渤海西部下古生界碳酸盐岩潜山储层成因机理及模式

华晓莉 ,  李慧勇 ,  许鹏 ,  孙哲 ,  夏宇

地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 494 -503.

PDF (7281KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 494 -503. DOI: 10.3799/dqkx.2024.050

渤海西部下古生界碳酸盐岩潜山储层成因机理及模式

作者信息 +

The Differential Genetic Mechanism and Model of the Lower Paleozoic Carbonate Buried Hill Reservoirs in the Western Bohai Sea

Author information +
文章历史 +
PDF (7454K)

摘要

渤海西部下古生界碳酸盐岩潜山钻探证实寻找厚层优质储层是潜山勘探的关键. 根据钻井揭示下古生界储层特征和分布存在较大的差异,反应了储层成因存在本质差别. 基于断裂发育及构造演化分析,首次建立渤海西部剥蚀残丘型和剥蚀断块型两类碳酸盐岩潜山,在明确潜山类型划分的基础上,开展了两大类潜山储层差异成因机制分析. 结果表明,残丘型潜山形成岩溶体储层,在微古地貌控制下的岩溶古水系坡度越大的区带,岩溶体储层发育程度越大,形成枝蔓式储层发育模式;断块型潜山形成缝溶体储层,在多期构造应力叠加区,有效裂缝更为发育,储层厚度更大,形成裂隙式储层发育模式. 明确渤海西部不同潜山类型碳酸盐岩储层差异成因及模式,对下一步碳酸盐岩区油气勘探具有一定的指导意义.

Abstract

Drilling of carbonate buried hills in the Lower Paleozoic in the western Bohai Sea has confirmed that finding thick and high-quality reservoirs is the key to buried hill exploration. According to drilling, there are great differences in the characteristics and distribution of the Lower Paleozoic reservoirs, which reflects the essential differences in the genesis of the reservoirs. Based on the analysis of fault development and tectonic evolution, two types of carbonate buried hills in the western Bohai Sea, denudation residual hill type and denudation fault block type, are established for the first time in this paper. The results show that the residual hill type buried hills form karst reservoirs. The more developed the karst paleo-water system is under the control of micro-paleomorphology, the greater the degree of development of karst reservoirs, and the development pattern of dendritic reservoirs is formed;Fault-block buried hills form fracture-melt reservoirs. In the multi-phase tectonic stress superposition area, effective fractures are more developed and the reservoir thickness is larger, forming a fractured reservoir development model. Identifying the different genesis and patterns of carbonate reservoirs of different buried hill types in the western Bohai Sea has certain guiding significance for the next step of hydrocarbon exploration in carbonate rock areas.

Graphical abstract

关键词

渤海西部 / 碳酸盐岩潜山 / 差异成因 / 古水系 / 构造应力 / 石油地质.

Key words

western Bohai Sea / carbonate buried hill / differential genesis / paleowater system / tectonic stress / petroleum geology

引用本文

引用格式 ▾
华晓莉,李慧勇,许鹏,孙哲,夏宇. 渤海西部下古生界碳酸盐岩潜山储层成因机理及模式[J]. 地球科学, 2025, 50(02): 494-503 DOI:10.3799/dqkx.2024.050

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

碳酸盐岩油气储量在世界油气总储量中占有非常重要的地位,目前全球有近50%的石油和25%的天然气储量分布于碳酸盐岩储集体中(Zenger et al.,1980;王建波等,2008;陈红汉等,2016;马新华等,2019;乔占峰等,2023). 储集层发育程度已逐渐成为制约油气勘探的关键,尤其是海相碳酸盐岩区油气勘探(Lamberta et al.,2006;汪泽成等,2013;昝念民等,2018;李文奇等,2023),与沉积间断或者不整合面相关的古岩溶地层更是油气的重要储集层(郭彤楼等,2003;李启桂等,2013). 通过对塔里木盆地、四川盆地和鄂尔多斯盆地等地区大量调研,前人总结了岩相、断裂、岩溶、白云石化等对储集层的控制作用(吉云刚等,2012;刘丽红等,2017;华晓莉等,2018;何治亮等,2019;姚婷婷等,2020;刘志波等,2021);但是西部和东部古生界碳酸盐岩储层主要控制因素却存在差异,西部塔河主要受断裂-岩溶控制(王珍等,2022),东部鄂尔多斯盆地和四川盆地则主要受岩相-地貌控制(冯仁蔚等,2014;刘大卫等,2020),因此不同地区碳酸盐岩储层形成机制及主控因素存在较大的差异.

目前渤海钻遇下古生界的井仅占5%,但是打的潜山类型多样,储层分布复杂. 近两年渤海评价的曹妃甸2⁃2油田、渤中21⁃22构造,钻井揭示下古生界储层特征存在较大的差异,说明不同潜山储层主控因素是截然不同的,但是现阶段对于渤海所有的碳酸盐岩潜山储层,我们笼统的认为都受到“岩性-构造-地貌”三因素共同控制,因此储层研究预测往往直接聚焦在这3个因素上面,却忽视了从潜山类型根本上出发,突出下古生界主要控储因素. 本文旨在通过岩心薄片、测井资料并结合地球物理手段,在精细划分潜山类型的基础上,研究不同潜山储层形成机制,并建立储层发育模式,这对碳酸盐岩区储层研究及下一步勘探部署目标优选具有一定的借鉴和参考意义.

1 地质概况及勘探现状

渤海西部海域是渤海油田最早开展油气勘探的地区. 该区自上世纪70年代以来,渤海发现储量主要集中在明下段和太古界潜山,下古生界发现的大中型油气田较少. 目前渤海已获得油气发现的构造主要是渤中28构造区、曹妃甸构造区、渤中21构造区,3个构造均位于渤海西部(图1). 从宏观背景上,这3个构造在早期整体形成北西向碳酸盐岩带,从剖面上看,均处于剥蚀斜坡区,其中曹妃甸构造区离古生界剥蚀线较远,仅在构造区内断层附近出现地层减薄现象,渤中21构造区和渤中28构造区位于剥蚀边缘,地层剥蚀现象明显. 从3个构造储层发育情况来看,首先在厚度上,曹妃甸构造区钻遇古生界地层最厚,但是储层发育厚度却是最薄的;其次从储层类型上看,曹妃甸构造区以构造缝为主,渤中21构造和渤中28构造以溶蚀孔缝为主,直接反应了储层成因存在本质差别;最典型的是平面上,曹妃甸2⁃2在远离断裂的构造低部位储层明显变薄(李慧勇等,2023),但是渤中21构造储层厚度与构造位置、断裂相关性却不明显.

2 渤海下古生界潜山类型及成因

通过分析曹妃甸构造区、渤中21构造区、渤中28构造区3个构造剥蚀成因、古地貌、断裂及形态特征差异,将渤海碳酸盐岩潜山划分为剥蚀断块型和剥蚀残丘型两大类(图2). 其中曹妃甸构造远离剥蚀边缘,整体断裂发育较多,且断裂两侧地层遭受剥蚀变薄,地貌高低变化受断裂控制明显,现今呈现的是这种被断裂复杂化的构造脊形态,这种类型潜山定义为断块型潜山. 而渤中21和渤中28构造位于剥蚀边缘,整体地层和地貌特征与距离剥蚀线远近密切相关,离剥蚀线越近,地层剥蚀严重,残留厚度薄,结合现今地貌呈现的是凹中隆的残丘山头形态,将这种类型潜山定义为残丘型潜山.

曹妃甸构造断块型潜山利用平衡剖面技术恢复古构造,在印支期,曹妃甸构造位于沙西北断裂被动盘,地层剥蚀幅度不明显;燕山期由于断层强活动造成断裂两侧地层剥蚀;喜山期断层持续活动造成断层两侧地层差异沉降,两盘地层幅度增大,形成了断块山的样式. 渤中21和渤中28残丘型潜山断层发育少,且断裂分两期,早晚两期断层不搭接,晚期断层对早期地层不造成影响,主要由于印支-燕山期构造运动造成地层持续隆升,高部位地层剥蚀厚度大,残留地层形成的残丘山潜山样式.

3 不同潜山储层成因机理及模式

3.1 残丘型潜山储层形成机理及发育模式

通过钻井薄片、成像测井及地化指标反映垂向上储层呈明显分带特征(图3),上部薄片中见到明显的大气淡水淋滤溶蚀现象,钻井岩心中同样看到明显的大气淡水渗流形成的溶蚀洞穴,下部薄片和岩心中均见到被硅质等充填的溶蚀孔. 结合能谱测井和地球化学元素,其中能谱测井U值可反映溶蚀环境差异性,U是风化壳的代表元素,当原生铀矿物出露地表逐渐氧化,U 变成UO22-溶解于水中,造成风化壳U含量增大(郭春杰等,2013). 从渤中21构造区典型井U值变化趋势来看(图4),明显分两段式,上段U值高,反映的是暴露氧化环境,下段U值突变降低,反映封闭还原环境. 利用C、O同位素和Sr元素反映溶蚀流体介质的差异性,其中上部储层C、O同位素出现负偏移,同时Sr比值偏高,明显上部受到大气淡水溶蚀作用,而下部变化趋势跟上部相反,说明是地下流体溶蚀作用. 综合以上充分证实残丘型潜山溶蚀作用非常强,形成岩溶体储层. 这类储层主要是在降雨过程中,大气淡水在地层侵蚀造成的喀斯特地貌低洼处形成地表径流,对下部岩石进行垂向渗流溶蚀和水平顺层溶蚀,形成了钻井揭示的上下两套岩溶体,主要是受喀斯特地貌控制,上部灰岩、白云岩均发育储层,下部主要发育白云岩储层.

针对古地貌对储层的控制作用,宏观上认为岩溶高地和斜坡是岩溶储层发育有利相带,但是BZ21⁃B井位于岩溶斜坡部位,储层发育较薄,与之前认识相矛盾,因此通过调研西部塔河油田地貌控储研究方法(蔡忠贤等,2010),发现储层与微地貌控制下的古水系分布密切相关. 结合研究区构造演化,通过对古生界奥陶系不整合侵蚀面上下地层组合情况的深入分析,采用印模法与残厚法有机结合的手段(江青春等,2012;邓兴梁等,2015),恢复和分析该区微古地貌发育特征,整体划分高地、次高、上斜坡、下斜坡、沟谷等微地貌单元. 在此基础上,结合地球物理手段,提取沿层的方差切片,对渤中21构造区岩溶古水系进行刻画(图5). 结果表明,平面上认为岩溶古水系沟谷发育程度决定储层平面整体发育. 渤中21构造区沟谷发育相对较少,形成格子状水系,储层平均厚度为55 m,渤中21南侧沟谷十分发育,形成树枝状水系,储层整体平均厚度较21主体区更大;横向上,距离主水系远近决定储层物性好坏,离主要汇水区越近,水量更为充足,溶蚀时间更长,对储层改善作用更大. 结合钻井证实,BZ21⁃C井、D井、E井距离主水系由近到远,储层物性由好逐渐变差(图6). 垂向上,水流方向上的地形坡度决定储层纵向厚度,坡度越缓,水更易下渗,形成岩溶储层厚度大. 通过计算水流方向上的地层倾角来反映坡度大小,发现坡度∠15°,储层发育厚度大,其中BZ21⁃B井坡度达到25°,储层发育厚度较薄(图7).

基于水系控制下的储层成因机制,建立了残丘型岩溶体-枝蔓式储层发育模式(图8). 储层发育与古水系分布密切相关,渤中21南侧古水系发育规模较大,储层更为发育,渤中21主体区古水系分布范围局限,且沟谷发育比较单一,储层平均厚度要薄,同时渤中21北侧古水系发育规模与渤中21南侧相当,预测渤中21北侧储层发育程度较好.

3.2 断块型潜山储层形成机理及发育模式

曹妃甸构造区钻井薄片成像资料均揭示,断块型潜山有效储集空间就是裂缝(图9),可见高角度裂缝、溶蚀缝和节理缝,裂缝间切割关系复杂,高角度裂缝,且沿缝发生强烈的溶蚀作用,同时从断裂与裂缝发育对应性分析,断裂对裂缝的控制非常强,CFD2⁃A井离断裂越近,裂缝的宽度越大,沿裂缝带溶蚀越强,而CFD2⁃B井离断裂相对较远,裂缝表现为光滑曲线特征,宽度窄,且溶蚀程度较弱,因此我们将这类储层定义为缝溶体储层. 该类储层主要是大气淡水沿断裂-裂缝带对围岩进行溶蚀形成的储层. 通过断裂与储层的匹配关系来看,离断裂越近,储层越厚,说明断块型潜山对储层起到主要控制作用的是断裂和裂缝.

断裂及裂缝的研究离不开构造运动,通过沙西北构造带曹妃甸2⁃2构造区断裂组合特征分析(图10),该区共经历了3期构造运动:印支期、燕山期、喜山期. 其中印支期主要受到近南北向挤压,形成东西向和北西向断裂,燕山期主要受到北西向挤压,形成了一组北东向断裂(李慧勇等,2023). 其中印支期,沙西北构造带整体位于沙西北断裂带的被动盘,挤压强度相对较弱,而在燕山期遭受强烈的挤压,形成走滑和逆冲断裂,喜山期断裂持续活动,沿先期断裂进行溶蚀改造. 通过断层发育规模及密度分析(图10),曹妃甸构造区燕山期走滑断裂和印支期逆冲断裂早期活动强度大,因此东侧两期强构造运动叠加交汇区内所受应力最强,对应CFD2⁃A井裂缝宽度和密度最大;其次是燕山期北东向逆冲断裂活动性较强,代表井CFD2⁃C井区,裂缝发育程度较好,但宽度和密度略低于CFD2⁃A井;最弱的是只遭受印支期构造活动,典型的CFD2⁃D井,印支期形成的北西向裂缝非常发育,但是未遭受燕山期及后期溶蚀改造,造成有效的开口缝较少,导致储层不太发育. 综合以上分析,东侧多期应力叠加区裂缝最为发育.

基于有效裂缝控制下的断块型潜山储层成因机制分析,建立了断块型缝溶体-裂隙式储层发育模式(图11). 储层主要沿着断裂及裂缝带发育,在多期构造应力叠加区最为发育,同时在沟通大气淡水持续活动的断裂带附近,溶蚀改造强烈,储层更为优质.

4 结论与认识

(1)通过3个构造剥蚀成因、古地貌、断裂及形态特征差异分析,将渤海碳酸盐岩潜山划分为剥蚀断块型和剥蚀残丘型两大类. 其中断块型潜山主要是由于后期喜山期断裂活动造成上下盘地层差异沉降,构造幅度增大形成;残丘型潜山主要由于印支-燕山持续隆升造成剥蚀厚度大,残留地层形成的潜山样式.

(2)残丘型潜山主要形成岩溶体储层,明确微古地貌控制下的岩溶古水系对岩溶体储层的控制作用,古水系发育规模越大,储层发育越厚.

(3)断块型潜山主要形成缝溶体储层,发育程度主要受断裂和裂缝控制,在多期应力叠加区,裂缝发育,是储层发育有利区.

参考文献

[1]

Cai, Z.X., Liu, Y. L., Liu, Q., 2010. The Appearance and Significance of Palaeo⁃Drainage Systems Connection in the Top of Lower⁃Middle Ordovician in Tahe Oilfield. Geoscience, 24(2):273-278 (in Chinese with English abstract).

[2]

Chen, H.H., Wu, Y., Zhu, H.T., et al., 2016. Eogenetic Karstification and Reservoir Formation Model of the Middle⁃Lower Ordovician in the Northeast Slope of Tazhong Uplift, Tarim Basin. Acta Petrolei Sinica, 37(10):1231-1246 (in Chinese with English abstract).

[3]

Deng, X.L., Zhang, Q.Y., Liang, B., et al., 2015. Reconstruction of Karst Palaeogeomorphology for the Ordovician Yingshan Formation in the Central Tarim Basin. Carsologica Sinica, 34(2):154-158 (in Chinese with English abstract).

[4]

Feng, R.W., Ouyang, Y. C., Pang, Y. J., et al., 2014. Evolution Modes of Interbedded Weathering Crust Karst: a Case Study of the 1st and 2nd Members of Ordovician Yingshan Formation in EPCC Block, Tazhong, Tarim Basin. Petroleum Exploration and Development, 41(1):45-54 (in Chinese with English abstract).

[5]

Guo, C.J., Wang, D., Wang, B.J., 2013. Application of Natural Ggamma Ray Spectroscopy Logging in Sedimentology. World Well Logging Technology, 34-36(in Chinese with English abstract).

[6]

Guo, T.L., Lou, Z. H., Ma, Y.S., 2003. Several Problems on Oil and Gas Preservation and Their Commercial Prospecting in Marine Sequences of South China. Petroleum Geology & Experiment, 25(1):3-9 (in Chinese with English abstract).

[7]

He, Z.L., Yun, L., You, D.H., et al., 2019. Genesis and Distribution Prediction of the Ultra⁃Deep Carbonate Reservoirs in the Transitional Zone between the Awati and Manjiare Depressions, Tarim Basin. Earth Science Frontiers, 25(1):13-21 (in Chinese with English abstract).

[8]

Hua, X.L., Li, H.Y., Sun, X.J., et al., 2018. Formation Mechanism of Lower Palaeozoic Dolomites in the Carbonate Buried Hill of the Shaxibei Structural Belt, Bohai Sea. Geological Journal of China Universities, 24(6):833-840 (in Chinese with English abstract).

[9]

Ji, Y.G., Han, J.F., Zhang, Z.H., et al., 2012. Formation and Distribution of Deep High Quality Reservoirs of Ordovician Yingshan Formation in the Northern Slope of the Tazhong Area in Tarim Basin. Acta Geologica Sinica, 86(7):1165-1175 (in Chinese with English abstract).

[10]

Jiang, Q.C., Hu, S.Y., Wang, Z.C., et al., 2012. Paleokarst Landform of the Weathering Crust of Middle Permian Maokou Formation in Sichuan Basin and Selection of Exploration regions. Acta Petrolei Sinica, 33(6):949-960 (in Chinese with English abstract).

[11]

Lamberta, L., Durleta, C., Jean⁃paul Loreaua, J. P., et al., 2006. Burial Dissolution of Micrite in Middle East Carbonate Reservoirs (Jurassic⁃Cretaceous): Keys for Recognition and Timing. Marine and Petroleum Geology, 23(1):79-92. https://doi.org/10.1016/j.marpetgeo.2005.04.003

[12]

Li, H.Y., Xiao, S.G., Li, F., et al., 2023. Reservoir Characteristics and Main Controlling Factors of Hydrocarbon Accumulation of Lower Paleozoic Buried⁃Hill in Northwestern Shaleitian Slope of Western Bohai Sea. Earth Science,48(1):329-341 (in Chinese with English abstract).

[13]

Li, Q.G., Li, K.S., Zhou, Z.Z., et al., 2013. Palaeogeomorphology and Karst Distribution of Tongwan Unconformity in Sichuan Basin. Oil & Gas Geology, 34(4):516-521 (in Chinese with English abstract).

[14]

Li, W.Q., Liu, H.S., Li, P.P., et al., 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science,48(9):1-34 (in Chinese with English abstract).

[15]

Liu, D.W., Cai, C.F., Hu, Y.J., et al., 2020. Multi⁃Stage Dolomitization Process of Deep Burial Dolostones and Its Influence on Pore Evolution: A Case Study of Longwangmiao Formation in the Lower Cambrian of Central Sichuan Basin. Journal of China University of Mining & Technology, 49(6):1150-1165 (in Chinese with English abstract).

[16]

Liu, L.H., Du, X.D., Xu, S.L., et al., 2017. Characteristics and Formation of the Cambrian Dolomite in Middle⁃South Sichuan Basin, China. Journal of Jilin University(Earth Science Edition), 47(3):775-784 (in Chinese with English abstract).

[17]

Liu, Z.B., Xing, F.C., Hu, H.R., et al., 2021. Multi⁃Origin of Dolomite in Lower Ordovician Tongzi Formation of Sichuan Basin, Western China. Earth Science, 46(2): 583-599 (in Chinese with English abstract).

[18]

Ma, X.H., Yang, Y., Wen, L., et al., 2019. Distribution and Exploration Direction of Medium⁃ and Large⁃Sized Marine Carbonate Gas Fields in Sichuan Basin, SW China. Petroleum Exploration and Development, 46(1):1-13 (in Chinese with English abstract).

[19]

Qiao, Z.F., Yu, Z., She, M., et al., 2023. Progresses on Ancient Ultra⁃Deeply Buried Marine Carbonate Reservoir in China. Journal of Palaeogeography, 25(6):1257-1276 (in Chinese with English abstract).

[20]

Wang, J.B., Shen, A.J., Cai, X.Y., et al., 2008. A Review of the Ordovician Carbonate Reservoirs in the World.Journal of Stratigraphy, 32(4) : 363-373(in Chinese with English abstract).

[21]

Wang, Z., Tang, D.Q., Kang, Z.J., et al., 2022. Development Characteristics and Its Role in Controlling Oil and Gas Accumulation of Mid⁃North Part of Shunbei No. 5 Strike⁃Slip Fault Zone in Tarim Basin. Earth Science, 9(1): 1-29 (in Chinese with English abstract).

[22]

Wang, Z.C., Zhao, W.Z., Hu, S.Y., et al., 2013. Reservoir Types and Distribution Characteristics of Large Marine Carbonate Oil and Gas Fields in China. Oil & Gas Geology, 34(2): 153-160 (in Chinese with English abstract).

[23]

Yao, T.T., Zhu, H.T., Yang, X.H., et al., 2020. Dolomite Origin of Shahejie Formation in Huanghekou Sag, Bohai Bay Basin. Earth Science, 45(10): 3567-3578 (in Chinese with English abstract).

[24]

Yu, Z., Ding, Z.C., Wu, D.Y., et al., 2017. Geochemical Characteristics and Genetic Model of Dolomite in Majiagou Submember⁃55 of Ordovician in East⁃Central Ordos Basin. Marine Origin Petroleum Geology, 22(4):85-93 (in Chinese with English abstract).

[25]

Zan, N.M., Wang, Y.Z., Cao, Y.C., et al., 2018. Characteristics and Development Patterns of Reservoir Space of the Lower Paleozoic Buried Hills in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 39(2):355-365 (in Chinese with English abstract).

[26]

Zenger, D. H., Dunham, J. B., Ethington, R. I., 1980. Concepts and Models of Dolomitization. SEPM Special Publication, 28: 1-320.

基金资助

渤海油田上产4000万吨新领域勘探关键技术(CNOOC⁃KJ 135 ZDXM 36 TJ 08 TJ)

AI Summary AI Mindmap
PDF (7281KB)

106

访问

0

被引

详细

导航
相关文章

AI思维导图

/