologica Sinica, 33(2): 348-357 (in Chinese with English abstract). |
| [26] |
Jacoby, R., Peukert, M., Succurro, A., et al., 2017. The Role of Soil Microorganisms in Plant Mineral Nutrition⁃Current Knowledge and Future Directions. Frontiers in Plant Science, 8: 1617. https://doi.org/10.3389/fpls.2017.01617 |
| [27] |
Javaux, E. J., 2019. Challenges in Evidencing the Earliest Traces of Life. Nature, 572: 451-460. https://doi.org/10.1038/s41586⁃019⁃1436⁃4 |
| [28] |
Jehannin, M., Rao, A., Cölfen, H., 2019. New Horizons of Nonclassical Crystallization. Journal of the American Chemical Society, 141(26): 10120-10136. https://doi.org/10.1021/jacs.9b01883 |
| [29] |
Jeong, J., Kim, J. H., Shim, J. H., et al., 2019. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomaterials Research, 23: 4. https://doi.org/10.1186/s40824⁃018⁃0149⁃3 |
| [30] |
Jiang, Y. W., Carvalho⁃de⁃Souza, J. L., Wong, R. C. S., et al., 2016. Heterogeneous Silicon Mesostructures for Lipid⁃Supported Bioelectric Interfaces. Nature Materials, 15: 1023-1030. https://doi.org/10.1038/nmat4673 |
| [31] |
Jones, J. R., 2013. Review of Bioactive Glass: From Hench to Hybrids. Acta Biomaterialia, 9(1): 4457-4486. https://doi.org/10.1016/j.actbio.2012.08.023 |
| [32] |
Kalita, S. J., Bhardwaj, A., Bhatt, H. A., 2007. Nanocrystalline Calcium Phosphate Ceramics in Biomedical Engineering. Materials Science and Engineering: C, 27(3): 441-449. https://doi.org/10.1016/j.msec.2006.05.018 |
| [33] |
Kim, D. H., Ghaffari, R., Lu, N., et al., 2012. Flexible and Stretchable Electronics for Biointegrated Devices. Annual Review of Biomedical Engineering, 14: 113-128. https://doi.org/10.1146/annurev⁃bioeng⁃071811⁃150018 |
| [34] |
Kolodny, Y., Luz, B., Navon, O., 1983. Oxygen Isotope Variations in Phosphate of Biogenic Apatites, I. Fish Bone Apatite—Rechecking the Rules of the Game. Earth and Planetary Science Letters, 64(3): 398-404. https://doi.org/10.1016/0012⁃821X(83)90100⁃0 |
| [35] |
Konhauser, K. O., Lalonde, S. V., Planavsky, N. J., et al., 2011. Aerobic Bacterial Pyrite Oxidation and Acid Rock Drainage during the Great Oxidation Event. Nature, 478: 369-373. https://doi.org/10.1038/nature10511 |
| [36] |
Kopp, R. E., Kirschvink, J. L., 2008. The Identification and Biogeochemical Interpretation of Fossil Magnetotactic Bacteria. Earth⁃Science Reviews, 86(1-4): 42-61. https://doi.org/10.1016/j.earscirev.2007.08.001 |
| [37] |
La Fontaine, A., Zavgorodniy, A., Liu, H., et al., 2016. Atomic⁃Scale Compositional Mapping Reveals Mg⁃Rich Amorphous Calcium Phosphate in Human Dental Enamel. Science Advances, 2(9): e1601145. https://doi.org/10.1126/sciadv.1601145 |
| [38] |
Langelier, B., Wang, X. Y., Grandfield, K., 2017. Atomic Scale Chemical Tomography of Human Bone. Scientific Reports, 7: 39958. https://doi.org/10.1038/srep39958 |
| [39] |
Lee, B. E. J., Langelier, B., Grandfield, K., 2021. Visualization of Collagen⁃Mineral Arrangement Using Atom Probe Tomography. Advanced Biology, 5(9): 2100657. https://doi.org/10.1002/adbi.202100657 |
| [40] |
LeGeros, R. Z., 2008. Calcium Phosphate⁃Based Osteoinductive Materials. Chemical Reviews, 108(11): 4742-4753. https://doi.org/10.1021/cr800427g |
| [41] |
Liu, J., Sheng, A. X., Liu, F., et al., 2018. Nanominerals and Their Environmental Effects. Earth Science, 43(5): 1450-1463 (in Chinese with English abstract). |
| [42] |
Loo, S. C., Moore, T., Banik, B., et al., 2010. Biomedical Applications of Hydroxyapatite Nanoparticles. Current Pharmaceutical Biotechnology, 11(4): 333-342. https://doi.org/10.2174/138920110791233343 |
| [43] |
Lowenstam, H. A., Weiner, S., 1989. Evolution of Biomineralization. In: Lowenstam, H. A., Weiner, S., eds., On Biomineralization. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780195049770.003.0014 |
| [44] |
Lu, A. H., Du, Y. F., Fang, Q., et al., 2025. Mineral⁃ Enhanced Biological Photosynthesis: New Breakthroughs in Theory and Application. Earth Science Frontiers, 32(1): 466-469 (in Chinese with English abstract). |
| [45] |
Lu, X. C., Li, J., Liu, H., et al., 2019. Microbial Oxidation of Metal Sulfides and Its Consequences. Acta Petrologica Sinica, 35(1): 153-163 (in Chinese with English abstract). |
| [46] |
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068 |
| [47] |
Mann, S., 2001. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, Oxford. |
| [48] |
McCarroll, I. E., Bagot, P. A. J., Devaraj, A., et al., 2020. New Frontiers in Atom Probe Tomography: A Review of Research Enabled by Cryo and/or Vacuum Transfer Systems. Materials Today Advances, 7: 100090. https://doi.org/10.1016/j.mtadv.2020.100090 |
| [49] |
Meldrum, F. C., 2005. Biomineralisation Processes. In: Vadgama, P., ed., Surfaces and Interfaces for Biomaterials. Elsevier, Amsterdam, 666-692. https://doi.org/10.1533/9781845690809.4.666 |
| [50] |
Metoki, N., Baik, S. I., Isheim, D., et al., 2018. Atomically Resolved Calcium Phosphate Coating on a Gold Substrate. Nanoscale, 10(18): 8451-8458. https://doi.org/10.1039/c8nr00372f |
| [51] |
Miller, M. K., Forbes, R. G., 2014. Atom⁃Probe Tomography: The Local Electrode Atom Probe. Springer, New York. |
| [52] |
Miot, J., Benzerara, K., Kappler, A., 2014. Investigating Microbe⁃Mineral Interactions: Recent Advances in X⁃Ray and Electron Microscopy and Redox⁃Sensitive Methods. Annual Review of Earth and Planetary Sciences, 42: 271-289. https://doi.org/10.1146/annurev⁃earth⁃050212⁃124110 |
| [53] |
Mitchell, A. L., Perea, D. E., Wirth, M. G., et al., 2021. Nanoscale Microstructure and Chemistry of Transparent Gahnite Glass⁃Ceramics Revealed by Atom Probe Tomography. Scripta Materialia, 203: 114110. https://doi.org/10.1016/j.scriptamat.2021.114110 |
| [54] |
Moody, M. P., Ceguerra, A. V., Breen, A. J., et al., 2014. Atomically Resolved Tomography to Directly Inform Simulations for Structure⁃Property Relationships. Nature Communications, 5: 5501. https://doi.org/10.1038/ncomms6501 |
| [55] |
Moore, E. K., Jelen, B. I., Giovannelli, D., et al., 2017. Metal Availability and the Expanding Network of Microbial Metabolisms in the Archaean Eon. Nature Geoscience, 10: 629-636. https://doi.org/10.1038/ngeo3006 |
| [56] |
Mosiman, D. S., Chen, Y. S., Yang, L., et al., 2021. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. Small Methods, 5(2): e2000692. https://doi.org/10.1002/smtd.202000692 |
| [57] |
Perea, D. E., Gerstl, S. S. A., Chin, J., et al., 2017. An Environmental Transfer Hub for Multimodal Atom Probe Tomography. Advanced Structural and Chemical Imaging, 3(1): 12. https://doi.org/10.1186/s40679⁃017⁃0045⁃2 |
| [58] |
Pérez⁃Huerta, A., Cappelli, C., Jabalera, Y., et al., 2022. Biogeochemical Fingerprinting of Magnetotactic Bacterial Magnetite. Proceedings of the National Academy of Sciences, 119(31): e2203758119. https://doi.org/10.1073/pnas.2203758119 |
| [59] |
Pérez⁃Huerta, A., Coronado, I., Hegna, T. A., 2018. Understanding Biomineralization in the Fossil Record. Earth⁃Science Reviews, 179: 95-122. https://doi.org/10.1016/j.earscirev.2018.02.015 |
| [60] |
Pérez⁃Huerta, A., Laiginhas, F., 2018. Preliminary Data on the Nanoscale Chemical Characterization of the Inter⁃Crystalline Organic Matrix of a Calcium Carbonate Biomineral. Minerals, 8(6): 223. https://doi.org/10.3390/min8060223 |
| [61] |
Pérez⁃Huerta, A., Suzuki, M., Cappelli, C., et al., 2019. Atom Probe Tomography (APT) Characterization of Organics Occluded in Single Calcite Crystals: Implications for Biomineralization Studies. C, 5(3): 50. https://doi.org/10.3390/c5030050 |
| [62] |
Perry, R. S., McLoughlin, N., Lynne, B. Y., et al., 2007. Defining Biominerals and Organominerals: Direct and Indirect Indicators of Life. Sedimentary Geology, 201(1-2): 157-179. https://doi.org/10.1016/j.sedgeo.2007.05.014 |
| [63] |
Pett⁃Ridge, J., Weber, P. K., 2012. NanoSIP: NanoSIMS Applications for Microbial Biology. In: Navid, A., ed., Microbial Systems Biology: Methods and Protocols, Springer, New York, 375-408. |
| [64] |
Qiu, S., Gervinskas, G., Venugopal, H., et al., 2021. Graphene Encapsulation Enables Vitreous Ice Sample for APT and Near⁃Atomic Reconstruction of Nanoparticle⁃Liquid Interface. Microscopy and Microanalysis, 27(S1): 1270-1271. https://doi.org/10.1017/s1431927621004761 |
| [65] |
Rahaman, M. N., Day, D. E., Sonny Bal, B., et al., 2011. Bioactive Glass in Tissue Engineering. Acta Biomaterialia, 7(6): 2355-2373. https://doi.org/10.1016/j.actbio.2011.03.016 |
| [66] |
Ransom, B., Bennett, R. H., Baerwald, R., et al., 1999. In Situ Conditions and Interactions between Microbes and Minerals in Fine⁃Grained Marine Sediments; A TEM Microfabric Perspective. American Mineralogist, 84(1-2): 183-192. https://doi.org/10.2138/am⁃1999⁃1⁃220 |
| [67] |
Reddy, S. M., Saxey, D. W., Rickard, W. D., et al., 2020. Atom Probe Tomography: Development and Application to the Geosciences. Geostandards and Geoanalytical Research, 44(1): 5-50. https://doi.org/10.1111/ggr.12313 |
| [68] |
Ren, Y. R., Autefage, H., Jones, J. R., et al., 2022. Developing Atom Probe Tomography to Characterize Sr⁃Loaded Bioactive Glass for Bone Scaffolding. Microscopy and Microanalysis, 28(4): 1310-1320. https://doi.org/10.1017/S1431927621012976 |
| [69] |
Suzuki, A., Kawahata, H., 2003. Carbon Budget of Coral Reef Systems: An Overview of Observations in Fringing Reefs, Barrier Reefs and Atolls in the Indo⁃Pacific Regions. Tellus B: Chemical and Physical Meteorology, 55(2): 428-444. https://doi.org/10.3402/tellusb.v55i2.16761 |
| [70] |
Tasciotti, E., Liu, X. W., Bhavane, R., et al., 2008. Mesoporous Silicon Particles as a Multistage Delivery System for Imaging and Therapeutic Applications. Nature Nanotechnology, 3: 151-157. https://doi.org/10.1038/nnano.2008.34 |
| [71] |
Taylor, S. D., Liu, J., Zhang, X., et al., 2019. Visualizing the Iron Atom Exchange Front in the Fe(II)⁃Catalyzed Recrystallization of Goethite by Atom Probe Tomography. Proceedings of the National Academy of Sciences, 116(8): 2866-2874. https://doi.org/10.1073/pnas.1816620116 |
| [72] |
Templeton, A., Knowles, E., 2009. Microbial Transformations of Minerals and Metals: Recent Advances in Geomicrobiology Derived from Synchrotron⁃Based X⁃Ray Spectroscopy and X⁃Ray Microscopy. Annual Review of Earth and Planetary Sciences, 37: 367-391. https://doi.org/10.1146/annurev.earth.36.031207.124346 |
| [73] |
Uebe, R., Schüler, D., 2016. Magnetosome Biogenesis in Magnetotactic Bacteria. Nature Reviews Microbiology, 14: 621-637. https://doi.org/10.1038/nrmicro.2016.99 |
| [74] |
van Aken, P. A., Liebscher, B., 2002. Quantification of Ferrous/Ferric Ratios in Minerals: New Evaluation Schemes of Fe L23 Electron Energy⁃Loss Near⁃Edge Spectra. Physics and Chemistry of Minerals, 29(3): 188-200. https://doi.org/10.1007/s00269⁃001⁃0222⁃6 |
| [75] |
Wang, B., Tang, R. K., 2013. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine. Progress in Chemistry, 25(4): 633-641 (in Chinese with English abstract). |
| [76] |
Wang, C., Chen, X. M., 2007. Progress of Chitosan Composite Biomaterials. Chemical Intermediates, (2): 1-3, 19 (in Chinese with English abstract). |
| [77] |
Weiner, S., Wagner, H. D., 1998. The Material Bone: Structure⁃Mechanical Function Relations. Annual Review of Materials Research, 28: 271-298. https://doi.org/10.1146/annurev.matsci.28.1.271 |
| [78] |
Wittig, N. K., Maja, Ø., Palle, J., et al., 2022. Opportunities for Biomineralization Research Using Multiscale Computed X⁃Ray Tomography as Exemplified by Bone Imaging. Journal of Structural Biology, 214(1): 107822. https://doi.org/10.1016/j.jsb.2021.107822 |
| [79] |
Worden, A. Z., Follows, M. J., Giovannoni, S. J., et al., 2015. Rethinking the Marine Carbon Cycle: Factoring in the Multifarious Lifestyles of Microbes. Science, 347(6223): 1257594. https://doi.org/10.1126/science.1257594 |
| [80] |
Xie, S. C., Yan, J. X., Yang, Y., et al., 2023. Coevolution of Microorganisms and Sedimentary Rocks. Acta Sedimentologica Sinica, 41(6): 1635-1644 (in Chinese with English abstract). |
| [81] |
Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese). |
| [82] |
Xie, S. C., Zhu, Z. M., Zhang, H. B., et al., 2024. Earth Sphere Interaction Reflected in Microbial Fingerprints through Earth’s History—A Critical Review. Earth Science Frontiers, 31(1): 446-454 (in Chinese with English abstract). |
| [83] |
Yang, Z., Gu, H., Sha, G., et al., 2018. TC4/Ag Metal Matrix Nanocomposites Modified by Friction Stir Processing: Surface Characterization, Antibacterial Property, and Cytotoxicity in Vitro. ACS Applied Materials & Interfaces, 10(48): 41155-41166. https://doi.org/10.1021/acsami.8b16343 |
| [84] |
Yuan, P., 2018. Unique Structure and Surface⁃Interface Reactivity of Nanostructured Minerals. Earth Science, 43(5): 1384-1407 (in Chinese with English abstract). |
| [85] |
Zhang, S., Gervinskas, G., Qiu, S., et al., 2022. Methods of Preparing Nanoscale Vitreous Ice Needles for High⁃Resolution Cryogenic Characterization. Nano Letters, 22(16): 6501-6508. https://doi.org/10.1021/acs.nanolett.2c01495 |
| [86] |
Zhou, B. X., Liu, W. Q., 2007. The Application of 3DAP in the Study of Materials Science. Materials Science and Technology, 15(3): 405-408 (in Chinese with English abstract). |
国家自然科学基金项目(41930322)
国家自然科学基金项目(42102031)
/
| 〈 |
|
〉 |