西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究

石雅静 ,  刘汉彬 ,  李军杰 ,  张佳 ,  金贵善 ,  韩娟 ,  张建锋 ,  石晓 ,  张万峰 ,  石佳

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 88 -96.

PDF (1272KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 88 -96. DOI: 10.3799/dqkx.2024.066

西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究

作者信息 +

Research of Xi’an Pulsed Reactor (XAPR) for Irradiation Conditions of 40Ar/39Ar Dating Sample

Author information +
文章历史 +
PDF (1301K)

摘要

国内样品辐照资源有限,可供选择的反应堆数量少,反应堆开启频率低,缺乏对反应堆辐照样品参数的系统研究,在不同程度上制约了40Ar/39Ar定年科研进展,需要开拓新的辐照资源.首次研究西安脉冲堆(XAPR)用于40Ar/39Ar定年样品的辐照条件,通过黑云母标准物质ZBH-25确定中子通量的径向梯度和轴向梯度变化情况,并通过钾盐和钙盐获得反应堆的副反应校正因子.结果表明辐照孔道径向J值变化幅度较小,仅为0.49%,且包含中子通量的峰值,表明样品处于反应堆中心位置进行辐照.辐照孔道轴向中子通量梯度为0.54%/cm,XAPR辐照孔道内的校正因子(40Ar/39Ar)K =0.002 082 6、(39Ar/37Ar)Ca =0.000 776 92、(36Ar/37Ar)Ca =0.000 299 98.对标准物质ZBH-25黑云母进行年龄测定,证明此反应堆满足40Ar/39Ar定年样品的辐照条件,可以作为一个新的辐照源.

Abstract

Domestic sample irradiation resources are limited, with few reactors available, infrequent reactor startups, and a lack of systematic research on the parameters for reactor irradiation samples. These limitations hinder the progress of scientific research in 40Ar/39Ar dating. Therefore, it is essential to develop new irradiation resources. For the first time, the irradiation conditions for 40Ar/39Ar dating samples in the Xi’an Pulsed Reactor (XAPR) were studied. The radial and axial gradient changes in neutron flux were determined using the biotite standard material ZBH-25, and the correction factors for side reactions were obtained using potassium salt and calcium salt. The results indicate that the radial J value of the irradiation channel is 0.49%, and a peak neutron flux, suggesting that the sample is irradiated in the center of the reactor. The axial neutron flux gradient in the irradiation channel is 0.54% /cm, and the correction factors in the XAPR irradiation channel are (40Ar/39Ar)K =0.002 082 6, (39Ar/37Ar)Ca =0.000 776 92, (36Ar/37Ar)Ca =0.000 299 98. The standard material ZBH-25 biotite was dated, confirming that the reactor meets the irradiation conditions for 40Ar/39Ar dating samples and can serve as a new irradiation source.

Graphical abstract

关键词

西安脉冲堆 / 40Ar/39Ar定年 / 辐照条件 / 中子通量梯度 / 校正因子 / 地球化学.

Key words

Xi’an Pulsed Reactor / 40Ar/39Ar dating / irradiation condition / neutron fluence gradient / correction factor / geochemistry

引用本文

引用格式 ▾
石雅静,刘汉彬,李军杰,张佳,金贵善,韩娟,张建锋,石晓,张万峰,石佳. 西安脉冲堆(XAPR)辐照40Ar/39Ar定年样品条件探究[J]. 地球科学, 2025, 50(01): 88-96 DOI:10.3799/dqkx.2024.066

登录浏览全文

4963

注册一个新账户 忘记密码

40Ar/39Ar法定年是20世纪60年代提出的一种放射性同位素定年方法(Reynolds and Turner 1964),后经过一系列的方法和技术细节的完善工作(Merrihue and Turner 1966Mitchell,1968Dalrympleand Lanphere, 1971,1974Dalrymple and Duffield,1988),逐渐成为能为国际地质年代表提供“金钉子”般的定年方法之一.
40Ar/39Ar同位素定年技术年龄测量范围较宽,时间跨度达近40亿年(Schaeffer et al., 1977Renne et al., 1997),是当下同位素地质年代学研究最主要的方法之一(Borst et al., 2019;武丽艳,2019;李献华等,2022;王龙樟等,2022;徐先兵等,2022;Zhou et al., 2022).40Ar/39Ar定年需对样品进行反应堆内快中子照射.样品年龄精密度主要受反应堆内中子通量大小,K、Ca等副反应影响,标准样品的均匀性等因素的影响.反应堆的辐照参数、副反应校正等参数对40Ar/39Ar 同位素定年的精密度与准确度有直接影响(Renne et al., 2005).目前,国内样品辐照资源紧张,可供选择的反应堆数量少,开堆频次低,反应堆辐照样品参数缺乏系统研究,在不同程度上制约了40Ar/39Ar体系定年精度的发展.对辐照条件的研究探索,寻求更加稳定、更加高效的反应堆始终是提高辐照效率,促进40Ar/39Ar定年技术的发展不可缺少的重要环节.
本文首次对西安脉冲反应堆(Xi’an Pulsed Reactor, XAPR)用于40Ar/39Ar定年样品的辐照条件进行探究,利用标准样品ZBH⁃25黑云母重点研究辐照孔道内的辐照参数J值变化情况,以及样品在辐照过程中干扰反应产生的Ar同位素校正因子,并对西安脉冲堆对40Ar/39Ar定年的适用性进行评价.

1 西安脉冲堆简介

西安脉冲反应堆(Xi’an Pulsed Reactor, XAPR)是一种采用轻水自然循环冷却的池式结构研究反应堆(姜夺玉等,2021).脉冲反应堆存在稳定模式和脉冲模式两种(图1).反应堆的运行和安全特性与其他类型的反应堆存在差异.XAPR是由西安中国核动力研究设计院设计、建造的第一座实用性多功能脉冲堆,属于小型研究堆.该反应堆于1996年开工建造,2000年1月15日首次达到临界状态(杨岐等,2002).

XAPR具有多种实验辐照孔道,可开展包括堆内、堆外的样品辐照实验、材料辐射加工瞬发γ射线中子活化分析、中子照相等研究(江新标等,2001;陈伟等,2018).该反应堆属于小型池式研究堆,采用铀氢锆燃料‒慢化剂粗棒状元件,堆芯靠池水的自然循环冷却,池水由冷却系统建立强迫循环,将热量载体释放于外环境(杨岐等,2002).稳态额定功率 2 MW,最大脉冲运行峰功率约4 300 MW(李达等,2014).在稳定状态运行时,大空间中子辐照实验平台的快热中子比(能量大于 0.1 MeV的快中子与能量小于0.4 eV的热中子的通量密度比)大于100,相较于国内外其他反应堆的快热中子比(表1)更适合于辐照40Ar/ 39Ar定年样品.该反应堆内的n/γ比(1 MeV等效中子通量密度与γ射线吸收剂量率的比)大于5×1011 cm-2 /Gy ( Si );1 MeV等效中子通量密度大于1.74×109 cm-2·s-1(李达等,2014).

2 实验方法与步骤

2.1 样品制备与封装

称取ZBH⁃25黑云母标准物质、K2SO4和CaF2(光谱纯级),用高纯铝箔包裹并压实.取高纯石英管(内径为6 mm、外径为8 mm、高为90 mm)将底部密封,石英管的清洗采用去离子水和丙酮分别超声并烘干,将样品依次叠放入石英管中并准确量取各个样品距石英管底部的高度.样品在辐照过程中由K和Ca产生的干扰Ar同位素,通常采用辐照纯净的K2SO4和CaF2进行校正.为了降低大气Ar对副反应校正因子测定的干扰,样品封装前需对光谱纯的K2SO4和CaF2晶体进行真空去气处理.

本实验采用XAPR稳定态对样品进行快中子辐照,辐照时间为24 h,XAPR辐照中子能量范围 <0.63 MeV的中子通量为7.78×1013 n/cm2·s,能量范围>0.63 MeV的中子通量为6.21×1012 n/cm2·s.用铝箔将标准样品和样品包裹压实后依次放入石英管中(图2),顶端填充石英棉,封装后的石英管长度为90 mm,每个标准样品(ZBH⁃25)的间隔为8~ 12 mm,样品石英管放置在蜂窝状铝制辐照罐中固定.

2.2 质谱测试

样品辐照后在核工业北京地质研究院的40Ar/39Ar实验室进行检测.实验采用双真空加热炉加热熔融法提取气体,加热炉升至700 ℃去气后,采用阶段升温逐级释气,进行Ar同位素测试.

实验采用Argus VI型多接收质谱仪(Thermo Fisher)进行Ar同位素组成测试,该质谱仪配备5个法拉第杯和1个电子倍增器,法拉第杯为H2、H1、AX、L1、L2,其中H2放大器高阻为1011Ω,其余4个法拉第杯的放大器高阻为1012Ω.低信号强度的Ar同位素则采用电子倍增器进行检测(Stacey et al., 1981Coble et al., 2011Kellett and Joyce, 2014),根据不同物质的Ar同位素信号强度及时调整接收器的配置,以达到最佳样品测试条件.校正因子(40Ar/39Ar)K、和(36Ar/37Ar)Ca和(39Ar/37Ar)Ca则是通过辐照样品中K2SO4和CaF2晶体的Ar同位素计算所得.样品的年龄谱图采用ArArCALC V2.40软件(Koppers,2002)获得.

3 测试结果

实验采用高纯铝箔包裹压实的方法,利用标准物质的准确位置降低中子通量曲线分布拟合产生的误差.表2为XAPR辐照参数J值的测试数据,两根石英管的辐照参数J值均呈现先增加后降低的变化趋势,轴向中子通量的变化为0.49%/cm,XAPR的径向中子通量在16 mm处的最大差异可达0.54%/cm.

通过辐照样品中K2SO4、和CaF2晶体的Ar同位素计算得出校正因子结果分别为(40Ar/39Ar)K =0.002 082 6、(39Ar/37Ar)Ca =0.000 776 92和 (36Ar/37Ar)Ca =0.000 299 98.

采用标准物质黑云母ZBH⁃25作为中子通量标准物质来验证XAPR辐照40Ar/39Ar样品的适用性.ZBH⁃25是产于北京房山花岗闪长岩体的黑云母矿物,未受过热的扰动,也不存在过剩氩,作为标准样是40Ar/39Ar定年的理想样品.实验数据见表3,ZBH⁃25年龄谱图平坦(图4),坪年龄为132.59±0.93 Ma,坪年龄的MSWD为1.29,与前人报道的132.7±0.8 Ma(桑海清等,2006)在误差范围内较为一致.

4 讨论

4.1 中子通量

样品辐照参数J值的误差大小是影响样品年龄精密度的主要因素.中子通量不均一性主要分为轴向和径向两种,会导致标准样品与待测样品之间的影响存在差异,不同反应堆产生的差异也不同.对于同一个反应堆来说,轴向中子通量的变化与径向中子通量的变化不同,且轴向变化更加明显,两者产生差异的原因均与辐照源与各样品管之间距离不同有关.

4.1.1 中子通量轴向分布特征

轴向分布特征是利用标准物质在石英管内不同位置的J值变化曲线,曲线的拟合程度决定了待测样品的测试精度.

在轴向上,不同的反应堆中子通量梯度不同,中国核动力设计研究院的高通量试验堆(HFETR)稳定活动区的中子通量变化梯度约为3.3%/cm(李军杰等,2019);日本原子能研究所的日本材料试验反应堆(Japan Material Testing Reactor,JMTR)中子通量轴向梯度范围为1.5%/cm~1.7%/cm(Ishizuka, 1998);德国FRG1反应堆(Schwarz and Trieloff, 2007)和捷克共和国LVR⁃15反应堆(Rutte et al., 2015),径向中子通量梯度分别为1.8%/cm和2.2%/cm,轴向梯度分别达到5.9%/cm和2.1%/cm.不同位置的石英管内中子通量的分布呈较好的线性关系,且包含中子通量的峰值,表明样品处于反应堆中心位置进行辐照.一般情况下,样品会放置在辐照孔道的中心位置,不同反应堆均匀中子通量的分布范围不同,且部分反应堆在轴向上的中子通量变化较大.当反应堆中子通量均匀部分较窄或部分样品处于均匀位置时,都会造成中子通量在轴向上的较大变化.结果见表2,西安脉冲堆辐照设施的辐照参数J值变化幅度较小,仅为0.49%.结果表明,样品辐照罐放置于轴向上的中子活性稳定区域,XAPR的轴向中子通量变化梯度小,且不同石英管的拟合程度(图3)较好,适合于40Ar/39Ar样品的辐照工作.

4.1.2 中子通量径向分布特征

导致中子通量在径向的不均一性因素较复杂,通常与辐照孔道在堆芯的位置、堆芯的布置情况有关.XAPR的径向中子通量在16 mm处的最大差异可达0.54%/cm,样品在辐照过程中径向中子通量存在差异,与燃料元件在辐照孔道分布不均有关.为避免这种情况的发生,通常在辐照过程中会采用沿轴向均匀旋转样品的方法进行径向中子通量差异的消除,例如McMaster 反应堆(Clark et al., 1998)、FRG1反应堆(Schwarz and Trieloff, 2007)、49⁃2反应堆(Wang et al., 2009)均采取类似措施.Foland et al.(1989)在Ford核反应堆试验中发现进行样品旋转后仍存在中子通量的差异,并将这种差异归因于容器的不均匀旋转.然而Rutte et al.(2015)在对德国FRG⁃1反应堆和捷克LVR⁃15反应堆的试验过程中发现,样品在旋转过程中出现的倾斜和非同轴旋转会影响中子通量的稳定性,变化范围可达1%/cm~2%/cm.因此,在旋转辐照设施过程中,需对轴向中子通量进行监测,特别是辐照容器不完全同轴或在旋转过程中存在样品管倾斜时,以获得精确的实验数据.

4.2 辐照过程的副反应校正

样品辐照过程中,主要发生的副反应有40K(n, p)40Ar、40Ca(n, nα)36Ar、42Ca(n, α)39Ar,对40Ar/39Ar定年的结果会产生较大干扰(Mitchell, 1968Brereton, 1970Vermeesch,2015).

辐照过程中,受到反应堆内热中子的影响,样品辐照产生的干扰Ar在测试过程中会干扰放射性成因40Ar*;样品中的40Ca和42Ca经过辐照后分别产生36Ar和39Ar,36Ar会影响大气40Ar的扣除,39Ar会影响样品中39K产生的39Ar的测定.

副反应40K(n, p) 40Ar主要由能量较低的热中子诱发,因此反应堆内快/热中子比比值越小,反应产生的非放射成因40Ar干扰就越大.本文采用对放置纯净K2SO4晶体进行辐照的方法,计算副反应校正因子(40Ar/39Ar)K,实现对非放射性成因40Ar的准确扣除.XAPR辐照孔道内的校正因子(40Ar/39Ar)K =0.002 082 6,如图5所示,XAPR相较于其他反应堆副反应干扰明显下降.

副反应40Ca(n, nα) 36Ar的核反应能垒为-7.04 MeV(李军杰等,2019),需要较高能量的中子才能触发,且辐照孔道内能量高于 -7.04 MeV能量的中子通量通常小于<1%,但产生的干扰作用较为显著.这是因为反应产生的36Ar会干扰样品中大气40Ar的准确扣除,对于年轻的样品或者钾/钙比较低的样品干扰明显加大.

42Ca(n, α)39Ar副反应能垒为0.34 MeV,基本与40Ca(n, nα) 36Ar的校正方式相同.区别在于对年龄异常老或者钾/钙比较低的样品产生的干扰作用较为显著.副反应40Ca(n, nα)36Ar和42Ca(n, α)39Ar的校正方法是辐照纯净的Ca盐,样品辐照过程中产生37Ar的唯一途径是样品中的Ca,通过测试Ca盐中的(36Ar/37Ar)Ca和(39Ar/37Ar)Ca可以对样品中由Ca产生的36Ar和39Ar进行准确扣除.XAPR辐照孔道内的校正因子(39Ar/37Ar)Ca =0.000 776 92,(36Ar/37Ar)Ca =0.000 299 98,如图5所示,XAPR相较于其他反应堆干扰同样显著降低.

5 结论

(1)XAPR辐照孔道内轴向中子通量分布曲线特征呈二次线性关系,且不同石英管的中子通量变化趋势基本一致,变化梯度约为0.49%/cm,在径向上中子通量存在差异约为0.54%/cm,与石英管和辐照孔道的距离有关,需在不同径向上放置一定数量的标准物质进行监测.

(2)XAPR辐照孔道内的校正因子 (39Ar/37Ar)Ca =0.000 776 92,(36Ar/37Ar)Ca =0.000 299 98,(40Ar/39Ar)K =0.002 082 6,与其他反应堆相比副反应造成的干扰较小.

(3)ZBH⁃25黑云母标准物质40Ar/39Ar定年结果表明,其坪年龄132.59±0.93 Ma,与标准物推荐年龄在误差范围内一致,证明XAPR满足40Ar/39Ar定年样品的辐照要求,可以作为一个新的辐照堆进行40Ar/39Ar定年样品的辐照,为该方法发展开拓了一个新的辐照源.

参考文献

[1]

Borst, A. M., Waight, T. E., Finch, A. A., et al., 2019. Dating Agpaitic Rocks: A Multi⁃System (U/Pb, Sm/Nd, Rb/Sr and 40Ar/39Ar) Isotopic Study of Layered Nepheline Syenites from the Ilímaussaq Complex, Greenland. Lithos, 324: 74-88. https://doi.org/10.1016/j.lithos.2018.10.037

[2]

Bottomley, R. J., York, D., 1976. 40Ar⁃39Ar Age Determinations on the Owyhee Basalt of the Columbia Plateau. Earth and Planetary Science Letters, 31(1): 75-84. https://doi.org/10.1016/0012⁃821X(76)90098⁃4

[3]

Brereton, N. R., 1970. Corrections for Interfering Isotopes in the 40Ar/39Ar Dating Method. Earth and Planetary Science Letters, 8(6): 427-433. https://doi.org/10.1016/0012⁃821X(70)90146⁃9

[4]

Chen, W., Jiang, X.B, Chen, L.X., et al., 2018. Physical and Safety Analysis of Uranium⁃Zirconium Hydride Pulse Reactor. Science Press, Beijing, 1-10 (in Chinese).

[5]

Clark, A. H., Archibald, D. A., Lee, A. W., et al., 1998. Laser Probe 40Ar/39Ar Ages of Early⁃ and Late⁃Stage Alteration Assemblages, Rosario Porphyry Copper⁃ Molybdenum Deposit, Collahuasi District, I Region, Chile. Economic Geology, 93(3): 326-337. https://doi.org/10.2113/gsecongeo.93.3.326

[6]

Coble, M. A., Grove, M., Calvert, A. T., 2011. Calibration of Nu⁃Instruments Noblesse Multicollector Mass Spectrometers for Argon Isotopic Measurements Using a Newly Developed Reference Gas. Chemical Geology, 290(1-2): 75-87. https://doi.org/10.1016/j.chemgeo.2011.09.003

[7]

Dalrymple, G. B., Duffield, W. A., 1988. High Precision 40Ar/39Ar Dating of Oligocene Rhyolites from the Mogollon⁃Datil Volcanic Field Using a Continuous Laser System. Geophysical Research Letters, 15(5): 463-466. https://doi.org/10.1029/gl015i005p00463

[8]

Dalrymple, G.B., Lanphere, M. A., 1971. 40Ar/39Ar Technique of K⁃Ar Dating: A Comparison with the Conventional Technique. Earth and Planetary Science Letters, 12(3): 300-308. https://doi.org/10.1016/0012⁃821X(71)90214⁃7

[9]

Dalrymple, G.B., Lanphere, M. A., 1974. 40Ar/39Ar Age Spectra of Some Undisturbed Terrestrial Samples. Geochimica et Cosmochimica Acta, 38(5): 715-738. https://doi.org/10.1016/0016⁃7037(74)90146⁃X

[10]

Foland, K. A., Chen, J. F., Linder, J. S., et al., 1989. High⁃Resolution 40Ar/39Ar Chronology of Multiple Intrusion Igneous Complexes. Contributions to Mineralogy and Petrology, 102(2): 127-137. https://doi.org/10.1007/BF00375335

[11]

Ishizuka, O., 1998. Vertical and Horizontal Variations of the Fast Neutron Flux in a Single Irradiation Capsule and Their Significance in the Laser⁃Heating 40Ar/39Ar Analysis: Case Study for the Hydraulic Rabbit Facility of the JMTR Reactor, Japan. Geochemical Journal, 32(4): 243-252. https://doi.org/10.2343/geochemj.32.243

[12]

Jiang,D.Y.,Jiang,X.B.,Xu,P.,et al.,2021.Study on the Simulation Method of Equivalent Surface Source of Radial Duct 1 in Xi’an Pulse Reactor. Progress Report on Nuclear Science and Technology in China (Vol.7)- Volume 5 of Proceedings of the 2021 Annual Academic Conference of the Chinese Nuclear Society, 447-452 (in Chinese with English abstract).

[13]

Jiang, X.B., Chen, D., Xie, Z.S., et al., 2001. Monte Carlo Method for Reactor Duct Shielding Calculation. Chinese Journal of Computational Physics, 18(3): 285-288 (in Chinese with English abstract).

[14]

Kellett,D.,Joyce,N.,2014.Analytical Details of Single⁃ and Multi⁃Collection 40Ar/39Ar Measurements for Conventional Step⁃Heating and Total⁃Fusion Age Calculation Using the Nu Noblesse at the Geological Survey of Canada. Geological Survey of Canada, Technical Note 8, 1-27. https://doi.org/10.4095/293465

[15]

Koppers, A. A. P., 2002. ArArCALC⁃Software for 40Ar/39Ar Age Calculations. Computers & Geosciences, 28(5): 605-619. https://doi.org/10.1016/S0098⁃ 3004(01)00095⁃4

[16]

Li, D., Zhang, W.S., Jiang, X.B., et al., 2014. Parameter Measurement for Radiation Field of Large Space Neutron Irradiation Platform in Xi ’an Pulsed Reactor. Atomic Energy Science and Technology, 48(7): 1243-1249 (in Chinese with English abstract).

[17]

Li,J.J.,Liu,H.B.,Zhang,J.,et al.,2019. Primary Research of High Flux Engineering Test Reactor (HFETR) for Irradiation of 40Ar⁃39Ar Dating Samples. Earth Science, 44(3):727-737 (in Chinese with English abstract).

[18]

Li, X.H., Li, Y., Li, Q.L., et al., 2022. Progress and Prospects of Radiometric Geochronology. Acta Geologica Sinica, 96(1): 104-122 (in Chinese with English abstract).

[19]

McDougall, I., 1985. K⁃Ar and 40Ar/39Ar Dating of the Hominid⁃Bearing Pliocene⁃Pleistocene Sequence at Koobi Fora, Lake Turkana, Northern Kenya. Geological Society of America Bulletin, 96(2): 159-175. https://doi.org/10.1130/0016⁃7606(1985)96159: kaadot>2.0.co;2

[20]

Merrihue, C., Turner, G., 1966. Potassium⁃Argon Dating by Activation with Fast Neutrons. Journal of Geophysical Research, 71(11): 2852-2857. https://doi.org/10.1029/jz071i011p02852

[21]

Mitchell, J. G., 1968. The Argon⁃40/Argon⁃39 Method for Potassium⁃Argon Age Determination. Geochimica et Cosmochimica Acta, 32(7): 781-790. https://doi.org/10.1016/0016⁃7037(68)90012⁃4

[22]

Renne, P. R., Knight, K. B., Nomade, S., et al., 2005. Application of Deuteron⁃Deuteron (D⁃D) Fusion Neutrons to 40Ar/39Ar Geochronology. Applied Radiation and Isotopes, 62(1): 25-32. https://doi.org/10.1016/j.apradiso.2004.06.004

[23]

Renne, P. R., Sharp, W. D., Deino, A. L., et al., 1997. 40Ar/39Ar Dating into the Historical Realm: Calibration against Pliny the Younger. Science, 277(5330): 1279-1280. https://doi.org/10.1126/science.277.5330.1279

[24]

Reynolds, J. H., Turner, G., 1964. Rare Gases in the Chondrite Renazzo. Journal of Geophysical Research, 69(15): 3263-3281. https://doi.org/10.1029/jz069i015p03263

[25]

Rutte, D., Pfänder, J. A., Koleška, M., et al., 2015. Radial Fast⁃Neutron Fluence Gradients during Rotating 40Ar/39Ar Sample Irradiation Recorded with Metallic Fluence Monitors and Geological Age Standards. Geochemistry, Geophysics, Geosystems, 16(1): 336-345. https://doi.org/10.1002/2014gc005611

[26]

Sang, H.Q., Wang, F., He, H.Y., et al., 2006. Intercalibration of ZBH⁃25 Biotite Reference Material Untilized for K⁃Ar and 40Ar⁃39Ar Age Determination. Acta Petrologica Sinica, 22(12): 3059-3078 (in Chinese with English abstract).

[27]

Schaeffer, O. A., Müeller, H.W., Grove, T.L., 1977. Laser 39Ar⁃40Ar Study of Apollo 17 Basalts. Proc. Lunar Sci. Conf. 8th, 1489-1499.

[28]

Schwarz, W. H., Trieloff, M., 2007. Intercalibration of 40Ar⁃39Ar Age Standards NL⁃25, HB3gr Hornblende, GA1550, SB⁃3, HD⁃B1 Biotite and BMus/2 Muscovite. Chemical Geology, 242(1-2): 218-231. https://doi.org/10.1016/j.chemgeo.2007.03.016

[29]

Stacey, J. S., Sherrill, N. D., Dalrymple, G. B., et al., 1981. A Five⁃Collector System for the Simultaneous Measurement of Argon Isotope Ratios in a Static Mass Spectrometer. International Journal of Mass Spectrometry and Ion Physics, 39(2): 167-180. https://doi.org/10.1016/0020⁃7381(81)80031⁃9

[30]

Vermeesch, P., 2015. Revised Error Propagation of 40Ar/39Ar Data, Including Covariances. Geochimica et Cosmochimica Acta, 171: 325-337. https://doi.org/10.1016/j.gca.2015.09.008

[31]

Wang, F., Zheng, X. S., Lee, J. I. K., et al., 2009. An 40Ar/39Ar Geochronology on a Mid⁃Eocene Igneous Event on the Barton and Weaver Peninsulas: Implications for the Dynamic Setting of the Antarctic Peninsula. Geochemistry, Geophysics, Geosystems, 10(12): 1-29. https://doi.org/10.1029/2009gc002874

[32]

Wang,L.Z.,Wang,L.Y.,Li,J.,et al.,2022.Statistics Analysis of Illite 40Ar⁃39Ar Ages and Petroleum Accumulation Period. Earth Science, 47(2): 479-489 (in Chinese with English abstract).

[33]

Wu, L.Y., 2019. Advances of Noble Gas Isotope Geochemistry Application in the Study of Ore Deposits. Acta Petrologica Sinica, 35(1): 215-232 (in Chinese with English abstract).

[34]

Xu, X.B., Deng, F., Wang, D., et al., 2022. Advances in Composition and Dating Methods of Fault Gouge and Weakening Mechanisms of Earthquake Faults in Bedrock Area. Bulletin of Geological Science and Technology, 41(5): 122-131 (in Chinese with English abstract).

[35]

Yang, Q., Pu, Y.X., Li, D.Z, et al., 2002. Xi’ an Pulsed Reactor. Nuclear Power Engineering, 23(6):1-7 (in Chinese with English abstract).

[36]

Zhou, Z. J., Chen, Z. L., Zhang, W. G., et al., 2022. Geology, C⁃H⁃O Isotopes, and Muscovite 40Ar⁃39Ar Dating of the Qingbaishan Gold Deposit: Implications for Tectonism and Metallogenesis of Early Devonian Gold Deposits in the Beishan Orogen, NW China. Ore Geology Reviews, 145: 1-13. https://doi.org/10.1016/j.oregeorev.2022.104895

基金资助

核能开发项目(No. 测H2301⁃2⁃7)

国家自然科学基金面上项目(41973051)

AI Summary AI Mindmap
PDF (1272KB)

103

访问

0

被引

详细

导航
相关文章

AI思维导图

/