应用矿物基复合材料控制水环境污染:性能、机制与功效

刘子森 ,  李勇 ,  张义 ,  周巧红 ,  田熙科 ,  吴振斌 ,  王焰新

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 1 -18.

PDF (1135KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 1 -18. DOI: 10.3799/dqkx.2024.137

应用矿物基复合材料控制水环境污染:性能、机制与功效

作者信息 +

Application of Mineral⁃Based Composite Materials for Aquatic Environmental Pollution Control: Properties, Mechanisms and Performances

Author information +
文章历史 +
PDF (1162K)

摘要

矿物基复合材料融合了矿物材料的特性和复合材料的优势,因其独特的功效而成为生态环境研究领域的热点,已被广泛应用于水环境质量提升的工程实践中.综述了矿物基复合材料的结构与性能提升方法,包括酸/碱刻蚀、热活化改性、表面改性及金属纳米颗粒负载改性,并探讨了其高效固定/去除水环境中重金属、有机及无机污染物的机制,包括吸附作用、催化反应及其与水体微生物和水生植物等水生生物的联合作用.矿物基复合材料可以通过强化生物生态修复,促进水生植物生长,增强微生物多样性,从而进一步改善水环境质量.总结了矿物基复合材料在水环境治理中的工程应用案例,并强调了未来重点研究方向,评估其在不同水质环境下的效能及长期影响,探索与先进技术的最佳联合应用,优化生产工艺和材料成本.

Abstract

Due to the coupled effects of the properties of minerals and the advantages offered by composite materials, mineral-based composite materials have exhibited unique performances and attracted significant attention in the field of eco-environmental studies with extensive applications in improving water quality. This paper reviews various methods for enhancing the structure and properties of mineral-based composites materials, including acid/alkali etching, thermal activation modification, surface modification, and metal nanoparticle load modification. The mechanisms of these materials in effectively fixing/removing heavy metals, organic and inorganic pollutants in the aquatic environmental pollutants include adsorption, catalytic reactions, and synergistic effects with aquatic organisms such as microorganisms and aquatic plants. Mineral-based composite material plays a vital role in advancing biological ecological restoration, promoting the growth of aquatic plants, and enhancing microbial diversity. And the paper summarizes application cases of mineral-based composite materials in water environment restoration and management, and emphasizes the focus of future research on assessing their performance and long-term effects in different water quality environments, exploring best approaches of their joint application with other advanced techniques, and optimizing their manufacturing processes and material costs.

Graphical abstract

关键词

矿物基复合材料 / 性能提升 / 污染控制机制 / 水环境质量提升 / 工程应用.

Key words

mineral⁃based composite material / performance enhancement / contamination control mechanism / water quality improvement / engineering application

引用本文

引用格式 ▾
刘子森,李勇,张义,周巧红,田熙科,吴振斌,王焰新. 应用矿物基复合材料控制水环境污染:性能、机制与功效[J]. 地球科学, 2025, 50(01): 1-18 DOI:10.3799/dqkx.2024.137

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

随着全球工业化和城市化进程加快,水体污染问题日益严重,成为各国经济社会可持续发展面临的重大挑战.重金属、有机污染物和无机污染物的广泛存在,不仅危害水体生态系统,还对水生生物和人类健康构成威胁.因此,迫切需要开发高效、环保且经济可行的水污染治理材料和工艺.矿物基复合材料是由天然矿物与其他材料结合而成,具有良好的结构稳定性和反应活性(白李琦等, 2022).其性能提升技术包括酸/碱刻蚀、热活化改性、表面改性和金属纳米颗粒负载改性等(Yuan et al., 2012Liu et al., 2017Gao et al., 2022Ahmad et al., 2023).这些材料通过物理吸附、催化反应及与水生生物联合作用等多种机制,有效控制水体污染.矿物基复合材料因其优良的物理和化学特性,逐渐成为提升水环境质量的关键技术之一,在水体污染治理中具有重要的应用前景.本文探讨了矿物基复合材料的结构特性、性能提升技术、对污染物的控制机理及在水环境治理中的应用,旨在为科研和实践提供理论基础和技术支持,以推动水环境治理技术的创新发展.

1 矿物基复合材料的改性与性能提升

矿物材料是天然产出的具有一种或几种可利用的物理化学性能或经过加工后具备这些性能的矿物,包含天然的金属矿物(铝土矿、铁矿、铅锌矿、锰矿、镍矿和铜矿等)、非金属矿物(麦饭石、膨润土,沸石、石英、蒙脱石、累托石、海泡石、硅灰石和电气石等)以及人工合成矿物(人造水晶、人造金刚石和人造宝石)等,具有多样性高、储量大、价格低廉、替代性强、应用领域广等特点.本文主要涉及非金属矿物材料.

随着矿物岩石学与材料科学交叉融合创新发展,矿物基复合材料作为新型复合、融合与杂化材料,既具有矿物所具备的特定功能和属性,又包含复合材料的鲜明特征,以其良好的耐腐蚀性、耐热性、绝缘性、稳定性、耐疲劳性及多功能性受到广泛关注.矿物基复合材料(也有人用“矿物复合材料”一词,内涵一致,以下通用)是指含有一种或多种矿物组分、且以矿物材料为主或重要组分从而具备新性能的多相固体复合材料(张以河, 2013).按照类型和矿物组分的种类与形态,矿物复合材料可分为层状插层矿物复合材料(蒙脱石、高岭石、蛭石、累托石、云母等复合材料)、链状硅酸盐矿物复合材料(凹凸棒石、海泡石、硅灰石等复合材料)、多孔矿物复合材料(硅藻土、沸石和膨胀珍珠岩等复合材料)、石墨矿物复合材料(改性石墨和石墨烯复合材料)、矿物纤维复合材料(玄武岩纤维、岩棉纤维、硅酸铝纤维、水镁石纤维、硅灰石纤维等复合材料)、尾矿复合材料(粉煤灰、煤矸石、微硅粉、矿物聚合物和改性赤泥等复合材料)和其他矿物复合材料(碳酸钙、水镁石、重晶石等复合材料)等(白李琦等, 2022; Liu et al., 2022aZeng et al., 2022Yu et al., 2024).矿物复合材料较之单纯矿物材料具有更优异的性能.如Zhang et al.(2004)在聚酰亚胺基体中加入适量蒙脱土制备层状硅酸盐纳米复合薄膜,大幅度提高室温和超低温度下的矿物复合材料的强度、模量和延展性;Lin et al.(2021)采用静电自组装法将CdS铁电纳米颗粒负载于具有特殊中空纳米管状结构矿物埃洛石表面,埃洛石基矿物复合材料的构建促进CdS铁电体体相和表面光生载流子的分离效率,提高了矿物复合材料光解水产氢性能.矿物复合材料在生态环境、新能源、大健康等领域具有广阔应用前景.随着我国生态文明建设的不断探索,如何进一步增强环境相关的矿物复合材料材料性能,已然成为环境矿物学、材料科学等相关研究领域的热点.

归纳起来,矿物基复合材料的改性方法包括酸/碱刻蚀、热活化、表面改性和金属纳米颗粒负载改性等.

1.1 酸/碱刻蚀

酸/碱活化是提高矿物材料性能的常用改性方法,矿物材料经过适当浓度的酸/碱刻蚀处理后,管壁上的金属元素溶出,矿物材料的管径大小、化学组成及其表面孔隙结构、比表面积、电荷特性等表面理化性质发生改变,形成发达的孔结构,并产生大量活泼的硅羟基断键.Kou et al.(2018)用硫酸活化蛋白石页岩,溶解部分矿石材料空间边缘结构,增加其孔道容积和比表面积,甲苯的吸附穿透时间增加177%,最大饱和吸附容量提高76%.Yang et al.(2010)将凹凸棒石进行酸化处理后再用溴化十六烷基三甲铵进行改性,改善凹凸棒石的孔隙结构,制得孔径3.7 nm,比表面积达1 056 m2/g 的介孔硅材料.Tang et al.(2022)采用原位原子力显微镜观察文石(110)生长表面在琥珀酸时的结构变化,发现琥珀酸分子与文石(110)表面上≡Ca+之间的位点特异性强络合相互作用可以改变蚀刻坑的形态和扩展速率.Gao et al.(2022)通过酸碱复合处理和十二烷基苯磺酸钠对海泡石进行两步改性,改性海泡石的比表面积、平均孔径及孔容显著增大,可交换性离子含量显著增大,土壤培养试验研究显示Cd2+的最大吸附量高达241.39 mg/g.

1.2 热活化改性

矿物材料进行适当的热处理可脱除物理吸附水或结晶水,暴露具有吸附作用的活性中心,增加其内部孔道空间,改变矿物材料的表面性质、晶体结构及层结构,增强阳离子污染物和疏水性有机污染物的吸附性能.Yuan et al.(2012)发现埃洛石结构和形貌会随焙烧温度不同发生相应变化,且性能也随之改变.当焙烧温度低于400 ℃时,埃洛石发生层间/吸附水的脱除,形貌无明显改变;当焙烧温度超过450 ℃时,会发生脱羟基和相偏析,形成无定形的氧化硅和氧化铝;当焙烧温度超过1 000 ℃时,埃洛石管端部闭合、管结构坍塌,形成γ⁃Al2O3;在焙烧温度1 200 ℃时,埃洛石的管状结构被破坏,转变为实心棒状莫来石.Gan et al.(2009)研究热处理对天然凹凸棒石结构及吸附性能的影响,低于500 ℃时,凹凸棒石发生可逆脱结晶水反应;升至700 ℃时,发生不可逆脱水和脱羟基,晶体层间距缩小,磷吸附容量增至42 mg/g;温度达到1 000 ℃时,棒晶结构破坏,孔道塌陷,孔容积和比表面积剧减,吸附容量明显下降.

1.3 表面改性

通过范德华力、氢键或静电吸引等物理改性或化学共价连接将官能团引入矿物材料内表面、层间表面或外表面,调控其物理性质(溶解性、分散性、亲疏水性等)和化学性质(反应性、生物毒性等),增强矿物材料对水体污染物的处理能力.Li et al.(2018)使用十四烷基三甲基溴化铵、十六烷基三甲基溴化铵和十八烷基三甲基溴化铵对天然海泡石进行离子交换改性,基于海泡石层间阳离子的可交换性,改性剂进入海泡石层间,扩大层间距;且随着表面活性剂烷基链长度的增加,海泡石的比表面积、总孔容分别增大2.3和3.7倍,增强海泡石的污染物处理性能.Unuabonah et al.(2017)用3⁃(2⁃氨基乙基氨基)丙基三甲氧基硅烷对高岭土基复合黏土材料进行氨基功能化改性,改性后材料的磷酸盐吸附容量提高了约40倍.

除了有机分子改性外,金属离子同样可以通过调控矿物材料层间距提高污染物处理性能.王迎亚等(2024)采用原位X射线衍射和液相原子力显微镜技术直观观测水合金属离子对天然膨胀蛭石层间及表面分子尺度微观结构的变化,发现阳离子种类是控制蛭石层间距(d002)膨胀/塌缩行为的关键,水合能力弱、离子半径大的阳离子(K+、Rb+、Cs+)可导致蛭石层间存在较少甚至不含水分子,d002值减小至约1.1 nm,层间域高度仅0.14 nm.水合能力强的阳离子(Li+、Na+、Mg2+等)使蛭石d002值增大到1.5 nm,层间域高度升高到0.54 nm.

1.4 金属纳米颗粒负载改性

金属纳米颗粒在污染控制领域面临着两大挑战:一是金属纳米颗粒极易团聚,显著降低其反应活性,影响污染控制效率;二是处理后的固液分离过程复杂且能耗高,可能导致二次污染或处理成本上升.为了解决这些问题,学者们探索了将金属纳米颗粒负载到各种载体材料上的策略,旨在提高其分散稳定性并简化后续处理流程.矿物材料如黏土、硅藻土、沸石、氧化铝及羟基磷灰石等因其天然丰富的来源、良好的环境相容性、多样的结构和表面性质,不仅为金属纳米颗粒提供稳定的支撑、防止其团聚,还能通过其独特的孔隙结构和表面官能团,增强对污染物的吸附或催化能力,成为各类纳米材料的理想载体.例如,黏土矿物因其层状结构和可交换的阳离子,能有效锚定金属纳米颗粒并促进其在环境中的稳定性;沸石则因其高比表面积和可调节的孔径大小,成为负载金属催化剂的理想平台,既能提高催化效率,又便于后续的固液分离.此外,通过化学修饰或功能化处理,可以进一步优化矿物载体与金属纳米颗粒之间的相互作用,提高负载效率和稳定性.Baldermann et al.(2021)将纳米零加价铁(nZVI)颗粒固定在商业膨润土基材上制备nZVI⁃膨润土纳米复合材料,能够从溶液中高效去除三氯乙烯.Ahmad et al.(2023)通过嵌入纳米尺寸膨润土改性枣椰树废料衍生的生物炭制备有机矿物复合材料,通过分批式吸附试验研究材料去除砷酸盐(As(V))的效率,发现As(V)去除效率增强191%.Dedzo et al.(2016)基于离子液体(1⁃(2⁃羟乙基)⁃3⁃甲基咪唑鎓)和管腔内铝羟基的反应,形成稳定的Al⁃O⁃C键,进行Pd粒子的定位负载,在埃洛石管腔内合成粒径3~6 nm Pd颗粒,表现出显著增强的催化活性.纳米颗粒一般难以插层到蒙脱石层间域,而只能负载到外表面和颗粒之间构成的孔道中.为了使改性蒙脱石有更大的反应面积,Ma et al.(2016)将蒙脱石直接剥层处理,再将纳米磷酸银颗粒负载到剥层后的蒙脱石片层上,制备具有良好可见光催化活性的纳米复合材料,增强了催化剂稳定性,实现有机染料的高效降解.

矿物材料改性能够有效改善矿物材料在水体污染治理中的效果,增强污染物治理的广谱性,促进矿物材料走向实际应用.然而,这些改性方法也可能带来负面影响,如纳米零价铁的湿法还原法,具有操作简便、成本效益高等优点,但所使用的还原剂如硼氢化钠等剧毒,对环境和生态系统构成潜在威胁;一些表面活性剂能有效改善材料的分散性和稳定性,但其生物毒性会对水生生物,尤其是简单微生物群落造成严重影响,影响整个生态系统的平衡;部分改性材料的使用会改变水体的理化性质,如pH值、电导率、溶解氧等,会对水生生物的生存和繁衍产生影响,也会影响水体中其他污染物的迁移和转化过程.因此,在对矿物材料改性处理时,应针对性地选择环境友好、生物相容性好的改性方法,避免使用有毒或生物累积性的化学试剂,兼顾其环境效应和生物适应性,以实现可持续发展和生态保护的双赢目标.

2 矿物基复合材料对水环境污染物的控制性能与机制

2.1 吸附作用

矿物复合材料通常具有较大的比表面积、丰富的孔结构及官能团,往往含有可变价金属元素,在水体环境中可以作为污染物的理想吸附剂.物理吸附由范德华力引起,具有吸附速度快、吸附无选择性、多层吸附特点,如多孔结构矿物材料如沸石由于其高比表面积和孔隙率,能够提供大量的吸附位点,有效吸附水体有机污染物和重金属离子.化学吸附是固体表面原子和分子通过电子转移交换或共有形成化学键,将污染物固定在矿物材料表面,具有选择性吸附特点,受到吸附剂表面电荷、比表面积、比表面结构等因素影响,如含氧官能团丰富的矿物材料氧化铁和氧化锰能够通过形成络合物或沉淀物,有效地吸附和去除水中重金属离子.矿物材料处理水体污染物的吸附机制是多方面的,涉及物理吸附、化学吸附、离子交换和表面修饰等多个过程(Liu et al., 2017Zhao et al., 2023).这些机制的共同作用使得矿物材料成为有效的水处理材料.然而,为了进一步提高矿物材料对水体污染物的吸附效率和选择性,需要深入探讨吸附机制的相互作用,以及如何通过材料设计和改性来优化吸附机制.

Wu et al.(2018)合成表面富含羟基官能团的镁磁铁矿纳米片,基于镁原子掺杂导致空位缺陷和局部缺陷,增强As(V)的吸附能力,当As(V)初始浓度为1 mg/L时,吸附平衡后溶解As(V)浓度可降至4.9 μg/L.Miao et al.(2021)以沸石咪唑酯骨架结构材料ZIF⁃67为牺牲模版,制备具有分级多孔结构的中空花球状硼酸根插层CoMgAl⁃LDH,经煅烧后得到相同形貌及结构CoMgAl⁃LDH,具有密度低、比表面积大、孔径分布大、扩散路径短等优点,模拟吸附实验显示对阴离子刚果红和甲基橙具有优异的吸附表现.Mohammadi et al.(2021)用氧化铁和海藻酸盐对煤矸石进行改性,锌和锰的吸附容量分别为115.6、101.8 mg/g,吸附等温线研究表明锌和锰的吸附是通过化学方法完成的,基于反应和扩散的模型进行的动力学研究表明,粒子内扩散模型控制两种离子的吸附过程.本文作者之一田熙科及其团队合成胺功能化有序介孔氧化铝用于甲基蓝吸附,吸附容量高达657.9 mg/g(Tian et al., 2015),合成介孔/多孔MgO纳米材料用于同时去除As(III)和F(Gao et al., 2016),制备介孔氧化铝用于F的去除(Yang et al., 2014),合成聚乙烯亚胺修饰埃洛石用于Cr(V)的高效去除(Tian et al., 2015).

2.2 催化作用

矿物基复合材料催化降解水体污染物涉及多种物理、化学和生物作用,如氧化还原机制:在光照或氧化剂的作用下,矿物复合材料中的活性组分发生氧化还原反应,促使水体中的污染物发生化学变化,如将重金属离子还原为低价态离子,或将有机物氧化为二氧化碳和水等.光催化机制是具有光催化活性的矿物复合材料,如TiO2、Bi2WO6等,在光照条件下产生具有高度反应活性的光生电子和空穴,与水体污染物发生反应,将其降解为无害物质.这些机制共同作用,使得矿物基复合材料在水污染处理领域具有广阔的应用前景(Xia et al., 2023).

Thiand Lee(2017)合成不同La掺杂比例ZnO光催化剂,随着La3+掺杂比例逐渐提高,ZnO禁带宽度随之降低,可见光利用效率得以提高,对扑热息痛进行可见光光催化降解,3 h内去除率达到99%.Liu et al.(2022a)通过水热法合成MoS2/沸石矿物复合材料,3 h后对四环素的降解效率高达87.2%.Eljamal et al.(2022)开发磁性纳米级零价铁/沸石复合材料,反应120 min后对氨氮具有85.7%的去除效率.Duan et al.(2019)合成了核壳结构FeS@Fe0纳米颗粒,这种独特的FeS包覆Fe0颗粒的设计可以避免Fe0被水或溶解氧腐蚀,减轻了Fe0的表面钝化,保存了材料的反应活性;能够通过吸附和还原作用去除水中的U(VI).

由于硫酸根自由基具有氧化还原电位高、反应速率快、可选择性大、半衰期长等特点,基于过氧单硫酸盐(Peroxymonosulfate, PMS)高级氧化技术的矿物复合材料被广泛用于水环境中有机污染物的降解(Li et al., 2023).Sun et al.(2021)通过煅烧法合成FeCo2O4/累托石纳米复合材料,用于活化PMS来降解处理农药阿特拉津(Atrazine, ATZ),累托石的加入使得合成的催化剂获得更高的比表面积、更小的孔径和更多的羟基,能提供足够的活性位点,有利于污染物的吸附与降解.相比纯相FeCo2O4,FeCo2O4/累托石纳米复合材料对ATZ的降解效率提高了1.6倍.Zhang et al.(2019)制备了具有良好稳定性、宽pH范围内可重复使用的Co3O4/δ⁃FeOOH复合材料,通过活化PMS高效降解药物氟喹诺酮类药物洛美沙星,25 min内可达到82%的催化降解率,而单一的Co3O4/PMS和δ⁃FeOOH/PMS体系的降解效率仅为22.3%和57.3%.Wu et al.(2023)水热合成制得MgAlCu水滑石,实现了活化PMS产生•OH自由基路径的调控,进一步强化磺胺甲恶唑降解效能,180 min内的降解效率达到100%.改性矿物材料同样可以用于水环境中污染物的还原处理,Fang et al.(2019)基于半胱氨酸与针铁矿上Fe(II)形成独特的三元配合物而诱导的级联电子转移效应来高效地还原硝基苯,其速率常数为0.72 h-1;还合成零价铜纳米粒子修饰的绿锈,可以显著增强对四溴双酚A的脱溴反应,还原降解效率达到80%,揭示了有机配体与矿物材料缺陷加速电子传递机制,为污染物脱毒转化调控提供了新思路.

2.3 联合水生生物作用

矿物基复合材料与水生生物的联合作用是水生态修复技术中的一个重要研究领域.矿物材料不仅为水生生物提供必要的支撑和营养,还能改善其生长环境.与此同时,水生生物通过其生物代谢过程,进一步增强矿物材料的功能.这种相互促进的关系有助于优化水体生态系统的恢复和稳定(图1).微生物之所以与矿物“难分难舍”,不仅仅因为两者是土壤和沉积物等环境的重要组成部分,更源于它们之间存在复杂的“互利互惠”机制,主要表现在:(1)物理保护:矿物可以为微生物提供“庇护所”,有效抵抗强紫外线、磨蚀和温度波动等物理伤害,这一保护作用尤为重要,尤其在极端环境如沙漠及早期地球的高辐射环境中,促进了微生物的生存与繁衍;(2)化学缓冲:矿物材料可以缓冲强酸和强碱等化学危害,在矿物表面周围营造更适宜的微环境,使得微生物能够在酸性矿坑水等极端环境条件下生存;(3)营养来源:矿物不仅是微生物的“食物”,还可以提供关键营养.微生物可以从矿物的表面或内部获取所需要的关键金属元素(如Fe、Mo、Ni等微生物必须的辅酶因子)和大量营养元素(如K、P等);(4)能量供给:矿物同时可为微生物“充电”,为其代谢过程提供能量.微生物通过氧化还原矿物结构中的变价元素(如Fe)来获取能量.此外,通过像磁铁矿、闪锌矿等半导体矿物,微生物还可实现长距离、跨细胞的电子传递,甚至从半导体矿物中获取光电子进行生长.

水生植物修复是通过植物的光合作用、过滤沉淀、生物吸收及其根际微生物菌群的共同作用,将受污染水体中的氮、磷、重金属及多环芳烃和抗生素等有机污染物高效去除的生态修复技术(Riva et al., 2020).水生植物根际分泌物能为根际微生物提供丰富的碳源,改善根区养分状态(Sturz and Christie, 2003).水生植物根周能够富集多种微生物,植物根系和微生物的协同降解作用能实现水生态系统中有机营养物质的循环(Zhang et al., 2020).矿物材料可以强化植物‒微生物共生体系,有效促进植物对水体中可溶性污染物的吸收及对悬浮物的过滤吸附.

矿物材料与水生植物的结合可以为微生物提供栖息场所,促进微生物群落的形成与多样化,这些微生物在水体净化中发挥了重要作用.矿物材料能提高沉积物的氧化还原电位并能有效减缓水体溶解氧消耗,从而改善沉积物环境的理化性质(Gu et al., 2019Liu et al., 2021).沉积物理化性质的改变塑造了特殊的沉积物微生物群落组成,形成了沉水植物、矿物材料及微生物相互作用的微生态系统,这种多元耦合系统对水生态系统的水质稳定功能表现为水体澄清水草丰茂的“水下森林”景观,并具有较高的系统稳定性(Bai et al., 2022Wang et al., 2023).矿物材料、沉水植物和微生物耦合体系的相互作用关系结果表明,矿物材料能直接通过影响沉积物的理化性质进而促进沉水植物包括株高、生物量和根长的增长;同时能通过影响沉积物理化性质进而影响沉积物中微生物的物种组成及功能微生物丰度,最终促进沉水植物的生长(Liu et al., 2024).

3 水环境治理应用

3.1 矿物基复合材料对不同类型污染物的控制

3.1.1 重金属

重金属污染底泥稳定化技术能够通过加入一种或多种稳定化修复材料,使沉积物中的重金属发生物理化学反应,改变重金属在底泥中的赋存形态,进而降低其溶解性和迁移性,降低重金属污染危害(Bao et al., 2016).稳定化技术具有综合处理效率快、修复成本低及操作简单等优势,逐渐在底泥重金属修复中呈现出较大潜力.

重金属Cd与黏土矿物表面无机阳离子发生离子交换反应所形成的配合物具有良好的稳定性,通过这一方式能够有效降低Cd的环境污染风险(梁学峰等, 2011).此外,通过热改性、酸改性、有机改性和纳米零价铁改性(Otunola and Ololade, 2020)等方法能够提高黏土矿物的比表面积和吸附容量,优化污染修复效果.硅藻土作为优良的吸附剂能够较好地吸附重金属离子,具有成本低廉、无二次污染等优点.硅藻土吸附作用主要表现在两方面.一方面,天然硅藻土表面含有丰富的羟基,在水溶液中易电离出H+使颗粒表面呈负电性(主要通过两种方式:Al3+或Fe3+取代晶格中的Si4+而带负电荷,硅藻土的表面羟基(S⁃OH)基团在水溶液中水解生成S⁃O⁃和H+)(Bourg et al., 2007);另一方面,表面的S⁃OH可与重金属离子进行络合反应,有利于去除重金属.何宏平等(1999)通过吸附试验发现蒙脱石、高岭石、伊利石三种环境矿物材料对Cu2+、Pb2+、Zn2+、Cd2+、Cr3+五种重金属离子具有选择性吸附作用,蒙脱石对Cu2+、Cr3+吸附性较好,高岭石和伊利石对Pb2+、Zn2+、Cd2+具有较强的亲和力.Sofronov et al.(2022)用MnO(OH)改性硅藻土去除水溶液中的铕、钴和锶,对其吸附能力可达95%~98%,并且沉积在硅藻土颗粒表面的MnO(OH)浓度越高,其吸附能力越强.同时有学者还深入研究了吸附剂用量、溶液初始浓度等因素对改性硅藻土吸附重金属的影响(马丽丽等, 2017; 伍敏瞻等, 2021).

3.1.2 有机污染物

应用于水体中有机物吸附的主要有膨润土、凹凸棒土、蒙脱土、沸石等矿物材料,矿物材料可通过化学吸附和物理吸附两种方式降低水体中有机污染物含量.方艳芬等(2014)证明了黄铁矿可高效吸附水体中的富里酸和胡敏酸,最大吸附量分别可达11.8 mg/g和13.1 mg/g.蔡宽等(2014)以黄铁矿作为吸附剂研究了对罗丹明B的吸附特性,吸附平衡时间120 min、pH=4时吸附量达到最大值21.3 mg/g.胡俊松等(2015)研究了天然黄铁矿对草甘膦的吸附性能和机理,结果显示较高的pH、较低的温度和一定的磷酸盐含量对黄铁矿吸附草甘膦具有促进作用.天然吸附材料及其改性材料往往依靠其丰富的孔道结构及比表面积对污染物进行物理吸附,因此通常无法兼顾选择吸附性,存在吸附位点易被其他物质抢占的情况.天然吸附材料的制备及改性条件简单、成本低廉,适合大规模使用,但在低浓度或复杂条件下其对特定污染物的吸附效果常常不够理想;研究人员可以根据污染物种类的不同,对天然吸附材料进行相应的改性处理,进一步加强其吸附效果.一方面可通过与其他功能性材料的复合处理.周龙(2020)研发了一种沸石咪唑酯骨架(ZIFs)与金属纳米颗粒联合的复合材料ZIF⁃8⁃Fe/Pd,这种复合材料可通过静电以及 π⁃π堆积协同作用高效去除水体中的诺氟沙星和2,4⁃二氯苯酚,去除率可高达85.2%.陈桂娟等(2019)对凹凸棒土进行了复合改性,发现改性大幅缩短了凹凸棒土吸附苯酚的时间,并提升了其吸附量.采用溶剂热法制备的可回收型磁性氧化石墨烯‒凹凸棒石复合材料对亚甲基蓝的去除效率达98.64%,利用磁铁进行分离回收,回收率达98.67%(张建民等, 2020).另一方面,可通过化学或物理手段提升材料的表面吸附性能.李婷等(2012)以十八烷基二甲基甜菜碱作为表面活性剂制备了两性膨润土.实验表明,改性后的膨润土对苯酚的吸附能力明显提高,吸附量与离子浓度成正比,与温度、pH成反比.Lemić et al.(2006)利用二甲苯甲基氯化十八烷酰胺作为表面活性剂对沸石进行改性,改性后的沸石对莠去津、林丹、二嗪农的吸附量分别为2.0 μmol/kg、3.4 μmol/kg 和4.4 μmol/kg.薛英文等(2024)研究证明蒙托土中的Al⁃O⁃H基团能与盐酸四环素(Tetracycline Hydrochloride, TCH)分子上的三羰基酰胺基团以及羟基基团形成氢键作用,60 min内即可吸附污水中87%的TCH.经有机改性和表面活性剂改性后,蒙托土与抗生素结合的位点变多,吸附能力有较大提升(Khosravi et al., 2018).李雨禅(2023)以天然矿物材料为载体,将赤铁矿与Bi2WO6进行复合(赤铁矿@Bi2WO6,BW@NH),并利用光催化与PMS活化耦合体系,制备形成的BW/NH/PMS体系可高效去除几种具有代表性的抗生素,其中包括盐酸四环素(91%)、氧氟沙星(94%)、三水阿莫西林(100%)、磺胺甲噁唑(72%)和甲硝唑(89%).以盘状硅藻土为基体,采用水热处理方法使纳米红磷负载至硅藻土表面构建出红磷/硅藻土复合材料被证实可通过h+和•OH活性物种降解四环素等常见的和持久性的有机物污染物(何恒,2023).

3.1.3 无机污染物

大量研究表明膨润土、沸石等非金属矿物材料可联合自身的吸附与离子交换特性吸附固定底泥营养盐,有效改善上覆水营养盐含量,并通过促进沉水植物生长协同改善水质条件(Liu et al., 2021).黄铁矿在好氧环境中可以不断缓慢释放铁离子,铁与磷结合形成铁磷沉淀物,以及生成的各种铁的氧化物和氢氧化物吸附除磷.研究证明天然黄铁矿对磷的吸附效果可达到95%以上(Lemić et al., 2006Zhang et al., 2013).黄铁矿可作为电子供体,在微生物的参与下还原硝酸盐对受污染水体具有良好的脱氮能力(Torrentó et al., 2011Pangand Wang, 2020).单一的矿物材料往往具有一定功能上的局限性,目前较多的研究学者对矿物材料进行一定的物理化学改良或多种材料组合以达到提升吸附性能的目的.Kong et al.(2021)开发了一种改性生物炭‒黄铁矿双层生物系统,对溶解养分处理表现出较高的稳定性和效率,铵盐、总氮和总磷的去除率分别为95.3%~98.1%、41.4%~76.5%和69.7%~88.2%.他们指出生物炭的添加促进了铵吸附、硝化和原位反硝化,还拦截了溶解氧,从而减轻黄铁矿氧化,实现稳定的混合营养反硝化反应.Lian et al.(2013)等采用黄铁矿和煤渣的组合基质吸附去除水中钼酸盐(MoO42-),获得良好的去除效果(16.25 mg/g).

3.2 矿物基复合材料强化生物生态修复技术对水环境污染的治理

生物生态修复技术是指基于生态系统原理,通过特定生物(包括微生物和水生植物)吸收、转化、清除或降解水环境中的污染物,实现水质净化和生态效益的恢复(朴栋海等, 2011).水生植物修复是通过生物体的根茎叶吸收污染物,实现对营养盐的利用及重金属的富集.沉水植物在浅水富营养化湖泊水质提升方面发挥着重要作用,恢复沉水植物不仅可以抑制沉积物再悬浮,改善水体透明度和湖泊底质(刘正文, 2006),还可以增加底栖生物的种类和丰度,提高生物多样性(钟非等, 2007; Bai et al., 2022),从而增强生态系统稳定性.

在生物修复的实际应用中,通常会与物理化学修复等手段相结合,采用矿物基复合材料来强化生物生态修复技术对污染物的控制能力,就是优先选项.将矿物基复合材料覆盖在沉积物表面,一方面形成物理隔层,稳固表层沉积物,抑制因底泥再悬浮而导致的内源营养盐释放;另一方面,矿物基复合材料通过物理化学吸附作用吸附沉积物中的营养盐,同时改变表层沉积物的理化性质,进而改变沉积物中的磷形态,促使弱结合态磷转化为相对稳定的磷形态.此外,矿物基复合材料作为沉水植物的种植载体,能够释放出大量植物和微生物生长所需要的常量和微量元素,促进水生植物生长,提升微生物多样性(Li et al., 2018Liu et al., 2020a,2024),从而强化生物生态修复提升水环境质量.Liu et al.(2020b,2022)研究认为,矿物基复合材料联合沉水植物对沉积物磷的协同去除效果高于单一技术作用之和.该联合技术不仅增大了沉水植物生物量,还增加了沉积物的微生物多样性,改善了底栖无脊椎动物群落结构,显著提升了水环境质量,并加速了湖泊生态系统的恢复与重建.

本文作者之一吴振斌及其团队针对高有机质厌氧底质制约沉水植物定植和扩繁等难题,发明了一种高有机质底泥浅水湖泊的矿物基复合材料作为生态底质改良材料,利用矿物基复合材料改变底部生境氧化还原电位,快速矿化高有机质底泥,促进功能微生物繁殖,进而显著促进沉水植物生长,存活率达80%以上(吴振斌等, 2019).还针对退化生态系统中沉积物有利微生物结构失衡与功能失调等问题,研发了一种可促进沉积物功能微生物生长的生态型基质改良材料(张义等, 2022),增强沉积物中参与碳、氮、磷循环的微生物功能基因丰度3~5倍,有效降低底泥表层(0~10 cm)中有机质、总氮和总磷含量(图2).

矿物基复合材料协同沉水植物修复能够促进沉积物反硝化和碳循环,提高沉积物反硝化菌的脱氮功能,抑制沉积物向大气中释放CH4和CO2(白国梁, 2022).此外,结合化学氧化层材料(如过氧化钙)、矿物基复合材料的物理吸附层和沉水植物的吸收层,可以显著降低沉积物中氮和磷的释放速率(陈曦, 2020).矿物基复合材料通过促进沉水植物的生长发育,并增强其对沉积物中的重金属的积累和转运能力,进而在修复重金属污染底泥方面表现出显著的效果(朱吉颖, 2024).

3.3 工程应用

对水生态系统包括河流、湖泊、水库等水体的原位修复,是通过向沉积物表面添加活性炭、铁盐、钙盐、铝盐以及镧系金属改性矿物材料等具有强效物理化学吸附能力的材料或制剂,依靠物理化学覆盖和生物作用处理,均旨在提高沉积物对营养元素的结合能力,抑制沉积物中内源污染向水体的释放,从而实现沉积物内源污染的控制(白国梁, 2022).

国内外利用矿物基复合材料开展水环境治理的典型工程应用案例如表1所示.

作为一种具有生物活性的硅酸盐矿物材料,麦饭石的多孔海绵状结构致使其具有较强的吸附性能和离子交换能力(李娟等, 2008).胡易坤等(2020)将麦饭石应用于黑臭河流底质的修复工程中,麦饭石的高效吸附能力能明显抑制黑臭河道底质的氮磷营养盐释放.另外沸石由于其具有较高的阳离子交换和物理吸附作用,被应用于湖泊底质的原位覆盖,通过沸石的物理隔断与铵替换的Ca2+离子对磷酸盐的固定作用,控制湖泊底质的氮磷营养盐释放(林建伟等, 2007).杨孟娟等(2014)对沸石进行了铝和锆金属的改性,应用于控制太湖底泥中磷酸盐的释放.研究表明,将锆改性沸石添加到严重污染的底泥中后,通过评估沉积物中各形态磷及生物有效性磷的含量,锆改性沸石不仅能够降低间隙水中的磷浓度,还能抑制沉积物与水体界面之间的磷扩散通量,有效减少了磷向上覆水的释放.硅藻土是一种由硅藻死亡后形成的含有硅质生物特征的沉积岩,具有质轻、比表面积大、孔隙率高及化学稳定性强的特点,常用于水处理、空气净化、土壤改良等环保修复领域(Jang et al., 2006; Xie et al., 2014).硅藻土及其改性材料能作为絮凝剂实现藻水分离,进而有效快速处理蓝藻水华,蓝藻水华去除率接近80%(郑西强等, 2019).在美国科罗拉多州,石灰石被用于中和酸性矿山排水(AMD),从而减少矿山排水对矿山周围生态系统的危害(Skousen and Ziemkiewicz, 1996).瑞典的Finja湖和Vallentuna湖采用硫酸铝对湖泊进行处理,有效促进了沉积物铁磷向铝磷的转化,减少了湖泊沉积物中内源磷的释放从而抑制富营养化(Rydin and Welch, 1998).澳大利亚墨尔本城市雨水生物过滤器选择砂壤土和蛭石作为过滤介质,能有效提高雨水氮磷的去除率(Hatt et al., 2007).新英格兰地区的韦里斯克里克在污水处理中采用天然沸石的吸附特性去除铵态氮(Booker et al., 1996).镧系金属改性膨润土锁磷剂(Phoslock)已在全球200多个湖泊中用于处理富营养化,其中很多湖泊取得了良好的修复效果,具体表现为沉水植物覆盖度和水体透明度的显著增加(Copetti et al., 2016).苏格兰的弗莱明顿湖于2010年3月13日至15日投加了25 t锁磷剂,用于控制沉积物中的可溶解性磷.通过1988年至2011年的沉水植物和水体调查,发现夏季水体中的总磷含量显著降低且水体透明度明显提高,水生植物向湖床深水区扩繁,而沉水植物以伊乐藻属沉水植物为优势种(Gunn et al., 2014).镧改性矿物材料能与沉积物中的磷形成稳定的状态,从而能有效控制富营养化沉积物内源释放.然而,在锁磷剂的实际应用过程中,用于改性的镧系金属元素会从矿物材料中析出进入水体和沉积物,析出的镧系金属会对水生植物的叶绿体、线粒体等细胞器造成损伤,同时可能也会引起水生动物中毒(Feng et al.,2006van Oosterhout and Lürling, 2011).

以天然矿物材料为沉积物基底改良剂,控制内源营养盐释放,同时协同沉水植物对水体和沉积物的生态稳定功能联合修复富营养化浅水湖泊,经工程实践检验,被证实是有效的湖泊治理措施.例如,浙江省杭州西湖属于典型的亚热带城市型浅水湖泊.数十年来,西湖接纳了周边的点源污染以及金沙涧、龙鸿涧、赤山溪和长桥溪等流域的面源污染,在2013年以前处于基本无沉水植物分布、浮游藻类时常爆发、劣IV类水质的状态.自2013年开始,由中国科学院水生生物研究所为技术指导,杭州市西湖水域管理处实施了杭州西湖沉积物底质改良和沉水植物恢复工程,应用黏土矿物材料覆盖湖泊表层沉积物,覆盖厚度10 cm,分别在西湖茅家埠、乌龟潭和浴鹄湾子湖区种植沉水植物10 346 m2、3 220 m2和1 855 m2,成功实现了从藻型浊水稳态到清水草型稳态的转换(吴振斌等, 2023).沉水植物亲源关系鉴定结果显示,目前杭州西湖沉水植物主要来自湖西沉水植物的扩繁和迁移.经过长期尺度(15年)的监测发现,通过矿物材料联合水生生物的生态修复,水体水质从原来的IV类提升到现在的III类,沉水植物能够顺利完成自然更替(Bai et al., 2020,2023Liu et al, 2022c).应用矿物材料联合沉水植物恢复工程实施后,长时间尺度的调查结果显示,联合修复技术增加了沉水植物的生物量和沉积物微生物物种多样性,降低了沉积物总磷和有机质含量(Liu et al., 2022c).浮游生物物种组成在长期尺度上趋于平衡,优势浮游植物蓝藻门和绿藻门逐渐减少,桡足类和枝角类大型浮游动物呈现持续增加的趋势,随后逐渐减少,直到维持稳定状态(Bai et al., 2023).湖北省武汉市东湖于2021年采用矿物材料协同沉水植物联合修复水生态系统工程,经过3年的监测,沉水植物存活率能达到80%以上,水体水质稳定维持在III类至IV类.

3.4 环境效益

矿物基复合材料在提升水环境质量方面展现出显著的环境效益,不仅能够有效改善水质,还有助于保护与恢复生态环境,进而推动可持续发展.

(1)重金属去除与生态保护.矿物材料具备优异的物理吸附、化学沉淀和离子交换能力,能够高效去除水体和沉积物中的重金属污染物,从而减少其对水生生物的毒性,并降低在食物链中的累积,这对保护生态系统的整体健康至关重要(Tian et al., 2015; 梁亚琴等, 2018).通过化学沉淀等方法安全处理重金属固体废弃物,有助于进一步减轻环境负担.

(2)营养盐去除与水质改善.矿物基复合材料的高效吸附特性使其能够去除水体和沉积物中的氮、磷等营养盐.这一过程不仅改善了水质,减少了水华和富营养化现象(Liu et al., 2019; 赵贺芳等, 2023),还提高了水体透明度,促进了沉水植物的生长(Han et al., 2020).此外,可以通过促进微生物淋滤矿物中K、P等效率,来制造矿物肥料.

(3)改善底泥环境与生物栖息.通过改善沉积物的物理化学特性,这些材料能够促进底泥的矿化和通气,抑制厌氧情况下有害物质(如H2S和CH4)的生成,从而为底栖生物提供适宜的生存条件(白国梁, 2022).此外,矿物基复合材料可作为沉水植物的种植载体,通过增加沉积物矿物质含量,提高水分保持能力,促进沉水植物的定植与繁殖(Liu et al., 2022b).研究表明,这些材料能够调节水体的氧化还原电位,促进沉积物中有机物的降解,生成富含养分的底泥,进一步支持沉水植物和底栖动物的生长(Liu et al., 2022c,2024).

(4)微生物与矿物的协同作用.矿物基复合材料能够释放生物生长所需的常量和微量元素,改善底质微生境,促进沉水植物和功能微生物的生长.这种相互作用增强了微生物在水体自净化过程中的作用,从而提升了水体生态的稳定性和多样性(骆凤等, 2020; Liu et al., 2022b).微生物可从矿物材料中提取贵金属、稀土等元素,形成绿色环保高效的技术.矿物‒微生物相互作用直接或间接氧化还原重金属(U、Cr等),并将重金属固定于矿物中,可以达到长效去除重金属污染的效果.矿物‒微生物相互作用可高效降解难降解、高毒性的有机污染物.此外,矿物‒微生物相互作用下形成的一些纳米颗粒在材料、医学、环境、工业等方面都有很好的应用前景,例如微生物形成碳酸盐可以修复建筑材料的裂隙等.

(5)反硝化过程的改善与温室气体抑制.矿物材料有效改善沉积物的反硝化过程,降低氮的释放,同时抑制CH4和CO2等温室气体的产生(白国梁, 2022).这不仅有助于减轻气候变暖的影响,还为水体环境的健康发展提供了重要保障.矿物材料可用于优化堆肥微环境,减少温室气体排放、增加氮素保留和提高堆肥腐殖化程度.矿物材料疏松多孔的结构可加快氧气的扩散和流通,抑制产甲烷菌的活性,削弱反硝化功能基因的丰度,从而减少CH4和N2O释放;矿物材料表面的负电荷有利于吸附NH4+⁃N,并促进其向氨基酸氮和水解未定义氮的转化,进而减少NH3挥发(任秀娜, 2022).

4 结语与展望

矿物基复合材料在水环境治理中展现出广泛的应用潜力,尤其在改善水质和促进生态修复方面.近年来,随着环境污染问题的日益严重,矿物基复合材料因其优异的物理化学性质和环境友好特性受到了广泛关注.本文探讨了这些材料的结构与性能提升技术,以及其在去除重金属、有机和无机污染物等水环境污染物的效应与机制.通过充分利用这些材料的吸附性能、催化反应能力以及与水生生物的联合作用,矿物基复合材料能够强化生物生态修复技术,促进水生植物的生长,增强微生物多样性,有效提升水环境质量,从而增强水生态系统的稳定性.

矿物基复合材料在水环境治理领域具有广泛的应用前景,未来研究应重点围绕以下4个方面推动多学科合作与技术集成,以评估其在不同水质环境下的效能及长期影响,探索与先进技术的联动应用,优化生产工艺和材料成本.

(1)聚焦不同水质环境的应用,特别是在高污染负荷和复杂水质条件下的长期效能与生态影响.

(2)开展系统实验与建立模型,评估不同环境因素对矿物基复合材料性能转化的影响,为其优化应用提供科学依据.

(3)与其他绿色技术的最佳联合应用,包括与先进的水处理技术(如膜分离、光催化等)和生态工程(如人工湿地、水生态恢复)结合,提升水污染治理的效率与可持续性.

(4)提升经济性与可操作性,利用工业废弃物或低成本原材料合成优异性能的矿物基复合材料,降低治理成本,优化生产工艺,助力水环境的健康发展与可持续利用.

参考文献

[1]

Ahmad, J., Al⁃Farraj, A. S., Ahmad, M., et al., 2023. Fabrication of Nano⁃Bentonite⁃Based Organo⁃Minerals Composites of Biochar: Characterization and Application to Remove Arsenate from Contaminated Water. Water, Air, & Soil Pollution, 234(5): 302. https://doi.org/10.1007/s11270⁃023⁃06312⁃w

[2]

Bai, G.L., 2022. Study on Benthic Improvement and Submerged Plant Restoration in Shallow Lakes and Their Microecological Effects (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).

[3]

Bai, G. L., Liu, Y. L., Liu, Z. S., et al., 2023. Effects of Lake Geo⁃Engineering on Plankton in a Typical Shallow Urban Lake: Evidence Based on 10⁃Year Data. ACS ES&T Engineering, 3(1): 105-120. https://doi.org/10.1021/acsestengg.2c00255

[4]

Bai, G. L., Zhang, Y., Yan, P., et al., 2020. Spatial and Seasonal Variation of Water Parameters, Sediment Properties, and Submerged Macrophytes after Ecological Restoration in a Long⁃Term (6 Year) Study in Hangzhou West Lake in China: Submerged Macrophyte Distribution Influenced by Environmental Variables. Water Research, 186: 116379. https://doi.org/10.1016/j.watres.2020.116379

[5]

Bai, L.Q., Zhang, Y.H., Tong, W.S., et al., 2022.Mineral Composite Materials and Their Energy Storage and Energy Catalysis Applications. Chinese Science Bulletin, 67(8): 742-757 (in Chinese).

[6]

Baldermann, A., Kaufhold, S., Dohrmann, R., et al., 2021. A Novel nZVI⁃Bentonite Nanocomposite to Remove Trichloroethene (TCE) from Solution. Chemosphere, 282: 131018. https://doi.org/10.1016/j.chemosphere.2021.131018

[7]

Bao, J. P., Wang, L., Xiao, M., 2016. Changes in Speciation and Leaching Behaviors of Heavy Metals in Dredged Sediment Solidified/Stabilized with Various Materials. Environmental Science and Pollution Research, 23(9): 8294-8301. https://doi.org/10.1007/s11356⁃016⁃6184⁃5

[8]

Booker, N. A., Cooney, E. L., Priestley, A. J., 1996. Ammonia Removal from Sewage Using Natural Australian Zeolite. Water Science and Technology, 34(9): 17-24. https://doi.org/10.1016/S0273⁃1223(96)00782⁃2

[9]

Bourg, I. C., Sposito, G., Bourg, A. C. M., 2007. Modeling the Acid⁃Base Surface Chemistry of Montmorillonite. Journal of Colloid and Interface Science, 312(2): 297-310. https://doi.org/10.1016/j.jcis.2007.03.062

[10]

Cai, K., Xiong, S.W., Zhang, X.X., et al., 2014. Adsorption Characteristics of Cationic Organic Dye RhB on Pyrite.Acta Petrologica et Mineralogica, 33(2): 370-376 (in Chinese with English abstract).

[11]

Chen, G.J., Lin, T., Mei, G.W., et al., 2019.Preparation of Modified Attapulgite and Its Adsorption Property to Particles.Journal of Anhui Vocational & Technical College, 18(3): 19-23 (in Chinese with English abstract).

[12]

Chen, X., 2020. Study on Controlling Black Odor and Nitrogen and Phosphorus Release of Sediment by In Situ Combined Remediation Technology (Dissertation). Harbin Institute of Technology, Harbin (in Chinese with English abstract).

[13]

Copetti, D., Finsterle, K., Marziali, L., et al., 2016. Eutrophication Management in Surface Waters Using Lanthanum Modified Bentonite: A Review. Water Research, 97: 162-174. https://doi.org/10.1016/j.watres.2015.11.056

[14]

Dedzo, G. K., Ngnie, G., Detellier, C., 2016. PdNP Decoration of Halloysite Lumen via Selective Grafting of Ionic Liquid onto the Aluminol Surfaces and Catalytic Application. ACS Applied Materials & Interfaces, 8(7): 4862-4869. https://doi.org/10.1021/acsami.5b10407

[15]

Duan, J., Ji, H. D., Liu, W., et al., 2019. Enhanced Immobilization of U(VI) Using a New Type of FeS⁃Modified Fe0 Core⁃Shell Particles. Chemical Engineering Journal, 359: 1617-1628. https://doi.org/10.1016/j.cej.2018.11.008

[16]

Eljamal, O., Eljamal, R., Maamoun, I., et al., 2022. Efficient Treatment of Ammonia⁃Nitrogen Contaminated Waters by Nano Zero⁃Valent Iron/Zeolite Composite. Chemosphere, 287: 131990. https://doi.org/10.1016/j.chemosphere.2021.131990

[17]

Fang, L. P., Liu, R., Xu, L., et al., 2019. Enhanced Debromination of Tetrabromobisphoenol a by Zero⁃Valent Copper⁃Nanoparticle⁃Modified Green Rusts. Environmental Science: Nano, 6(3): 970-980. https://doi.org/10.1039/c8en01289j

[18]

Fang, Y.F., Li, X.Y., Zhou, W., et al., 2014. Adsorption Characteristics of Humic Acids on Pyrite in Water.Environmental Chemistry, 33(11): 1941-1949 (in Chinese with English abstract).

[19]

Feng, L. X., Xiao, H. Q., He, X., et al., 2006. Long⁃Term Effects of Lanthanum Intake on the Neurobehavioral Development of the Rat. Neurotoxicology and Teratology, 28(1): 119-124. https://doi.org/10.1016/j.ntt.2005.10.007

[20]

Gan, F. Q., Zhou, J. M., Wang, H. Y., et al., 2009. Removal of Phosphate from Aqueous Solution by Thermally Treated Natural Palygorskite. Water Research, 43(11): 2907-2915. https://doi.org/10.1016/j.watres.2009.03.051

[21]

Gao, P. P., Tian, X. K., Yang, C., et al., 2016. Fabrication, Performance and Mechanism of MgO Meso⁃/ Macroporous Nanostructures for Simultaneous Removal of As(III) and F in a Groundwater System. Environmental Science: Nano, 3(6): 1416-1424. https://doi.org/10.1039/c6en00400h

[22]

Gao, G., Xie, S., Zheng, S.A., et al., 2022. Two⁃Step Modification (Sodium Dodecylbenzene Sulfonate Composites Acid⁃Base) of Sepiolite (SDBS/ABsep) and Its Performance for Remediation of Cd Contaminated Water and Soil. Journal of Hazardous Materials, 433: 128760. https://doi.org/10.1016/j.jhazmat.2022.128760

[23]

Gu, B. W., Hong, S. H., Lee, C. G., et al., 2019. The Feasibility of Using Bentonite, Illite, and Zeolite as Capping Materials to Stabilize Nutrients and Interrupt Their Release from Contaminated Lake Sediments. Chemosphere, 219: 217-226. https://doi.org/10.1016/j.chemosphere.2018.12.021

[24]

Gunn, I. D. M., Meis, S., Maberly, S. C., et al., 2014. Assessing the Responses of Aquatic Macrophytes to the Application of a Lanthanum Modified Bentonite Clay, at Loch Flemington, Scotland, UK. Hydrobiologia, 737(1): 309-320. https://doi.org/10.1007/s10750⁃013⁃1765⁃5

[25]

Han, F., Zhang, Y., Liu, Z. S., et al., 2020. Effects of Maifanite on Growth, Physiological and Phytochemical Process of Submerged Macrophytes Vallisneria Spiralis. Ecotoxicology and Environmental Safety, 189: 109941. https://doi.org/10.1016/j.ecoenv.2019.109941

[26]

Hatt, B. E., Fletcher, T. D., Deletic, A., 2007. Hydraulic and Pollutant Removal Performance of Stormwater Filters under Variable Wetting and Drying Regimes. Water Science and Technology, 56(12): 11-19. https://doi.org/10.2166/wst.2007.751

[27]

He, H., 2023. Study on Modification of Diatomite⁃Sodium Ferric Silicate and Its Removal Behavior of Organic Pollutants (Dissertation). Beijing University of Technology, Beijing (in Chinese with English abstract).

[28]

He, H.P., Guo, L. G.,Xie, X.D., et al., 1999. Experimental Studies on the Selective Adsorption of Cu2+, Pb2+, Zn2+, Cd2+, Cr3+ Ions on Montmorillonite, Illite and Kaolinite and the Influence of Medium Conditions. Acta Mineralogica Sinica, 19(2): 231-235 (in Chinese with English abstract).

[29]

Hu, J.S., Li, R.H., Sun, Q.Q., et al., 2015.Adsorption Performance of Natrual Pyrite to Glyphosate.Chinese Journal of Environmental Engineering, 9(11): 5463-5469 (in Chinese with English abstract).

[30]

Hu, Y.K., Liu, C., Wu, L.J., et al., 2020.Selection of Material for Sediment Pollution Control In⁃Situ and Its Pollution Blocking Mechanism.Journal of Anhui Agricultural Sciences, 48(11): 67-70, 76 (in Chinese with English abstract).

[31]

Jang, M., Min, S. H., Kim, T. H., et al., 2006. Removal of Arsenite and Arsenate Using Hydrous Ferric Oxide Incorporated into Naturally Occurring Porous Diatomite. Environmental Science & Technology, 40(5): 1636-1643. https://doi.org/10.1021/es051501t

[32]

Khosravi, R., Zarei, A., Heidari, M., et al., 2018. Application of ZnO and TiO2 Nanoparticles Coated onto Montmorillonite in the Presence of H2O2 for Efficient Removal of Cephalexin from Aqueous Solutions. Korean Journal of Chemical Engineering, 35(4): 1000-1008. https://doi.org/10.1007/s11814⁃018⁃0005⁃0

[33]

Kong, Z., Song, Y. Q., Shao, Z. Y., et al., 2021. Biochar⁃Pyrite Bi⁃Layer Bioretention System for Dissolved Nutrient Treatment and By⁃Product Generation Control under Various Stormwater Conditions. Water Research, 206: 117737. https://doi.org/10.1016/j.watres.2021.117737

[34]

Kou, M. Y., Zuo, W., Li, X.F., et al., 2018. Characterization of Acidified Opal Shale and Dynamic Adsorption of Toluene. Journal of Energy and Natural Resources, 7(1): 40. https://doi.org/10.11648/j.jenr.20180701.16

[35]

Lemić, J., Kovačević, D., Tomašević⁃Čanović, M., et al., 2006. Removal of Atrazine, Lindane and Diazinone from Water by Organo⁃Zeolites. Water Research, 40(5): 1079-1085. https://doi.org/10.1016/j.watres.2006.01.001

[36]

Li, J., Zhang, P.Y., Gao, Y., et al., 2008. Overview of Maifanshi: Its Physi⁃Chemical Properties and Nutritious Function in Drinking Water. Environmental Science & Technology, 31(10): 63-66, 75 (in Chinese with English abstract).

[37]

Li, N., Ye, J. Y., Dai, H. X., et al., 2023. A Critical Review on Correlating Active Sites, Oxidative Species and Degradation Routes with Persulfate⁃Based Antibiotics Oxidation. Water Research, 235: 119926. https://doi.org/10.1016/j.watres.2023.119926

[38]

Li, T., Meng, Z.F., Zhang, B., 2012.Adsorption of Amphoteric Modified Bentonites to Phenol and Its Thermodynamics. Environmental Science, 33(5): 1632-1638 (in Chinese with English abstract).

[39]

Li, Y. F., Wang, M. X., Sun, D. J., et al., 2018. Effective Removal of Emulsified Oil from Oily Wastewater Using Surfactant⁃Modified Sepiolite. Applied Clay Science, 157: 227-236. https://doi.org/10.1016/j.clay.2018.02.014

[40]

Li, Y.C., 2023. Preparation of Mineral Composites and Study on Their Degradation Performance of Organic Pollutants (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract).

[41]

Lian, J. J., Xu, S. G., Zhang, Y. M., et al., 2013. Molybdenum (VI) Removal by Using Constructed Wetlands with Different Filter Media and Plants. Water Science and Technology, 67(8): 1859-1866. https://doi.org/10.2166/wst.2013.067

[42]

Liang, X.F., Xu, Y.M., Wang, L., et al., 2011. In⁃ Situ Immobilization of Cadmium and Lead in a Contaminated Agricultural Field by Adding Natural Clays Combined with Phosphate Fertilizer. Acta Scientiae Circumstantiae, 31(5): 1011-1018 (in Chinese with English abstract).

[43]

Liang, Y.Q., Zhang, S.P., Li, H., et al., 2018.Progress in Development of Modified Montmorillonite for Adsorption of Heavy Metal Ions.Chemical Industry and Engineering Progress, 37(8): 3179-3187 (in Chinese with English abstract).

[44]

Lin, J.W., Zhu, Z.L., Zhao, J.F., et al., 2007.Effect of Inorganic Salt Modification on Zeolite Barriers to Control Phosphorus and Nitrogen Release from Sediments.Journal of Lake Sciences, 19(1): 52-57 (in Chinese with English abstract).

[45]

Lin, S., Li, S. T., Zhang, Y. H., et al., 2021. All⁃in⁃One Polarized Cd/CdS/Halloysite Ferroelectric Hybrid for Exceptional Photocatalytic Hydrogen Evolution. Journal of Materials Chemistry A, 9(33): 17936-17944. https://doi.org/10.1039/d1ta05247k

[46]

Liu, C. Z., Liu, Y. L., Bai, G. L., et al., 2024. Silicate⁃Based Mineral Materials Promote Submerged Plant Growth: Insights from Plant Physiology and Microbiomes. Science of the Total Environment, 952: 175992. https://doi.org/10.1016/j.scitotenv.2024.175992

[47]

Liu, L. B., Lu, S., An, G. Y., et al., 2022. Historical Development of Al30 Highlighting the Unique Characteristics and Application in Water Treatment: A Review. Coordination Chemistry Reviews, 473: 214807. https://doi.org/10.1016/j.ccr.2022.214807

[48]

Liu, J. F., Lin, H., Dong, Y. B., et al., 2022a. MoS2 Nanosheets Loaded on Collapsed Structure Zeolite as a Hydrophilic and Efficient Photocatalyst for Tetracycline Degradation and Synergistic Mechanism. Chemosphere, 287: 132211. https://doi.org/10.1016/j.chemosphere.2021.132211

[49]

Liu, Y. L., Bai, G. L., Zou, Y., et al., 2022b. Combined Remediation Mechanism of Bentonite and Submerged Plants on Lake Sediments by DGT Technique. Chemosphere, 298: 134236. https://doi.org/10.1016/j.chemosphere.2022.134236

[50]

Liu, Z. S., Bai, G. L., Liu, Y. L., et al., 2022c. Long⁃Term Study of Ecological Restoration in a Typical Shallow Urban Lake. Science of the Total Environment, 846: 157505. https://doi.org/10.1016/j.scitotenv.2022.157505

[51]

Liu, Y. L., Han, F., Bai, G. L., et al., 2020a. The Promotion Effects of Silicate Mineral Maifanite on the Growth of Submerged Macrophytes Hydrilla Verticillata. Environmental Pollution, 267: 115380. https://doi.org/10.1016/j.envpol.2020.115380

[52]

Liu, Z. S., Zhang, Y., Yan, P., et al., 2020b. Synergistic Control of Internal Phosphorus Loading from Eutrophic Lake Sediment Using MMF Coupled with Submerged Macrophytes. Science of the Total Environment, 731: 138697. https://doi.org/10.1016/j.scitotenv.2020.138697

[53]

Liu, Y. L., Zou, Y., Kong, L. W., et al., 2021. Effects of Bentonite on the Growth Process of Submerged Macrophytes and Sediment Microenvironment. Journal of Environmental Management, 287: 112308. https://doi.org/10.1016/j.jenvman.2021.112308

[54]

Liu, Z. S., Zhang, Y., Kong, L. W., et al., 2019. Preparation and Preferential Photocatalytic Degradation of Acephate by Using the Composite Photocatalyst Sr/TiO2⁃PCFM. Chemical Engineering Journal, 374: 852-862. https://doi.org/10.1016/j.cej.2019.06.013

[55]

Liu, Z. S., Zhang, Y., Liu, B. Y., et al., 2017. Adsorption Performance of Modified Bentonite Granular (MBG) on Sediment Phosphorus in all Fractions in the West Lake, Hangzhou, China. Ecological Engineering, 106: 124-131. https://doi.org/10.1016/j.ecoleng.2017.05.042

[56]

Liu, Z.W., 2006. Ecosystem Recovery and Water Quality Improvement of Lakes.China Water Resources, (17): 30-33 (in Chinese with English abstract).

[57]

Luo, F., Zhang, Y., Han, F., et al., 2020.The Effect of Silicate Mineral Maifanite on the Growth of Submerged Macrophytes Vallisneria Spiralis.Journal of Lake Sciences, 32(4): 999-1007 (in Chinese with English abstract).

[58]

Ma, J. F., Liu, Q., Zhu, L. F., et al., 2016. Visible Light Photocatalytic Activity Enhancement of Ag3PO4 Dispersed on Exfoliated Bentonite for Degradation of Rhodamine B. Applied Catalysis B: Environmental, 182: 26-32. https://doi.org/10.1016/j.apcatb.2015.09.004

[59]

Ma, L.L., Xie, Q.L., Chen, N.C., et al., 2017. Adsorption of Cd(Ⅱ) from Aqueous Solutions on Mn⁃Oxide Modified Diatomite. Environmental Engineering, 35(6): 59-64 (in Chinese with English abstract).

[60]

Miao, J., Zhao, X. J., Zhang, Y. X., et al., 2021. Preparation of Hollow Hierarchical Porous CoMgAl⁃Borate LDH Ball⁃Flower and Its Calcinated Product with Extraordinary Adsorption Capacity for Congo Red and Methyl Orange. Applied Clay Science, 207: 106093. https://doi.org/10.1016/j.clay.2021.106093

[61]

Mohammadi, R., Azadmehr, A., Maghsoudi, A., 2021. Enhanced Competitive Adsorption of Zinc and Manganese by Alginate⁃Iron Oxide⁃Combusted Coal Gangue Composite: Synthesizing, Characterization and Investigation. Journal of Environmental Chemical Engineering, 9(1): 105003. https://doi.org/10.1016/j.jece.2020.105003

[62]

Otunola, B. O., Ololade, O. O., 2020. A Review on the Application of Clay Minerals as Heavy Metal Adsorbents for Remediation Purposes. Environmental Technology & Innovation, 18: 100692. https://doi.org/10.1016/j.eti.2020.100692

[63]

Pang, Y. M., Wang, J. L., 2020. Insight into the Mechanism of Chemoautotrophic Denitrification Using Pyrite (FeS2) as Electron Donor. Bioresource Technology, 318: 124105. https://doi.org/10.1016/j.biortech.2020.124105

[64]

Piao, D.H., Dai, S.X., Piao, F.S., 2011. Discussion on the Application of Bio⁃Ecological Restoration Technology in Water Environment Management. Science and Technology of West China, 10(23): 18-19 (in Chinese with English abstract).

[65]

Ren, X.N., 2022. Effect of Mineral Materials on Carbon and Nitrogen Transformation in Aerobic Composting of Livestock Manure (Dissertation). Northwest A & F University, Xianyang (in Chinese with English abstract).

[66]

Riva, V., Riva, F., Vergani, L., et al., 2020. Microbial Assisted Phytodepuration for Water Reclamation: Environmental Benefits and Threats. Chemosphere, 241: 124843. https://doi.org/10.1016/j.chemosphere.2019.124843

[67]

Rydin, E., Welch, E. B., 1998. Aluminum Dose Required to Inactivate Phosphate in Lake Sediments. Water Research, 32(10): 2969-2976. https://doi.org/10.1016/S0043⁃1354(98)00055⁃4

[68]

Skousen, J.G., Ziemkiewicz, P.F., 1996. Acid Mine Drainage Control and Treatment, 2nd ed.. National Research Center for Coal and Energy, National Mine Land Reclamation Center, West Virginia University, Morgantown, 362.

[69]

Sofronov, D., Rucki, M., Varchenko, V., et al., 2022. Removal of Europium, Cobalt and Strontium from Water Solutions Using MnO(OH)⁃Modified Diatomite. Journal of Environmental Chemical Engineering, 10(1): 106944. https://doi.org/10.1016/j.jece.2021.106944

[70]

Sturz, A. V., Christie, B. R., 2003. Beneficial Microbial Allelopathies in the Root Zone: The Management of Soil Quality and Plant Disease with Rhizobacteria. Soil and Tillage Research, 72(2): 107-123. https://doi.org/10.1016/S0167⁃1987(03)00082⁃5

[71]

Sun, Z. M., Liu, X. R., Dong, X. B., et al., 2021. Synergistic Activation of Peroxymonosulfate via In Situ Growth FeCo2O4 Nanoparticles on Natural Rectorite: Role of Transition Metal Ions and Hydroxyl Groups. Chemosphere, 263: 127965. https://doi.org/10.1016/j.chemosphere.2020.127965

[72]

Tang, H. M., Wu, X., Yang, Y. P., et al., 2022. Site⁃ Specific Interactions Enhanced Dissolution of Natural Aragonite (110) Surfaces in Succinic Acid (SUC) Solutions: Implications for the Oceanic Aragonite Dissolution Fluxes. Geochimica et Cosmochimica Acta, 319: 135-150. https://doi.org/10.1016/j.gca.2021.11.016

[73]

Thi, V. H. T., Lee, B. K., 2017. Effective Photocatalytic Degradation of Paracetamol Using La⁃Doped ZnO Photocatalyst under Visible Light Irradiation. Materials Research Bulletin, 96: 171-182. https://doi.org/10.1016/j.materresbull.2017.04.028

[74]

Tian, X. K., Wang, W. W., Wang, Y. X., et al., 2015. Polyethylenimine Functionalized Halloysite Nanotubes for Efficient Removal and Fixation of Cr(VI). Microporous and Mesoporous Materials, 207: 46-52. https://doi.org/10.1016/j.micromeso.2014.12.031

[75]

Torrentó, C., Urmeneta, J., Otero, N., et al., 2011. Enhanced Denitrification in Groundwater and Sediments from a Nitrate⁃Contaminated Aquifer after Addition of Pyrite. Chemical Geology, 287(1-2): 90-101. https://doi.org/10.1016/j.chemgeo.2011.06.002

[76]

Unuabonah, E. I., Agunbiade, F. O., Alfred, M. O., et al., 2017. Facile Synthesis of New Amino⁃Functionalized Agrogenic Hybrid Composite Clay Adsorbents for Phosphate Capture and Recovery from Water. Journal of Cleaner Production, 164: 652-663. https://doi.org/10.1016/j.jclepro.2017.06.160

[77]

van Oosterhout, F., Lürling, M., 2011. Effects of the Novel ‘Flock & Lock’ Lake Restoration Technique on Daphnia in Lake Rauwbraken (the Netherlands). Journal of Plankton Research, 33(2): 255-263. https://doi.org/10.1093/plankt/fbq092

[78]

Wang, R., Zhu, J. Y., Li, B. N., et al., 2023. Effects of Attapulgite on the Growth Status of Submerged Macrophytes Vallisneria Spiralis and Sediment Microenvironment. Journal of Environmental Management, 344: 118496. https://doi.org/10.1016/j.jenvman.2023.118496

[79]

Wang, Y.Y., Ran, L.Y., Zhu, J.X., et al., 2024. Effect of Metal Ions on the Interlayer Structure of Vermiculite in Solution. Journal of Mineralogy, 1-12 (in Chinese with English abstract).

[80]

Wu, C., Tu, J. W., Tian, C., et al., 2018. Defective Magnesium Ferrite Nano⁃Platelets for the Adsorption of As(V): The Role of Surface Hydroxyl Groups. Environmental Pollution, 235: 11-19. https://doi.org/10.1016/j.envpol.2017.12.050

[81]

Wu, F., Nie, X. Y., Nie, Y. L., et al., 2023. Layered Double Hydroxide Driven 1O2 Non⁃Radical or •OH Radical Process for the Degradation, Transformation and even Mineralization of Sulfamethoxazole via Efficient Peroxymonosulfate Activation. Separation and Purification Technology, 318: 123969. https://doi.org/10.1016/j.seppur.2023.123969

[82]

Wu, M.Z., Zhang, Z.K., Chen, S.L., et al., 2021.Experimental Study on Screening of Emergency Adsorption Materials for Sudden Water Polluted by Beryllium. Technology of Water Treatment, 47(5): 78-82 (in Chinese with English abstract).

[83]

Wu, Z.B., Zhang, Y., He, F., et al., 2019. A Substrate Modification Material for Shallow Water Lakes with High Organic Matter Sediments, along with Its Preparation Method and Restoration Method. China. ZL201610390321.6. 2019⁃05⁃21 (in Chinese).

[84]

Wu, Z.B., Zhang, Y., Liu, B.Y., et al., 2023. Key Technologies and Engineering Application of Ecological Restoration in Hangzhou West Lake. Science Press, Beijing (in Chinese).

[85]

Xia, C. L., Li, X., Wu, Y. J., et al., 2023. A Review on Pollutants Remediation Competence of Nanocomposites on Contaminated Water. Environmental Research, 222: 115318. https://doi.org/10.1016/j.envres.2023.115318

[86]

Xie, F. Z., Wu, F. C., Liu, G. J., et al., 2014. Removal of Phosphate from Eutrophic Lakes through Adsorption by In Situ Formation of Magnesium Hydroxide from Diatomite. Environmental Science & Technology, 48(1): 582-590. https://doi.org/10.1021/es4037379

[87]

Xue, Y.W., Zhao, M.Y., Hu, Z.Y., 2024. Research on the Removal of Tetracycline Hydrochloride(TCH) by Adsorption on Montmorillonite. China Rural Water and Hydropower, (2): 147-152, 159 (in Chinese with English abstract).

[88]

Yang, C., Gao, L. L., Wang, Y. X., et al., 2014. Fluoride Removal by Ordered and Disordered Mesoporous Aluminas. Microporous and Mesoporous Materials, 197: 156-163. https://doi.org/10.1016/j.micromeso.2014.06.010

[89]

Yang, H. M., Tang, A. D., Ouyang, J., et al., 2010. From Natural Attapulgite to Mesoporous Materials: Methodology, Characterization and Structural Evolution. The Journal of Physical Chemistry B, 114(7): 2390-2398. https://doi.org/10.1021/jp911516b

[90]

Yang, M.J., Lin, J.W., Zhan, Y.H., et al., 2014.Immobilization of Phosphate in Taihu Lake Sediment⁃Water Systems Using Aluminum⁃Modified Zeolites and Zirconium⁃Modified Zeolites as Amendments.Research of Environmental Sciences, 27(11): 1351-1359 (in Chinese with English abstract).

[91]

Yuan, P., Tan, D. Y., Annabi⁃Bergaya, F., et al., 2012. Changes in Structure, Morphology, Porosity, and Surface Activity of Mesoporous Halloysite Nanotubes under Heating. Clays and Clay Minerals, 60(6): 561-573. https://doi.org/10.1346/CCMN.2012.0600602

[92]

Yu, K., Shang, X., Fu, L. J., et al., 2024. Clay Minerals Regulating the Performance of Tribo⁃Composites: A Review. Green and Smart Mining Engineering, 1(2): 220-240. https://doi.org/10.1016/j.gsme.2024.06.002

[93]

Zeng, Z. H., Dong, Y., Yuan, S. H., et al., 2022. Natural Mineral Compounds in Energy⁃Storage Systems: Development, Challenges, Prospects. Energy Storage Materials, 45: 442-464. https://doi.org/10.1016/j.ensm.2021.11.051

[94]

Zhang, H., Luo, X., Li, Q., et al., 2020. Response of the Submerged Macrophytes Vallisneria Natans to Snails at Different Densities. Ecotoxicology and Environmental Safety, 194: 110373. https://doi.org/10.1016/j.ecoenv.2020.110373

[95]

Zhang, H. X., Wang, J. N., Zhang, X. Y., et al., 2019. Enhanced Removal of Lomefloxacin Based on Peroxymonosulfate Activation by Co3O4/δ⁃FeOOH Composite. Chemical Engineering Journal, 369: 834-844. https://doi.org/10.1016/j.cej.2019.03.132

[96]

Zhang, J.M., Zhang, T.H.Z., Li, H.J., et al., 2020. Study on the Adsorption Property of Magnetic GO⁃ATP for Methylene Blue. New Chemical Materials, 48(1): 177-181, 188 (in Chinese with English abstract).

[97]

Zhang, Y., Wu, Z.B., Wang, C., et al., 2022. A Type of Ecological Substrate Material Which Promotes Microbial Film Formation and Growth, along with Its Preparation Method and Applications. China. ZL201910362228.8. 2022⁃03⁃15 (in Chinese).

[98]

Zhang, Y.H., 2013. Mineral Composite Materials. Chemical Industry Press, Beijing (in Chinese).

[99]

Zhang, Y. H., Wu, J. T., Fu, S. Y., et al., 2004. Studies on Characterization and Cryogenic Mechanical Properties of Polyimide⁃Layered Silicate Nanocomposite Films. Polymer, 45(22): 7579-7587. https://doi.org/10.1016/j.polymer.2004.08.032

[100]

Zhao, H.F., Ren, M.J., Wang, Z.J., et al., 2023.Research Progress of Clay Mineral Materials for Nitrate Removal in Water. Journal of Chongqing Technology and Business University (Natural Science Edition), 40(3): 9-19 (in Chinese with English abstract).

[101]

Zhao, T. X., Xu, S., Hao, F., 2023. Differential Adsorption of Clay Minerals: Implications for Organic Matter Enrichment. Earth⁃Science Reviews, 246: 104598. https://doi.org/10.1016/j.earscirev.2023.104598

[102]

Zheng, X.Q., Liu, Q., Kuang, W., 2019. Adsorption Performance of Diotomite to MC⁃LR in Water. Water & Wastewater Engineering, 55(3): 20-25 (in Chinese with English abstract).

[103]

Zhong, F., Liu, B.Y., He, F., et al., 2007.Effect of Aquatic Ecological Restoration on Zoobenthos Community of Lotus Lake. Chinese Journal of Applied & Environmental Biology, 13(1): 55-60 (in Chinese with English abstract).

[104]

Zhou, L., 2020. Preparation, Characterization and Removal of Typical Pollutants of Composite Materials Based on Zeolite Lmidazole Ester Skeleton (Dissertation). Fujian Normal University, Fuzhou (in Chinese with English abstract).

[105]

Zhu, J.Y., 2024. Study on the Efficacy and Mechanism of Modified Diatomite and Submerged Plants in Treating Cadmium⁃Contaminated Sediment (Dissertation).University of Chinese Academy of Sciences,Beijing (in Chinese with English abstract).

基金资助

国家自然科学基金项目(32201384)

国家自然科学基金项目(31830013)

国家自然科学基金项目(U20A2010)

PDF (1135KB)

127

访问

0

被引

详细

导航
相关文章

AI思维导图

/