西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究
石雅静 , 刘汉彬 , 李军杰 , 张佳 , 金贵善 , 韩娟 , 张建锋 , 石晓 , 张万峰 , 石佳
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 88 -96.
西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究
Research of Xi’an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample
,
国内样品辐照资源有限,可供选择的反应堆数量少,反应堆开启频率低,缺乏对反应堆辐照样品参数的系统研究,在不同程度上制约了40Ar/39Ar定年科研进展,需要开拓新的辐照资源.首次研究西安脉冲堆(XAPR)用于40Ar/39Ar定年样品的辐照条件,通过黑云母标准物质ZBH-25确定中子通量的径向梯度和轴向梯度变化情况,并通过钾盐和钙盐获得反应堆的副反应校正因子.结果表明辐照孔道径向J值变化幅度较小,仅为0.49%,且包含中子通量的峰值,表明样品处于反应堆中心位置进行辐照.辐照孔道轴向中子通量梯度为0.54%/cm,XAPR辐照孔道内的校正因子(40Ar/39Ar)K =0.002 082 6、(39Ar/37Ar)Ca =0.000 776 92、(36Ar/37Ar)Ca =0.000 299 98.对标准物质ZBH-25黑云母进行年龄测定,证明此反应堆满足40Ar/39Ar定年样品的辐照条件,可以作为一个新的辐照源.
Domestic sample irradiation resources are limited, with few reactors available, infrequent reactor startups, and a lack of systematic research on the parameters for reactor irradiation samples. These limitations hinder the progress of scientific research in 40Ar/39Ar dating. Therefore, it is essential to develop new irradiation resources. For the first time, the irradiation conditions for 40Ar/39Ar dating samples in the Xi’an Pulsed Reactor (XAPR) were studied. The radial and axial gradient changes in neutron flux were determined using the biotite standard material ZBH-25, and the correction factors for side reactions were obtained using potassium salt and calcium salt. The results indicate that the radial J value of the irradiation channel is 0.49%, and a peak neutron flux, suggesting that the sample is irradiated in the center of the reactor. The axial neutron flux gradient in the irradiation channel is 0.54% /cm, and the correction factors in the XAPR irradiation channel are (40Ar/39Ar)K =0.002 082 6, (39Ar/37Ar)Ca =0.000 776 92, (36Ar/37Ar)Ca =0.000 299 98. The standard material ZBH-25 biotite was dated, confirming that the reactor meets the irradiation conditions for 40Ar/39Ar dating samples and can serve as a new irradiation source.
西安脉冲堆 / 40Ar/39Ar定年 / 辐照条件 / 中子通量梯度 / 校正因子 / 地球化学.
Xi’an Pulsed Reactor / 40Ar/39Ar dating / irradiation condition / neutron fluence gradient / correction factor / geochemistry
| [1] |
Borst, A. M., Waight, T. E., Finch, A. A., et al., 2019. Dating Agpaitic Rocks: A Multi⁃System (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) Isotopic Study of Layered Nepheline Syenites from the Ilímaussaq Complex, Greenland. Lithos, 324: 74-88. https://doi.org/10.1016/j.lithos.2018.10.037 |
| [2] |
Bottomley, R. J., York, D., 1976. 40Ar⁃39Ar Age Determinations on the Owyhee Basalt of the Columbia Plateau. Earth and Planetary Science Letters, 31(1): 75-84. https://doi.org/10.1016/0012⁃821X(76)90098⁃4 |
| [3] |
Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427-433. https://doi.org/10.1016/0012⁃821X(70)90146⁃9 |
| [4] |
Chen, W., Jiang, X.B, Chen, L.X., et al., 2018. Physical and Safety Analysis of Uranium⁃Zirconium Hydride Pulse Reactor. Science Press, Beijing, 1-10 (in Chinese). |
| [5] |
Clark, A. H., Archibald, D. A., Lee, A. W., et al., 1998. Laser Probe 40Ar/39Ar Ages of Early⁃ and Late⁃Stage Alteration Assemblages, Rosario Porphyry Copper⁃ Molybdenum Deposit, Collahuasi District, I Region, Chile. Economic Geology, 93(3): 326-337. https://doi.org/10.2113/gsecongeo.93.3.326 |
| [6] |
Coble, M. A., Grove, M., Calvert, A. T., 2011. Calibration of Nu⁃Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas. Chemical Geology, 290(1-2): 75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003 |
| [7] |
Dalrymple, G. B., Duffield, W. A., 1988. High Precision 40Ar/39Ar Dating of Oligocene Rhyolites from the Mogollon⁃Datil Volcanic Field Using a Continuous Laser System. Geophysical Research Letters, 15(5): 463-466. https://doi.org/10.1029/gl015i005p00463 |
| [8] |
Dalrymple, G.B., Lanphere, M. A., 1971. 40Ar/39Ar Technique of K⁃Ar Dating: A Comparison with the Conventional Technique. Earth and Planetary Science Letters, 12(3): 300-308. https://doi.org/10.1016/0012⁃821X(71)90214⁃7 |
| [9] |
Dalrymple, G.B., Lanphere, M. A., 1974. 40Ar/39Ar Age Spectra of Some Undisturbed Terrestrial Samples. Geochimica et Cosmochimica Acta, 38(5): 715-738. https://doi.org/10.1016/0016⁃7037(74)90146⁃X |
| [10] |
Foland, K. A., Chen, J. F., Linder, J. S., et al., 1989. High⁃Resolution 40Ar/39Ar Chronology of Multiple Intrusion Igneous Complexes. Contributions to Mineralogy and Petrology, 102(2): 127-137. https://doi.org/10.1007/BF00375335 |
| [11] |
Ishizuka, O., 1998. Vertical and Horizontal Variations of the Fast Neutron Flux in a Single Irradiation Capsule and Their Significance in the Laser⁃Heating 40Ar/39Ar Analysis: Case Study for the Hydraulic Rabbit Facility of the JMTR Reactor, Japan. Geochemical Journal, 32(4): 243-252. https://doi.org/10.2343/geochemj.32.243 |
| [12] |
Jiang,D.Y.,Jiang,X.B.,Xu,P.,et al.,2021.Study on the Simulation Method of Equivalent Surface Source of Radial Duct 1 in Xi’an Pulse Reactor. Progress Report on Nuclear Science and Technology in China (Vol.7)- Volume 5 of Proceedings of the 2021 Annual Academic Conference of the Chinese Nuclear Society, 447-452 (in Chinese with English abstract). |
| [13] |
Jiang, X.B., Chen, D., Xie, Z.S., et al., 2001. Monte Carlo Method for Reactor Duct Shielding Calculation. Chinese Journal of Computational Physics, 18(3): 285-288 (in Chinese with English abstract). |
| [14] |
Kellett,D.,Joyce,N.,2014.Analytical Details of Single⁃ and Multi⁃Collection 40Ar/39Ar Measurements for Conventional Step⁃Heating and Total⁃Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada. Geological Survey of Canada, Technical Note 8, 1-27. https://doi.org/10.4095/293465 |
| [15] |
Koppers, A. A. P., 2002. ArArCALC⁃Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/S0098⁃ 3004(01)00095⁃4 |
| [16] |
Li, D., Zhang, W.S., Jiang, X.B., et al., 2014. Parameter Measurement for Radiation Field of Large Space Neutron Irradiation Platform in Xi ’an Pulsed Reactor. Atomic Energy Science and Technology, 48(7): 1243-1249 (in Chinese with English abstract). |
| [17] |
Li,J.J.,Liu,H.B.,Zhang,J.,et al.,2019. Primary Research of High Flux Engineering Test Reactor (HFETR) for Irradiation of 40Ar⁃39Ar Dating Samples. Earth Science, 44(3):727-737 (in Chinese with English abstract). |
| [18] |
Li, X.H., Li, Y., Li, Q.L., et al., 2022. Progress and Prospects of Radiometric Geochronology. Acta Geologica Sinica, 96(1): 104-122 (in Chinese with English abstract). |
| [19] |
McDougall, I., 1985. K⁃Ar and 40Ar/39Ar Dating of the Hominid⁃Bearing Pliocene⁃Pleistocene Sequence at Koobi Fora, Lake Turkana, Northern Kenya. Geological Society of America Bulletin, 96(2): 159-175. https://doi.org/10.1130/0016⁃7606(1985)96159: kaadot>2.0.co;2 |
| [20] |
Merrihue, C., Turner, G., 1966. Potassium⁃Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852-2857. https://doi.org/10.1029/jz071i011p02852 |
| [21] |
Mitchell, J. G., 1968. The Argon⁃40/Argon⁃39 Method for Potassium⁃Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781-790. https://doi.org/10.1016/0016⁃7037(68)90012⁃4 |
| [22] |
Renne, P. R., Knight, K. B., Nomade, S., et al., 2005. Application of Deuteron⁃Deuteron (D⁃D) Fusion Neutrons to 40Ar/39Ar Geochronology. Applied Radiation and Isotopes, 62(1): 25-32. https://doi.org/10.1016/j.apradiso.2004.06.004 |
| [23] |
Renne, P. R., Sharp, W. D., Deino, A. L., et al., 1997. 40Ar/39Ar Dating into the Historical Realm: Calibration against Pliny the Younger. Science, 277(5330): 1279-1280. https://doi.org/10.1126/science.277.5330.1279 |
| [24] |
Reynolds, J. H., Turner, G., 1964. Rare Gases in the Chondrite Renazzo. Journal of Geophysical Research, 69(15): 3263-3281. https://doi.org/10.1029/jz069i015p03263 |
| [25] |
Rutte, D., Pfänder, J. A., Koleška, M., et al., 2015. Radial Fast⁃Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards. Geochemistry, Geophysics, Geosystems, 16(1): 336-345. https://doi.org/10.1002/2014gc005611 |
| [26] |
Sang, H.Q., Wang, F., He, H.Y., et al., 2006. Intercalibration of ZBH⁃25 Biotite Reference Material Untilized for K⁃Ar and 40Ar⁃39Ar Age Determination. Acta Petrologica Sinica, 22(12): 3059-3078 (in Chinese with English abstract). |
| [27] |
Schaeffer, O. A., Müeller, H.W., Grove, T.L., 1977. Laser 39Ar⁃40Ar Study of Apollo 17 Basalts. Proc. Lunar Sci. Conf. 8th, 1489-1499. |
| [28] |
Schwarz, W. H., Trieloff, M., 2007. Intercalibration of 40Ar⁃39Ar Age Standards NL⁃25, HB3gr Hornblende, GA1550, SB⁃3, HD⁃B1 Biotite and BMus/2 Muscovite. Chemical Geology, 242(1-2): 218-231. https://doi.org/10.1016/j.chemgeo.2007.03.016 |
| [29] |
Stacey, J. S., Sherrill, N. D., Dalrymple, G. B., et al., 1981. A Five⁃Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer. International Journal of Mass Spectrometry and Ion Physics, 39(2): 167-180. https://doi.org/10.1016/0020⁃7381(81)80031⁃9 |
| [30] |
Vermeesch, P., 2015. Revised Error Propagation of 40Ar/39Ar Data, Including Covariances. Geochimica et Cosmochimica Acta, 171: 325-337. https://doi.org/10.1016/j.gca.2015.09.008 |
| [31] |
Wang, F., Zheng, X. S., Lee, J. I. K., et al., 2009. An 40Ar/39Ar Geochronology on a Mid⁃Eocene Igneous Event on the Barton and Weaver Peninsulas: Implications for the Dynamic Setting of the Antarctic Peninsula. Geochemistry, Geophysics, Geosystems, 10(12): 1-29. https://doi.org/10.1029/2009gc002874 |
| [32] |
Wang,L.Z.,Wang,L.Y.,Li,J.,et al.,2022.Statistics Analysis of Illite 40Ar⁃39Ar Ages and Petroleum Accumulation Period. Earth Science, 47(2): 479-489 (in Chinese with English abstract). |
| [33] |
Wu, L.Y., 2019. Advances of Noble Gas Isotope Geochemistry Application in the Study of Ore Deposits. Acta Petrologica Sinica, 35(1): 215-232 (in Chinese with English abstract). |
| [34] |
Xu, X.B., Deng, F., Wang, D., et al., 2022. Advances in Composition and Dating Methods of Fault Gouge and Weakening Mechanisms of Earthquake Faults in Bedrock Area. Bulletin of Geological Science and Technology, 41(5): 122-131 (in Chinese with English abstract). |
| [35] |
Yang, Q., Pu, Y.X., Li, D.Z, et al., 2002. Xi’ an Pulsed Reactor. Nuclear Power Engineering, 23(6):1-7 (in Chinese with English abstract). |
| [36] |
Zhou, Z. J., Chen, Z. L., Zhang, W. G., et al., 2022. Geology, C⁃H⁃O Isotopes, and Muscovite 40Ar⁃39Ar Dating of the Qingbaishan Gold Deposit: Implications for Tectonism and Metallogenesis of Early Devonian Gold Deposits in the Beishan Orogen, NW China. Ore Geology Reviews, 145: 1-13. https://doi.org/10.1016/j.oregeorev.2022.104895 |
核能开发项目(No. 测H2301⁃2⁃7)
国家自然科学基金面上项目(41973051)
/
| 〈 |
|
〉 |