从地球生物学到天体生物学
From Geobiology to Astrobiology
,
我们在宇宙中是否独一无二?地球生命是在何处以及如何起源?这些全人类孜孜以求的重大科学问题正是天体生物学研究的核心问题.伴随着深空探测技术的提高和工程任务的开展,我们比以往任何时候都更有可能回答上述问题.地球是迄今为止唯一确认孕育生命的星球,地球生物学的研究对地外生命的探寻具有重要的指导意义.为了更好地推动天体生物学的发展,本文介绍了地球生物学和天体生物学内涵和简要发展历史.在此基础上,围绕天体生物学所关注的宜居性和生命的形成与演化这两个不同层次的核心科学问题,阐述了天体宜居性所要满足的条件,分析如何判断宜居环境是否孕育了生命.最后提出了地球生物学需要加强的3方面研究,分别为早期地球宜居性演化、极端环境的生命特征和记录,以及生命信号的构建.
Are we alone in the Universe? How and where did life on Earth arise? These are the fundamental questions that we assiduously seek to solve and the core questions of astrobiology. With the significant advances in deep space exploration technology, we are much closer than ever before to answering these questions. Since Earth is the only planet known to has been supporting life with a history spanning over 3.5 billion years, the study of geobiology can effectively promote the development of astrobiology. In order to speed up the development of astrobiology, this paper first introduces the connotations and brief development histories of geobiology and astrobiology and demonstrates the two core scientific issues of astrobiology, namely habitability and the origin and evolution of life. The following session discusses the four components of the habitability of celestial bodies and how to determine whether the habitable environment produces life. The paper proposes three aspects that require further enhancement to connect geobiology and astrobiology: the evolution of early Earth's habitable environment, the features of life in extreme environments, and the identification of biosignature.
宜居性 / 生命信号 / 早期地球 / 极端环境 / 地质微生物 / 天体生物学 / 生态系统.
habitability / biosignature / early Earth / extreme environment / geomicrobiology / astrobiology / ecosystems
| [1] |
2021-2030 Earth Science Development Strategy Research Group, 2021. Development Strategy of Earth Science in 2021-2030: The Past, Present and Future of the Habitable Earth. Science Press, Beijing (in Chinese). |
| [2] |
Allwood, A. C., Rosing, M. T., Flannery, D. T., et al., 2018. Reassessing Evidence of Life in 3 700⁃Million⁃Year⁃Old Rocks of Greenland. Nature, 563: 241-244. https://doi.org/10.1038/s41586⁃018⁃0610⁃4 |
| [3] |
Allwood, A. C., Walter, M. R., Kamber, B. S., et al., 2006. Stromatolite Reef from the Early Archaean Era of Australia. Nature, 441: 714-718. https://doi.org/10.1038/nature04764 |
| [4] |
Altair, T., de Avellar, M. G. B., Rodrigues, F., et al., 2018. Microbial Habitability of Europa Sustained by Radioactive Sources. Scientific Reports, 8: 260. https://doi.org/10.1038/s41598⁃017⁃18470⁃z |
| [5] |
Baas⁃Becking, L. G. M., 1934. Geobiologie of Inleiding tot de Milieukunde. W. P. Van Stockum & Zoon, Den Haag. |
| [6] |
Baqué, M., Verseux, C., Böttger, U., et al., 2016. Preservation of Biomarkers from Cyanobacteria Mixed with MarsLike Regolith under Simulated Martian Atmosphere and UV Flux. Origins of Life and Evolution of Biospheres, 46(2): 289-310. https://doi.org/10.1007/s11084⁃015⁃9467⁃9 |
| [7] |
Bell, E. A., Boehnke, P., Harrison, T. M., et al., 2015. Potentially Biogenic Carbon Preserved in a 4.1 Billion⁃Year⁃Old Zircon. Proceedings of the National Academy of Sciences, 112(47): 14518-14521. https://doi.org/10.1073/pnas.1517557112 |
| [8] |
Biemann, K., Oro, J., Toulmin, P., et al., 1976. Search for Organic and Volatile Inorganic Compounds in Two Surface Samples from the Chryse Planitia Region of Mars. Science, 194(4260): 72-76. https://doi.org/10.1126/science.194.4260.72 |
| [9] |
Bigham, J. M., Nordstrom, D. K., 2000. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters. Reviews in Mineralogy and Geochemistry, 40(1): 351-403. https://doi.org/10.2138/rmg.2000.40.7 |
| [10] |
Blake, R. E., Chang, S. J., Lepland, A., 2010. Phosphate Oxygen Isotopic Evidence for a Temperate and Biologically Active Archaean Ocean. Nature, 464: 1029-1032. https://doi.org/10.1038/nature08952 |
| [11] |
Botta, O., Bada, J. L., 2002. Extraterrestrial Organic Compounds in Meteorites. Surveys in Geophysics, 23: 411-467. |
| [12] |
Bouquet, A., Glein, C. R., Wyrick, D., et al., 2017. Alternative Energy: Production of H2 by Radiolysis of Water in the Rocky Cores of Icy Bodies. The Astrophysical Journal Letters, 840(1): L8. https://doi.org/10.3847/2041⁃8213/aa6d56 |
| [13] |
Braterman, P. S., Cairns⁃Smith, A. G., Sloper, R. W., 1983. Photo⁃Oxidation of Hydrated Fe2+—Significance for Banded Iron Formations. Nature, 303: 163-164. https://doi.org/10.1038/303163a0 |
| [14] |
Bryan, N. C., Christner, B. C., Guzik, T. G., et al., 2019. Abundance and Survival of Microbial Aerosols in the Troposphere and Stratosphere. The ISME Journal, 13(11): 2789-2799. https://doi.org/10.1038/s41396⁃019⁃0474⁃0 |
| [15] |
Catling, D. C., Zahnle, K. J., 2020. The Archean Atmosphere. Science Advances, 6(9): eaax1420. https://doi.org/10.1126/sciadv.aax1420 |
| [16] |
Catling, D. C., Zahnle, K. J., McKay, C., 2001. Biogenic Methane, Hydrogen Escape, and the Irreversible Oxidation of Early Earth. Science, 293(5531): 839-843. https://doi.org/10.1126/science.1061976 |
| [17] |
Cavicchioli, R., 2002. Extremophiles and the Search for Extraterrestrial Life. Astrobiology, 2(3): 281-292. https://doi.org/10.1089/153110702762027862 |
| [18] |
China Academy of Sciences "Deep Underground Biosphere" Project Group, 2020. Deep Underground Biosphere. Science Press, Beijing (in Chinese). |
| [19] |
Chyba, C., Sagan, C., 1992. Endogenous Production, Exogenous Delivery and Impact⁃Shock Synthesis of Organic Molecules: an Inventory for the Origins of Life. Nature, 355: 125-132. https://doi.org/10.1038/355125a0 |
| [20] |
Clarke, A., 2014. The Thermal Limits to Life on Earth. International Journal of Astrobiology, 13(2): 141-154. https://doi.org/10.1017/s1473550413000438 |
| [21] |
Cockell, C. S., 2014. Habitable Worlds with no Signs of Life. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 372(2014): 20130082. https://doi.org/10.1098/rsta.2013.0082 |
| [22] |
Cockell, C. S., Bush, T., Bryce, C., et al., 2016. Habitability: A Review. Astrobiology, 16(1): 89-117. https://doi.org/10.1089/ast.2015.1295 |
| [23] |
Czaja, A. D., Johnson, C. M., Beard, B. L., et al., 2013. Biological Fe Oxidation Controlled Deposition of Banded Iron Formation in the ca. 3 770 Ma Isua Supracrustal Belt (West Greenland). Earth and Planetary Science Letters, 363: 192-203. https://doi.org/10.1016/j.epsl.2012.12.025 |
| [24] |
Des Marais, D. J., Nuth, J. A. III, Allamandola, L. J., et al., 2008. The NASA Astrobiology Roadmap. Astrobiology, 8(4): 715-730. https://doi.org/10.1089/ast.2008.0819 |
| [25] |
Diehl, A., Bach, W., 2020. MARHYS (MARine HYdrothermal Solutions) Database: A Global Compilation of Marine Hydrothermal Vent Fluid, End Member, and Seawater Compositions. Geochemistry, Geophysics, Geosystems, 21(12): e2020GC009385. https://doi.org/10.1029/2020gc009385 |
| [26] |
Dodd, M. S., Papineau, D., Grenne, T., et al., 2017. Evidence for Early Life in Earth’s Oldest Hydrothermal Vent Precipitates. Nature, 543: 60-64. https://doi.org/10.1038/nature21377 |
| [27] |
Elkins⁃Tanton, L. T., 2008. Linked Magma Ocean Solidification and Atmospheric Growth for Earth and Mars. Earth and Planetary Science Letters, 271(1-4): 181-191. https://doi.org/10.1016/j.epsl.2008.03.062 |
| [28] |
Elkins⁃Tanton, L. T., 2012. Magma Oceans in the Inner Solar System. Annual Review of Earth and Planetary Sciences, 40: 113-139. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105503 |
| [29] |
Falkowski, P. G., Fenchel, T., Delong, E. F., 2008. The Microbial Engines that Drive Earth’s Biogeochemical Cycles. Science, 320(5879): 1034-1039. https://doi.org/10.1126/science.1153213 |
| [30] |
Farquhar, J., Bao, H., Thiemens, M., 2000. Atmospheric Influence of Earth’s Earliest Sulfur Cycle. Science, 289(5480): 756-759. https://doi.org/10.1126/science.289.5480.756 |
| [31] |
Fogg, M. J., 1992. An Estimate of the Prevalence of Biocompatible and Habitable Planets. Journal of the British Interplanetary Society, 45(1): 3-12. |
| [32] |
Furnes, H., Banerjee, N. R., Muehlenbachs, K., et al., 2004. Early Life Recorded in Archean Pillow Lavas. Science, 304(5670): 578-581. https://doi.org/10.1126/science.1095858 |
| [33] |
Gillen, C., Jeancolas, C., McMahon, S., et al., 2023. The Call for a New Definition of Biosignature. Astrobiology, 23(11): 1228-1237. https://doi.org/10.1089/ast.2023.0010 |
| [34] |
Grasset, O., Dougherty, M. K., Coustenis, A., et al., 2013. JUpiter ICy Moons Explorer (JUICE): An ESA Mission to Orbit Ganymede and to Characterise the Jupiter System. Planetary and Space Science, 78: 1-21. https://doi.org/10.1016/j.pss.2012.12.002 |
| [35] |
Green, J., Hoehler, T., Neveu, M., et al., 2021. Call for a Framework for Reporting Evidence for Life beyond Earth. Nature, 598: 575-579. https://doi.org/10.1038/s41586⁃021⁃03804⁃9 |
| [36] |
Habicht, K. S., Gade, M., Thamdrup, B., et al., 2002. Calibration of Sulfate Levels in the Archean Ocean. Science, 298(5602): 2372-2374.https://doi.org/10.1126/science.1078265 |
| [37] |
Halevy, I., Bachan, A., 2017. The Geologic History of Seawater pH. Science, 355(6329): 1069-1071. https://doi.org/10.1126/science.aal4151 |
| [38] |
Hassenkam, T., Andersson, M. P., Dalby, K. N., et al., 2017. Elements of Eoarchean Life Trapped in Mineral Inclusions. Nature, 548: 78-81. https://doi.org/10.1038/nature23261 |
| [39] |
Hassler, D. M., Zeitlin, C., Wimmer⁃Schweingruber, R. F., et al., 2014. Mars’ Surface Radiation Environment Measured with the Mars Science Laboratory’s Curiosity Rover. Science, 343(6169): 1244797. https://doi.org/10.1126/science.1244797 |
| [40] |
Hays, L. E., 2015. NASA Astrobiology Strategy. NASA, Houston. |
| [41] |
Hays, L. E., Graham, H. V., Des Marais, D. J., et al., 2017. Biosignature Preservation and Detection in Mars Analog Environments. Astrobiology, 17(4): 363-400. https://doi.org/10.1089/ast.2016.1627 |
| [42] |
He, H. P., Wu, X., Xian, H. Y., et al., 2021. An Abiotic Source of Archean Hydrogen Peroxide and Oxygen that Pre⁃Dates Oxygenic Photosynthesis. Nature Communications, 12: 6611. https://doi.org/10.1038/s41467⁃021⁃26916⁃2 |
| [43] |
Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838 |
| [44] |
Horneck, G., Walter, N., Westall, F., et al., 2016. AstRoMap European Astrobiology Roadmap. Astrobiology, 16(3): 201-243. https://doi.org/10.1089/ast.2015.1441 |
| [45] |
Horowitz, N. H., Cameron, R. E., Hubbard, J. S., 1972. Microbiology of the Dry Valleys of Antarctica. Science, 176(4032): 242-245. https://doi.org/10.1126/science.176.4032.242 |
| [46] |
Hou, Z. Q., Liu, J. Z., Xu, Y. G., et al., 2024. The Search for Life Signatures on Mars by the Tianwen⁃3 Mars Sample Return Mission. National Science Review, 11(11): nwae313. https://doi.org/10.1093/nsr/nwae313 |
| [47] |
House, C. H., 2015. Penciling in Details of the Hadean. Proceedings of the National Academy of Sciences, 112(47): 14410-14411. https://doi.org/10.1073/pnas.1519765112 |
| [48] |
Hren, M. T., Tice, M. M., Chamberlain, C. P., 2009. Oxygen and Hydrogen Isotope Evidence for a Temperate Climate 3.42 Billion Years Ago. Nature, 462: 205-208. https://doi.org/10.1038/nature08518 |
| [49] |
Huang, S. S., 1959. The Problem of Life in the Universe and the Mode of Star Formation. Publications of the Astronomical Society of the Pacific, 71: 421. https://doi.org/10.1086/127417 |
| [50] |
Huang, S. S., 1960. Life⁃Supporting Regions in the Vicinity of Binary Systems. Publications of the Astronomical Society of the Pacific, 72: 106. https://doi.org/10.1086/127489 |
| [51] |
Hubbard, G. S., Naderi, F. M., Garvin, J. B., 2002. Following the Water, the New Program for Mars Exploration. Acta Astronautica, 51(1-9): 337-350. https://doi.org/10.1016/S0094⁃5765(02)00067⁃X |
| [52] |
Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., et al., 2017. Redox Stratification of an Ancient Lake in Gale Crater, Mars. Science, 356(6341): eaah6849. https://doi.org/10.1126/science.aah6849 |
| [53] |
Joyce, G. F., 2002. The Antiquity of RNA⁃Based Evolution. Nature, 418: 214-221. https://doi.org/10.1038/418214a |
| [54] |
Kasting, J. F., Whitmire, D. P., Reynolds, R. T., 1993. Habitable Zones around Main Sequence Stars. Icarus, 101(1): 108-128. https://doi.org/10.1006/icar.1993.1010 |
| [55] |
Kasting, J., Kirschvink, J., 2012. Evolution of a Habitable Planet. In: Impey, C., Lunine, J., Funes, J., eds., Frontiers of Astrobiology. Cambridge University Press, Cambridge, 115-131. https://doi.org/10.1017/cbo9780511902574.010 |
| [56] |
Kelley, D. S., Karson, J. A., Früh⁃Green, G. L., et al., 2005. A Serpentinite⁃Hosted Ecosystem: The Lost City Hydrothermal Field. Science, 307(5714): 1428-1434. https://doi.org/10.1126/science.1102556 |
| [57] |
Kerr, R. A., 2005. Are we Alone in the Universe? Science, 309(5731): 88. https://doi.org/10.1126/science.309.5731.88 |
| [58] |
Knauth, L. P., 2005. Temperature and Salinity History of the Precambrian Ocean: Implications for the Course of Microbial Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1-2): 53-69. https://doi.org/10.1016/j.palaeo.2004.10.014 |
| [59] |
Knauth, L. P., Lowe, D. R., 2003. High Archean Climatic Temperature Inferred from Oxygen Isotope Geochemistry of Cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society of America Bulletin, 115: 566-580. https://doi.org/10.1130/0016⁃7606(2003)1150566: hactif>2.0.co;2 |
| [60] |
Kvenvolden, K., Lawless, J., Pering, K., et al., 1970. Evidence for Extraterrestrial Amino⁃Acids and Hydrocarbons in the Murchison Meteorite. Nature, 228: 923-926. https://doi.org/10.1038/228923a0 |
| [61] |
Lane, N., Martin, W., 2010. The Energetics of Genome Complexity. Nature, 467: 929-934. https://doi.org/10.1038/nature09486 |
| [62] |
Lasne, J., Noblet, A., Szopa, C., et al., 2016. Oxidants at the Surface of Mars: A Review in Light of Recent Exploration Results. Astrobiology, 16(12): 977-996. https://doi.org/10.1089/ast.2016.1502 |
| [63] |
Lederberg, J., 1960. Exobiology: Approaches to Life beyond the Earth. Science, 132(3424): 393-400. https://doi.org/10.1126/science.132.3424.393 |
| [64] |
Lepland, A., Arrhenius, G., Cornell, D., 2002. Apatite in Early Archean Isua Supracrustal Rocks, Southern West Greenland: Its Origin, Association with Graphite and Potential as a Biomarker. Precambrian Research, 118(3-4): 221-241. https://doi.org/10.1016/S0301⁃9268(02)00106⁃7 |
| [65] |
Lepland, A., van Zuilen, M. A., Arrhenius, G., et al., 2005. Questioning the Evidence for Earth’s Earliest Life—Akilia Revisited. Geology, 33(1): 77-79. https://doi.org/10.1130/g20890.1 |
| [66] |
Li, Y. L., 2011. Outline of Astrobiology. Science & Technology Review, 29: 66-74 (in Chinese with English abstract). |
| [67] |
Li, Y. L., Sun, S., 2016. The Origin of Life on Earth. Chinese Science Bulletin, 61(28-29): 3065-3078 (in Chinese). |
| [68] |
Lin, W., Li, Y. L., Wang, G. H., et al., 2020. Overview and Perspectives of Astrobiology. Chinese Science Bulletin, 65(5): 380-391 (in Chinese). |
| [69] |
Lonsdale, P., 1977. Clustering of Suspension⁃Feeding Macrobenthos near Abyssal Hydrothermal Vents at Oceanic Spreading Centers. Deep Sea Research, 24(9): 857-863. https://doi.org/10.1016/0146⁃6291(77)90478⁃7 |
| [70] |
Louca, S., Parfrey, L. W., Doebeli, M., 2016. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science, 353(6305): 1272-1277. https://doi.org/10.1126/science.aaf4507 |
| [71] |
Lovelock, J., 1979. Gaia: A New Look at Life on Earth. Oxford University Press, Oxford. |
| [72] |
Lowe, D. R., Ibarra, D. E., Drabon, N., et al., 2020. Constraints on Surface Temperature 3.4 Billion Years ago Based on Triple Oxygen Isotopes of Cherts from the Barberton Greenstone Belt, South Africa, and the Problem of Sample Selection. American Journal of Science, 320(9): 790-814. https://doi.org/10.2475/11.2020.02 |
| [73] |
Luo, G. M., Liu, D., Yang, H., 2024. Microbes in Mass Extinction: An Accomplice or a Savior? National Science Review, 11(1): nwad291. https://doi.org/10.1093/nsr/nwad291 |
| [74] |
Luo, G. M., Ono, S., Beukes, N. J., et al., 2016. Rapid Oxygenation of Earth’s Atmosphere 2.33 Billion Years ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134 |
| [75] |
Luo, G. M., Zhu, X. K., Wang, S. J., et al., 2022. Mechanisms and Climatic⁃Ecological Effects of the Great Oxidation Event in the Early Proterozoic. Science China Earth Sciences, 65(9): 1646-1672. https://doi.org/10.1007/s11430⁃021⁃9934⁃y |
| [76] |
Lyon, D. Y., Monier, J. M., Dupraz, S., et al., 2010. Integrity and Biological Activity of DNA after UV Exposure. Astrobiology, 10(3): 285-292.https://doi.org/10.1089/ast.2009.0359 |
| [77] |
Martin, H., Moyen, J. F., 2002. Secular Changes in Tonalite⁃Trondhjemite⁃Granodiorite Composition as Markers of the Progressive Cooling of Earth. Geology, 30(4): 319-322. https://doi.org/10.1130/0091⁃7613(2002)0300319: scittg>2.0.co;2 |
| [78] |
Martin, W. F., Bryant, D. A., Beatty, J. T., 2018. A Physiological Perspective on the Origin and Evolution of Photosynthesis. FEMS Microbiology Reviews, 42(2): 205-231. https://doi.org/10.1093/femsre/fux056 |
| [79] |
Martin, W., Russell, M. J., 2007. On the Origin of Biochemistry at an Alkaline Hydrothermal Vent. Philosophical Transactions of the Royal Society B, 362(1486): 1887-1925. https://doi.org/10.1098/rstb.2006.1881 |
| [80] |
Martins, Z., Cottin, H., Kotler, J. M., et al., 2017. Earth as a Tool for Astrobiology—A European Perspective. Space Science Reviews, 209(1): 43-81. https://doi.org/10.1007/s11214⁃017⁃0369⁃1 |
| [81] |
Martins, Z., Pasek, M. A., 2024. Delivery of Organic Matter to the Early Earth. Elements, 20(1): 19-23. https://doi.org/10.2138/gselements.20.1.19 |
| [82] |
McKay, D. S., Gibson, E. K., Thomas⁃Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924 |
| [83] |
McMahon, S., O’Malley⁃James, J., Parnell, J., 2013. Circumstellar Habitable Zones for Deep Terrestrial Biospheres. Planetary and Space Science, 85: 312-318. https://doi.org/10.1016/j.pss.2013.07.002 |
| [84] |
Michalski, J. R., Cuadros, J., Niles, P. B., et al., 2013. Groundwater Activity on Mars and Implications for a Deep Biosphere. Nature Geoscience, 6: 133-138. https://doi.org/10.1038/ngeo1706 |
| [85] |
Miller, S. L., 1953. A Production of Amino Acids under Possible Primitive Earth Conditions. Science, 117(3046): 528-529. https://doi.org/10.1126/science.117.3046.528 |
| [86] |
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., et al., 1996. Evidence for Life on Earth before 3, 800 Million Years ago. Nature, 384(6604): 55-59. https://doi.org/10.1038/384055a0 |
| [87] |
Mustard, J. F., Adler, M., Allwood, A., et al., 2013. Report of the Mars 2020 Science Definition Team.Mars Exploration Program Analysis Group, Houston. |
| [88] |
National Academies of Sciences, Engineering, and Medicine. 2023. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023-2032. The National Academies Press, Washington, D.C.. |
| [89] |
National Natural Science Foundation of China, China Academy of Sciences, 2022. Microbiology in Extreme Geological Environment. Science Press, Beijing (in Chinese). |
| [90] |
Noffke, N., Christian, D., Wacey, D., et al., 2013. Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the Ca. 3.48 Billion⁃Year⁃Old Dresser Formation, Pilbara, Western Australia. Astrobiology, 13(12): 1103-1124. https://doi.org/10.1089/ast.2013.1030 |
| [91] |
Nutman, A. P., Bennett, V. C., Friend, C. R. L., et al., 2016. Rapid Emergence of Life Shown by Discovery of 3 700⁃Million⁃Year⁃Old Microbial Structures. Nature, 537(7621): 535-538. https://doi.org/10.1038/nature19355 |
| [92] |
Nutman, A. P., Mojzsis, S. J., Friend, C. R. L., 1997. Recognition of ≥3 850 Ma Water⁃Lain Sediments in West Greenland and Their Significance for the Early Archaean Earth. Geochimica et Cosmochimica Acta, 61(12): 2475-2484. https://doi.org/10.1016/S0016⁃7037(97)00097⁃5 |
| [93] |
Olson, J. M., 2006. Photosynthesis in the Archean Era. Photosynthesis Research, 88(2): 109-117. https://doi.org/10.1007/s11120⁃006⁃9040⁃5 |
| [94] |
Olson, J. M., Blankenship, R. E., 2004. Thinking about the Evolution of Photosynthesis. Photosynthesis Research, 80(1-3): 373-386. https://doi.org/10.1023/b: pres.0000030457.06495.83 |
| [95] |
Orosei, R., Lauro, S. E., Pettinelli, E., et al., 2018. Radar Evidence of Subglacial Liquid Water on Mars. Science, 361(6401): 490-493. https://doi.org/10.1126/science.aar7268 |
| [96] |
Papineau, D., De Gregorio, B. T., Cody, G. D., et al., 2010. Ancient Graphite in the Eoarchean Quartz⁃Pyroxene Rocks from Akilia in Southern West Greenland I: Petrographic and Spectroscopic Characterization. Geochimica et Cosmochimica Acta, 74(20): 5862-5883. https://doi.org/10.1016/j.gca.2010.05.025 |
| [97] |
Papineau, D., De Gregorio, B. T., Cody, G. D., et al., 2011. Young Poorly Crystalline Graphite in the >3.8⁃Gyr⁃Old Nuvvuagittuq Banded Iron Formation. Nature Geoscience, 4: 376-379. https://doi.org/10.1038/ngeo1155 |
| [98] |
Patel, M. R., Zarnecki, J. C., Catling, D. C., 2002. Ultraviolet Radiation on the Surface of Mars and the Beagle 2 UV Sensor. Planetary and Space Science, 50(9): 915-927. https://doi.org/10.1016/S0032⁃0633(02)00067⁃3 |
| [99] |
Pinti, D. L., 2005. The Origin and Evolution of the Oceans. In: Gargaud, M., Barbier, B., Martin, H., & Reisse, J., eds., Lectures in Astrobiology. Springer, Berlin, 83-112. https://doi.org/10.1007/10913406_4 |
| [100] |
Planavsky, N. J., Asael, D., Hofmann, A., et al., 2014. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7: 283-286. https://doi.org/10.1038/ngeo2122 |
| [101] |
Proskurowski, G., Lilley, M. D., Seewald, J. S., et al., 2008. Abiogenic Hydrocarbon Production at Lost City Hydrothermal Field. Science, 319(5863): 604-607. https://doi.org/10.1126/science.1151194 |
| [102] |
Ramirez, R. M., Craddock, R. A., 2018. The Geological and Climatological Case for a Warmer and Wetter Early Mars. Nature Geoscience, 11: 230-237. https://doi.org/10.1038/s41561⁃018⁃0093⁃9 |
| [103] |
Robbins, L. J., Fakhraee, M., Smith, A. J. B., et al., 2023. Manganese Oxides, Earth Surface Oxygenation, and the Rise of Oxygenic Photosynthesis. Earth⁃Science Reviews, 239: 104368. https://doi.org/10.1016/j.earscirev.2023.104368 |
| [104] |
Robert, F., Chaussidon, M., 2006. A palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443(7114): 969-972. https://doi.org/10.1038/nature05239 |
| [105] |
Rosing, M. T., 1999. 13C⁃Depleted Carbon Microparticles in >3 700 Ma Sea⁃Floor Sedimentary Rocks from West Greenland. Science, 283(5402): 674-676. https://doi.org/10.1126/science.283.5402.674 |
| [106] |
Rosing, M. T., Rose, N. M., Bridgwater, D., et al., 1996. Earliest Part of Earth’s Stratigraphic Record: A Reappraisal of the >3.7 Ga Isua (Greenland) Supracrustal Sequence. Geology, 24(1): 43-46. https://doi.org/10.1130/0091⁃7613(1996)0240043: epoess>2.3.co;2 |
| [107] |
Rubie, D. C., Nimmo, F., Melosh, H. J., 2007. Formation of Earth’s Core. In: Schubert, G., ed., Treatise on Geophysics, 1st Edition, Volume 9: Evolution of the Earth. Elsevier, Amsterdam. |
| [108] |
Rushby, A. J., Claire, M. W., Osborn, H., et al., 2013. Habitable Zone Lifetimes of Exoplanets around Main Sequence Stars. Astrobiology, 13(9): 833-849. https://doi.org/10.1089/ast.2012.0938 |
| [109] |
Russell, M. J., Daniel, R. M., Hall, A. J., et al., 1994. A Hydrothermally Precipitated Catalytic Iron Sulphide Membrane as a First Step Toward Life. Journal of Molecular Evolution, 39(3): 231-243. https://doi.org/10.1007/bf00160147 |
| [110] |
Sánchez⁃Baracaldo, P., Ridgwell, A., Raven, J. A., 2014. A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology, 24(6): 652-657. https://doi.org/10.1016/j.cub.2014.01.041 |
| [111] |
Sasselov, D. D., Grotzinger, J. P., Sutherland, J. D., 2020. The Origin of Life as a Planetary Phenomenon. Science Advances, 6(6): eaax3419. https://doi.org/10.1126/sciadv.aax3419 |
| [112] |
Sauvage, J. F., Flinders, A., Spivack, A. J., et al., 2021. The Contribution of Water Radiolysis to Marine Sedimentary Life. Nature Communications, 12(1): 1297. https://doi.org/10.1038/s41467⁃021⁃21218⁃z |
| [113] |
Schmitt⁃Kopplin, P., Gabelica, Z., Gougeon, R. D., et al., 2010. High Molecular Diversity of Extraterrestrial Organic Matter in Murchison Meteorite Revealed 40 Years after Its Fall. Proceedings of the National Academy of Sciences, 107(7): 2763-2768. https://doi.org/10.1073/pnas.0912157107 |
| [114] |
Schopf, J. W., 1993. Microfossils of the Early Archean Apex Chert: New Evidence of the Antiquity of Life. Science, 260: 640-646. https://doi.org/10.1126/science.260.5108.640 |
| [115] |
Schopf, J. W., 2024. Pioneers of Origin of Life Studies—Darwin, Oparin, Haldane, Miller, Oró—And the Oldest Known Records of Life. Life, 14(10): 1345. https://doi.org/10.3390/life14101345 |
| [116] |
Schopf, J. W., Kudryavtsev, A. B., Osterhout, J. T., et al., 2017. An Anaerobic ∼3 400 Ma Shallow⁃Water Microbial Consortium: Presumptive Evidence of Earth’s Paleoarchean Anoxic Atmosphere. Precambrian Research, 299: 309-318. https://doi.org/10.1016/j.precamres.2017.07.021 |
| [117] |
Shen, J. X., Liu, C. Z., Pan, Y. X., et al., 2024. Follow the Serpentine as a Comprehensive Diagnostic for Extraterrestrial Habitability. Nature Astronomy, 8: 1230-1236. https://doi.org/10.1038/s41550⁃024⁃02373⁃x |
| [118] |
Shen, Y. A., Buick, R., Canfield, D. E., 2001. Isotopic Evidence for Microbial Sulphate Reduction in the Early Archaean Era. Nature, 410: 77-81. https://doi.org/10.1038/35065071 |
| [119] |
Shen, Y. A., Farquhar, J., Masterson, A., et al., 2009. Evaluating the Role of Microbial Sulfate Reduction in the Early Archean Using Quadruple Isotope Systematics. Earth and Planetary Science Letters, 279(3-4): 383-391. https://doi.org/10.1016/j.epsl.2009.01.018 |
| [120] |
Sleep, N. H., Meibom, A., Fridriksson, T., et al., 2004. H2⁃Rich Fluids from Serpentinization: Geochemical and Biotic Implications. Proceedings of the National Academy of Sciences, 101(35): 12818-12823. https://doi.org/10.1073/pnas.0405289101 |
| [121] |
Sleep, N. H., Zahnle, K., 2001. Carbon Dioxide Cycling and Implications for Climate on Ancient Earth. Journal of Geophysical Research: Planets, 106(E1): 1373-1399. https://doi.org/10.1029/2000je001247 |
| [122] |
Smith, D. J., 2013. Microbes in the Upper Atmosphere and Unique Opportunities for Astrobiology Research. Astrobiology, 13(10): 981-990. https://doi.org/10.1089/ast.2013.1074 |
| [123] |
Summons, R. E., Amend, J. P., Bish, D., et al., 2011. Preservation of Martian Organic and Environmental Records: Final Report of the Mars Biosignature Working Group. Astrobiology, 11(2): 157-181. https://doi.org/10.1089/ast.2010.0506 |
| [124] |
Sun, F. N., Luo, G. M., Pancost, R. D., et al., 2024. Methane Fueled Lake Pelagic Food Webs in a Cretaceous Greenhouse World. Proceedings of the National Academy of Sciences, 121(44): e2411413121. https://doi.org/10.1073/pnas.2411413121 |
| [125] |
Tarnas, J. D., Mustard, J. F., Sherwood Lollar, B., et al., 2021. Earth⁃Like Habitable Environments in the Subsurface of Mars. Astrobiology, 21(6): 741-756. https://doi.org/10.1089/ast.2020.2386 |
| [126] |
Tashiro, T., Ishida, A., Hori, M., et al., 2017. Early Trace of Life from 3.95 Ga Sedimentary Rocks in Labrador, Canada. Nature, 549: 516-518. https://doi.org/10.1038/nature24019 |
| [127] |
Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241-265. https://doi.org/10.1029/95rg00262 |
| [128] |
ten Kate, I. L., Garry, J. R. C., Peeters, Z., et al., 2006. The Effects of Martian near Surface Conditions on the Photochemistry of Amino Acids. Planetary and Space Science, 54(3): 296-302. https://doi.org/10.1016/j.pss.2005.12.002 |
| [129] |
Tice, M. M., Lowe, D. R., 2004. Photosynthetic Microbial Mats in the 3 416⁃Myr⁃Old Ocean. Nature, 431(7008): 549-552. https://doi.org/10.1038/nature02888 |
| [130] |
Tucker, J. M., Mukhopadhyay, S., 2014. Evidence for Multiple Magma Ocean Outgassing and Atmospheric Loss Episodes from Mantle Noble Gases. Earth and Planetary Science Letters, 393: 254-265. https://doi.org/10.1016/j.epsl.2014.02.050 |
| [131] |
Tyler, S. A., Barghoorn, E. S., 1954. Occurrence of Structurally Preserved Plants in Pre⁃Cambrian Rocks of the Canadian Shield. Science, 119(3096): 606-608. https://doi.org/10.1126/science.119.3096.606 |
| [132] |
Ueno, Y., Yamada, K., Yoshida, N., et al., 2006. Evidence from Fluid Inclusions for Microbial Methanogenesis in the Early Archaean Era. Nature, 440: 516-519. https://doi.org/10.1038/nature04584 |
| [133] |
Valley, J. W., Cavosie, A. J., Ushikubo, T., et al., 2014. Hadean Age for a Post⁃Magma⁃Ocean Zircon Confirmed by Atom⁃Probe Tomography. Nature Geoscience, 7: 219-223. https://doi.org/10.1038/ngeo2075 |
| [134] |
Valley, J. W., Peck, W. H., King, E. M., et al., 2002. A Cool Early Earth. Geology, 30(4): 351-354. https://doi.org/10.1130/0091⁃7613(2002)0300351: acee>2.0.co;2 |
| [135] |
van Kranendonk, M. J., 2006. Volcanic Degassing, Hydrothermal Circulation and the Flourishing of Early Life on Earth: A Review of the Evidence from C. 3490-3240 Ma Rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth⁃Science Reviews, 74(3-4): 197-240. https://doi.org/10.1016/j.earscirev.2005.09.005 |
| [136] |
van Zuilen, M. A., Lepland, A., Arrhenius, G., 2002. Reassessing the Evidence for the Earliest Traces of Life. Nature, 418: 627-630. https://doi.org/10.1038/nature00934 |
| [137] |
Vernadsky, V. L., 1926. The Biosphere. Translated by Langmuir, D.B., 1998. Copernicus, New York. |
| [138] |
Wang, D. T., Gruen, D. S., Lollar, B. S., et al., 2015. Nonequilibrium clumped Isotope Signals in Microbial Methane. Science, 348 (6233): 428-431.https://doi.org/10.1126/science.aaa4326 |
| [139] |
Ward, P. D., Brownlee, D., Krauss, L., 2000. Rare Earth: Why Complex Life Is Uncommon in the Universe. Copernicus Books, New York. |
| [140] |
Westall, F., 2012. The Early Earth. In: Impey, C., Lunine, J., Funes, J., eds., Frontiers of Astrobiology. Cambridge University Press, Cambridge, 89-114. https://doi.org/10.1017/cbo9780511902574.009 |
| [141] |
Westall, F., Foucher, F., Bost, N., et al., 2015. Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life. Astrobiology, 15(11): 998-1029. https://doi.org/10.1089/ast.2015.1374 |
| [142] |
Westall, F., Xiao, S. H., 2024. Precambrian Earth: Co⁃Evolution of Life and Geodynamics. Precambrian Research, 414: 107589. https://doi.org/10.1016/j.precamres.2024.107589 |
| [143] |
Wirth, R., 2017. Colonization of Black Smokers by Hyperthermophilic Microorganisms. Trends in Microbiology, 25(2): 92-99. https://doi.org/10.1016/j.tim.2016.11.002 |
| [144] |
Xie, S. C., 2023. Geobiology. Higher Education Press, Beijing (in Chinese). |
| [145] |
Xie, S. C., Luo, G. M., 2023. Opportunities and Challenges for the Development of Geobiology. Acta Palaeontologica Sinica, 62(4): 454-462 (in Chinese with English abstract). |
| [146] |
Xie, S. C., Gong, Y. M., Tong, J. N., et al., 2006. Leap from Paleontology to Geobiology. Chinese Science Bulletin, 51(19): 2327-2336 (in Chinese). |
| [147] |
Xie, S. C., Jiao, N. Z., Luo, G. M., et al., 2022b. Evolution of Biotic Carbon Pumps in Earth History: Microbial Roles as a Carbon Sink in Oceans. Chinese Science Bulletin, 67(15): 1715-1726 (in Chinese). |
| [148] |
Xie, S. C., Luo, G. M., Zhu, X. C., et al., 2022a. Geological Agents of Microbes in Deep Sea, Deep Earth, Deep Space and Deep Time: From Climate and Environment Changes to Ecological Crisis. Geological Review, 68(5): 1575-1583 (in Chinese with English abstract). |
| [149] |
Xie, S. C., Yang, H., Luo, G. M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22 (in Chinese). |
| [150] |
Xie, S. C., Yin, H. F., Liu, D., et al., 2018. On Development from Paleontology to Geobiology: Overview of Innovation and Expansion of Application Fields. Earth Science, 43(11): 3823-3826 (in Chinese with English abstract). |
| [151] |
Xiong, J., Fischer, W. M., Inoue, K., et al., 2000. Molecular Evidence for the Early Evolution of Photosynthesis. Science, 289(5485): 1724-1730. https://doi.org/10.1126/science.289.5485.1724 |
| [152] |
Yesiltas, M., Kebukawa, Y., 2024. Extraterrestrial Organic Matter: An Introduction. Elements, 20(1): 7-12. https://doi.org/10.2138/gselements.20.1.7 |
| [153] |
Yin, H. F., 1994. Biogeology. Advances in Earth Science, 9(6): 79-82 (in Chinese). |
| [154] |
Zahnle, K., Arndt, N., Cockell, C., et al., 2007. Emergence of a Habitable Planet. Space Science Reviews, 129(1): 35-78. https://doi.org/10.1007/s11214⁃007⁃9225⁃z |
| [155] |
Zhao, J. N., Shi, Y. T., Zhang, M. J., et al., 2021. Advances in Martian Water⁃Related Landforms. Acta Geologica Sinica, 95(9): 2755-2768 (in Chinese with English abstract). |
| [156] |
Zheng, Y. F., Guo, Z. T., Jiao, N. Z., et al., 2024. A Holistic Perspective on Earth System Science. Science in China (Series D), 54(10): 3065-3090 (in Chinese). |
| [157] |
Zimmer, C., 2005. How and where Did Life on Earth Arise? Science, 309(5731): 89. https://doi.org/10.1126/science.309.5731.89 |
国家自然科学基金项目(42425305)
/
| 〈 |
|
〉 |