湘中白马山复式岩体年代学、Hf同位素、地球化学及岩石成因
刘贤红 , 刘德亮 , 娄元林 , 潘思远 , 肖涛 , 刘小坚 , 张珍力
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 609 -620.
湘中白马山复式岩体年代学、Hf同位素、地球化学及岩石成因
Geochronology, Hf Isotope, Geochemistry and Petrogenesis of the Baimashan Granitic Complex in the Central Hunan Province
,
为深入探讨华南早古生代和早中生代的构造演化、岩浆活动及其资源成矿效应,对湘中地区白马山复式岩体进行了系统的野外调查,并开展了锆石年代学、Hf同位素及地球化学研究. 锆石LA⁃ICP⁃MS U⁃Pb年龄分析结果显示,白马山岩体水车超单元糜棱岩化花岗岩和龙潭-小沙江超单元黑云母花岗闪长岩的加权平均年龄分别为409±2 Ma和211±1 Ma,二者分别为加里东晚期和印支晚期岩浆活动的产物. 加里东期糜棱岩化花岗岩具有高硅、高碱和强过铝质的特征,表现出强烈的负Eu异常,结合其富集的Hf同位素组成[εHf(t)=-13.4~-5.4],可推测其应为古元古代沉积岩的部分熔融产生的S型花岗岩. 印支期黑云母花岗闪长岩则具有低硅、高碱和准铝质的特征,显示出中等强度的负Eu异常,且其εHf(t)值(-10.3~-7.4)较负、模式年龄古老(1.71~1.89 Ga),为古元古代变火成岩与部分变沉积岩重熔形成的I型花岗岩. 白马山复式岩体的加里东期和印支期超单元可能均形成于陆内造山的构造环境中. 加里东期岩体与区域W矿化之间、印支期岩体与区内Au⁃Sb⁃W矿化之间分别具有密切的成因联系,表明这些岩体具有良好的Au⁃Sb⁃W成矿潜力.
In order to thoroughly investigate the tectonic evolution, magmatic activities, and their effects on mineral resource formation during the Early Paleozoic and Early Mesozoic eras in South China, systematic field investigations were conducted in the Baimashan complex located in the central Hunan region. Additionally, zircon geochronological analysis, Hf isotope studies, and geochemical assessments were performed. Zircon LA⁃ICP⁃MS U⁃Pb dating illustrates that the weighted mean ages of the Shuiche mylonitized granite and the Longtan⁃Xiaoshajiang biotite granodiorite within the Baimashan granitic complex are 409±2 Ma and 211±1 Ma, respectively. These ages correspond to the Late Caledonian and Indosinian magmatic events, respectively. The Caledonian mylonitized granite is characterized by high silica, high alkali and strong peraluminosity, accompanied by a pronounced negative Eu anomaly. This, combined with its enriched Hf isotopic composition [εHf(t)=-13.4 to -5.4], indicates that it is likely a S⁃type granite formed through partial melting of Paleoproterozoic sedimentary rocks. In contrast, the Indosinian biotite granodiorite exhibits low⁃silica, high⁃alkalinity and aluminous, displaying a moderate Eu⁃negative anomaly with a relatively negative εHf(t) value (-10.3 to -7.4) and an ancient modal age (1.71 to 1.89 Ga). This granodiorite can be categorised as a Paleoproterozoic meta⁃igneous mixing of partially metasomatised sedimentary rocks remelted to form I type granites. The Caledonian and Indosinian superunits of the Baimashan complex may have been formed in a tectonic environment of intra⁃plate orogeny. There is a strong genetic connection between the Caledonian rocks and the regional W mineralization, as well as between the Indosinian granitic rocks and the Au⁃Sb⁃W mineralization in the area. These rocks exhibit significant potential for Au⁃Sb⁃W mineralization.
Baimashan granitic complex / geochronology / Hf isotopes / geochemistry / Petrogenesis.
| [1] |
Bai,D.Y.,Li,B.,Zhou,C.,et al.,2021. Gold Mineralization Events of the Jiangnan Orogen in Hunan and Their Tectonic Settings. Acta Petrologica en Mineralogica, 40:897-922 (in Chinese with English abstract). |
| [2] |
Chappel,B.W.,White,A.J.R.,1974. Two Contrasting Granite Types. Pacific Geology, 8:173-174. |
| [3] |
Chen,W.F.,Chen,P.R.,Huang,H.Y.,et al.,2007. Chronological and Geochemical Studies of Granite and Enclave in Baimashan Pluton, Hunan, South China. Science in China Series D: Earth Sciences, 50: 1606-1627.https://doi.org/ 10.1007/s11430⁃007⁃0073⁃1 |
| [4] |
Chu,Y.,Lin,W.,Faure,M.,et al.,2012. Phanerozoic Tectonothermal Events of the Xuefengshan Belt, Central South China: Implications from U⁃Pb Age and Lu⁃Hf Determinations of Granites. Lithos, 150: 243-255. https://doi.org/ 10.1016/j.lithos.2012.04.005 |
| [5] |
Fu,X.,Zhang,D.Y.,Jiang,H.,et al.,2020. Genesis of the Xianxia Batholith in the Jiangnan Orogenic Belt and Its Geological Significance. Geotectonica et Metallogenia, 176:543-560 (in Chinese with English abstract). |
| [6] |
Hu,Z.,Li,X.H.,Luo,T.,et al.,2021. Tanz Zircon Megacrysts: a New Zircon Reference Material for the Microbeam Determination of U⁃Pb Ages and Zr⁃O Isotopes. Journal of Analytical Atomic Spectrometry, 36:2715-2734. https://doi.org/10.1039/D1JA00311A |
| [7] |
Huang,D.L.,Wang,X.L.,2019. Reviews of Geochronology, Geochemistry, and Geodynamic Processes of Ordovician⁃Devonian Granitic Rocks in Southeast China. Journal of Asian Earth Sciences, 184: 104001. |
| [8] |
Jiang,S.Y.,Zhao,K.D.,Jiang,H.,et al.,2020. Spatiotemporal Distribution, Geological Characteristics and Metallogenic Mechanism of Tungsten and Tin Deposits in China. Chin. Sci. Bull., 65:3730-3745. |
| [9] |
La Bas,M.J.L.,Maitre,R.W.L.,Streckeisen,A.,et al.,1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali⁃Silica Diagram. Journal of Petrology, 27:745-750. https://doi.org/10.1093/petrology/27.3.745 |
| [10] |
Li,B.,Zhao,K.D.,Zhang,Q.,et al.,2015. Petrogenesis and Geochemical Characteristics of the Zijinshan Granitic Complex from Fujian Province, South China. Acta Petrologica Sinica, 31(3):811-828 (in Chinese with English abstract). |
| [11] |
Li,H.Q.,Wang,D.H.,Chen,F.W.,et al.,2008. Study on Chronology of the Chanziping and Daping Gold Deposit in Xuefeng Mountains, Hunan Province. Acta Geologica Sinica, 82:900-905 (in Chinese with English abstract). |
| [12] |
Li,J.H.,Zhang,Y.Q.,Xu,X.B.,et al.,2014. SHRIMP U⁃Pb Dating of Zircon From the Baimashan Longtan Super⁃unit and Wawutang Granites in Hunan Province and Its Geological Implication. Journal of Jilin University(Earth Science Edition), 44:157-175 (in Chinese with English abstract). |
| [13] |
Li,W.,2019. Nature and Genesis of the Gutaishan and Yuhengtang Au⁃Sb Deposits, Xiangzhong District, China (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). |
| [14] |
Li,W.,Xie,G.Q.,Mao J.W.,et al.,2018. Muscovite 40Ar/39Ar and In Situ Sulfur Isotope Analyses of the Slate⁃Hosted Gutaishan Au⁃Sb Deposit, South China: Implications for Possible Late Triassic Magmatic⁃Hydrothermal Mineralization. Ore Geology Reviews, 101:839-853. https://doi.org/ 10.1016/j.oregeorev.2018.08.006 |
| [15] |
Li,X.H.,Long,W.G.,Li,Q.L.,et al.,2020. Penglai Zircon Megacrysts: a Potential New Working Reference Material for Microbeam Determination of Hf⁃O Isotopes and U⁃Pb Age. Geostandards and Geoanalytical Research, 34: 117-134. |
| [16] |
Li,Z.X.,Li,X.H.,Wartho,J.A.,et al.,2010. Magmatic and Metamorphic Events During the Early Paleozoic Wuyi⁃Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure⁃Temperature Conditions. GSA Bulletin, 122:772-793. https://doi.org/10.1130/B30021.1 |
| [17] |
Liu,J.Q.,Xie,Y.,Zhao,Z.,et al.,2017. The Geochronologic Characteristics of Baimashan Granite in Western Hunan Province and Its Geotectonic Significance. Earth Science Frontiers, 20:25-35 (in Chinese with English abstract). |
| [18] |
Lou,Y.L.,Liu,X.H.,Zeng,H.,et al.,2024. Hydrothermal Apatite U⁃Pb Dating and In⁃Situ S Isotope Constraints on the Genesis of the Xingfengshan Au⁃W Deposit in the Central Hunan Province. Earth Science, 49:1-13 (in Chinese with English abstract). |
| [19] |
Luo,Z.G.,Wang,Y.J.,Zhang,F.F.,et al.,2010. LA⁃ICPMS Zircon U⁃Pb Dating of Jintan and Baimashan Indosinian Granitoids and Its Implications for Diagenesis. Geotectonica et Metallogenia, 134:282-290 (in Chinese). |
| [20] |
Lv,Y.J.,Peng,J.T.,Cai,Y.T.,2021. Geochemical Characteristics, U⁃Pb Dating of HydrothermalTitanite from the Xingfengshan Tungsten Deposit in Hunan Province and Their Geological Significance. Acta Petrologica Sinica, 37:830-846 (in Chinese with English abstract). https://doi.org/10.18654/1000⁃0569/2021.03.12 |
| [21] |
Mao,J.W.,Xie,G.Q.,Guo,C.L.,et al.,2008. Spatial⁃Temporal Distribution of Mesozoic Ore Deposits in South China and Their Metallogenic Settings. Geological Journal of China Universities, 14:510-526 (in Chinese with English abstract). |
| [22] |
Miller,C.F.,McDowell,S.M.,Mapes,R.W.,2023. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31:529-532. https://doi.org/ 10.1130/0091⁃7613(2003)031<0529:hacgio>2.0.co;2 |
| [23] |
Pearce,J.A.,Harris,N.B.,Tindle,A.G.,1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25:956-983. https://doi.org/ 10.1093/petrology/25.4.956 |
| [24] |
Peng,J.T.,Wang,C.,Li,Y.K.,et al.,2021. Geochemical Characteristics and Sm⁃Nd Geochronology of Scheelite in the Baojinshan Ore District, Central Hunan. Acta Petrologica Sinica, 37(3):665-682 (in Chinese with English abstract). https://doi.org/10.18654/1000⁃0569/2021.03.02 |
| [25] |
Shu,L.S.,Wang,B.,Cawood,P.A.,et al.,2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34:1600-1621. https://doi.org/10.1002/2015TC003835 |
| [26] |
Song,M.J.,Shu,L.S.,Santosh,M.,et al.,2015. Late Early Paleozoic and Early Mesozoic Intracontinental Orogeny in the South China Craton: Geochronological and Geochemical Evidence. Lithos, 232:360-374. https://doi.org/ 10.1016/j.lithos.2015.06.019 |
| [27] |
Sun,S.S. and McDonough,W.F.,1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42:313-345. |
| [28] |
Sylvester,P.J.,1998. Post⁃Collisional Strongly Peraluminous Granites. Lithos, 45:29-44. |
| [29] |
Tang,Y.,Wang,Q.,Yang,Y.L.,et al.,2022. Petrogenesis and Geodynamic Implications of the Baimashan Granitic Complex in Central Hunan, South China. Geological Journal, 1-28. https://doi.org/ 10.1002/gj.4568 |
| [30] |
Wang,C.,Peng,J.T.,Xu,J.B.,et al.,2021. Petrogenesis and Metallogenic Effect of the Baimashan Granitic Complex in Central Hunan, South China. Acta Petrologica Sinica, 37:805-829 (in Chinese with English abstract). |
| [31] |
Whalen,J.B.,Currie,K.L.,Chappell,B.W.,1987. A⁃Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95:407-419. https://doi.org/10.1007/BF00402202 |
| [32] |
Wiedenbeck,M.,Alle,P.,Corfu,F.,et al.,1995. Three Natural Zircon Standards for U⁃Th⁃Pb, Lu⁃Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19:1-23. |
| [33] |
Wu,F.Y.,Li,X.H.,Yang,J.W.,et al.,2007. Discussions on the Petrogenesis of Granites. Acta Petrologca Sinica, 23(6):1217-1238 (in Chinese with English abstract). |
| [34] |
Xie,G.Q.,Mao,J.W.,Li,W.,et al.,2019. Granite⁃Related Yangjiashan Tungsten Deposit, Southern China. Mineralium Deposita, 54: 67-80. https://doi.org/10.1007/s00126⁃018⁃0805⁃5 |
| [35] |
Xie,G.Q.,Mao,J.W.,Bagas,L.,et al.,2019. Mineralogy and Titanite Geochronology of the Caojiaba W Deposit, Xiangzhong Metallogenic Province, Southern China: Implications for a Distal Eeduced Skarn W Formation. Mineralium Deposita, 54: 459-472. https://doi.org/ 10.1007/s00126⁃018⁃0816⁃2 |
| [36] |
Xin,Y.J.,Li,J.H.,Ratschbacher,L.,et al.,2020. Early Devonian (415⁃400 Ma) A⁃Type Granitoids and Diabases in the Wuyishan, Eastern Cathaysia: A Signal of Crustal Extension Coeval with the Separation of South China from Gondwana. GSA Bulletin, 132:2295-2317. https://doi.org/10.1130/B35412.1 |
| [37] |
Yao,J.L.,Cawood,P.A.,Shu,L.S.,et al.,2019. Jiangnan Orogen, South China: A ~970–820 Ma Rodinia Margin Accretionary Belt. Earth⁃Science Reviews, 196:102872. https://doi.org/ 10.1016/j.earscirev.2019.05.016 |
| [38] |
Zhang,Y.P.,Zhang,J.,Chen,B.H.,et al.,2015. Geochronology of Baimashan Granitic Composite Batholith of Hunan Province and Its Constraints on the Timing of Regional Deformation. Acta Geologica Sinica, 89:1-17 (in Chinese with English abstract). |
| [39] |
Zhang,Z.Y.,Xie,G.Q.,Mao,J.W.,et al.,2017. Sm⁃Nd Dating and In⁃Situ LA⁃ICP⁃MS Trace Element Analyses of Scheelite from the Longshan Sb⁃Au deposit, Xiangzhong Metallogenic Province, South China. Minerals, 9:87. https://doi.org/ 10.3390/min9020087 |
| [40] |
Zhou,X.M.,Sun,T.,Shen,W.Z.,et al.,2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: a Response to Tectonic Evolution. Episodes, 29:26-33. |
中国地质调查局“湖南怀化-邵阳金矿重点调查区调查评价(DD20230386)
湖北省自然科学基金面上类项目(2021CFB499)
自然资源部新一轮找矿突破战略行动科技支撑项目“湖南雪峰金锑成矿带控矿构造解析与找矿预测”(ZKKJ202408)
/
| 〈 |
|
〉 |