珠江口盆地白云凹陷东部地区油气充注历史

张丽丽 ,  张向涛 ,  刘可禹 ,  翟普强 ,  孙辉 ,  张应鳞 ,  杨鹏

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 158 -171.

PDF (5158KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 158 -171. DOI: 10.3799/dqkx.2024.068

珠江口盆地白云凹陷东部地区油气充注历史

作者信息 +

Oil and Gas Charge History of Eastern Baiyun Sag, Pearl River Mouth Basin

Author information +
文章历史 +
PDF (5281K)

摘要

白云凹陷位于珠江口盆地南部,是我国海洋深水油气勘探热点区,明确该地区的油气充注历史对于指导油气勘探至关重要.在油气藏解剖工作的基础上,基于流体包裹体分析、PVT和盆地模拟等手段,对白云凹陷东部的油气充注历史开展系统分析.研究结果表明:(1)白云凹陷东部以凝析气藏为主,局部发育少量油藏,整体表现出“上气下油”的分布格局,构造高点凝析气干燥系数和GOR相对较高;(2)储层中发育两类不同的石油包裹体组合(OIA):I类OIA在室温条件下呈气‒液两相,发黄白色、黄绿色荧光,气体充填度一般小于10%,均一温度为86.2~93.2 °C,伴生盐水包裹体均一温度和冰点温度分别为100.9~104.1 °C以及-4.3~-4.2 °C;II类OIA为气‒液或气‒液‒固三相,呈黄绿色、蓝绿色以及蓝白色等荧光,气体充填度为10%~30%,均一温度为71.1~112.4 °C,伴生盐水包裹体的均一温度和冰点温度分别为96.8~108.6 °C和-2.8~-2.4 °C;(3)I类石油包裹体对应的油气充注事件大约发生在10.8 Ma,整体表现为常压充注;II类石油包裹体对应的油气充注年龄为2.8 Ma左右,整体表现出弱超压;(4)白云凹陷东部在珠江组‒韩江组沉积期形成一些油藏,粤海组沉积期至现今,深层天然气沿断裂与砂体输导通道向上运移调整,并对早期的油藏进行改造,通过运移分馏作用形成现今一系列的凝析气藏.

Abstract

The Baiyun Sag, situated in the southern part of the Pearl River Mouth Basin, is an area for active deep-water oil and gas exploration in China. Insight into the oil and gas charge history in the area is crucial for further oil and gas exploration. Based on detailed investigation of oil and gas reservoirs in the eastern Baiyun Sag, this study aims to provide a better understanding of the oil and gas charge history through an integrated fluid inclusion analysis, PVT and basin modeling. The results indicate that: (1) The eastern Baiyun Sag is dominated by gas condensate with some locally developed oil reservoirs. The overall distribution pattern shows that gas occurs in the shallow reservoirs while oil in the deeper reservoirs. In structural highs, gas condensate reservoirs are characterized by relatively high gas dryness coefficient and gas-oil ratio (GOR). (2) Two different types of oil inclusion assemblages (OIAs) have been identified in the reservoirs: Type I OIA is characterized by gas-liquid phases at room temperature, emitting yellowish white and yellowish green fluorescence. The vapor filling degree is generally less than 10%, and the homogenization temperature (Th) is 86.2-93.2 °C. The Th and final ice-melting temperature (Tm) of the coeval aqueous inclusions are 100.9-104.1 °C and -4.3 °C to -4.2 °C, respectively. Type II OIA is featured by gas-liquid or gas-liquid-solid phases at room temperature, with yellowish green, blue-green, and blue-white fluorescence. The vapor filling degree ranges from 10% to 30%, and the Th values are in the range of 71.1 °C to 112.4 °C. The Th and Tm values of the coeval aqueous inclusions are 96.8-108.6 °C and -3.2 °C to -2.7 °C, respectively. (3) The oil and gas charge event corresponding to Type I OIA occurred at approximately 10.8 Ma under a normal hydrostatic pressure condition, whereas the equivalent oil and gas charge timing of Type II OIA was around 2.8 Ma, under a weak overpressure condition. (4) Some oil reservoirs were entrapped in the eastern Baiyun Sag during the Zhujiang-Hanjiang Formation depositional periods. From the Yuehai Formation depositional period to the present, deep hydrocarbons, mainly in over-pressured gas, migrated vertically along faults upwards to the regional caprock, and then migrated laterally along interconnected sandbodies to accumulate in early traps, altering early oil accumulations and forming a series of condensate gas reservoirs via compositional fractionation during migration.

Graphical abstract

关键词

油气充注历史 / 运移分馏 / 流体包裹体 / PVT模拟 / 白云凹陷 / 珠江口盆地 / 石油地质学.

Key words

oil and gas charge history / migration fractionation / fluid inclusion / PVT modeling / Baiyun Sag / Pearl River Mouth Basin / petroleum geology

引用本文

引用格式 ▾
张丽丽,张向涛,刘可禹,翟普强,孙辉,张应鳞,杨鹏. 珠江口盆地白云凹陷东部地区油气充注历史[J]. 地球科学, 2025, 50(01): 158-171 DOI:10.3799/dqkx.2024.068

登录浏览全文

4963

注册一个新账户 忘记密码

随着世界各国对能源需求的日趋增长以及油气勘探技术装备的不断完善,海洋油气勘探已成为全球油气勘探的热点领域之一(陈希等,2023;Wen et al., 2023).通常而言,深水和超深水分别是指现今水体深度大于500 m和1 500 m的领域(屈红军等,2022).在中国,常以300 m作为浅水和深水的分界线,而且中国海域的深水盆地主要分布在南海地区(朱伟林和郑金云,2020;王雪峰等,2021).
白云凹陷位于珠江口盆地南部凹陷,整体呈近北东向展布的巨型新生代沉积凹陷(庞雄等,2014,2022).该凹陷位于地壳强烈薄化带(米立军等,2016;米立军,2018),高热流背景导致该地区地温梯度从北部的35 ºC/km逐渐升高至南部的50 ºC/km(唐晓音等,2014;米立军等,2016).勘探实践表明白云凹陷资源潜力巨大且油气共生(朱俊章等,2012a),目前已发现包括轻质油藏、挥发性油藏以及凝析气藏在内的一系列油气藏(庞雄等,2006),显示出该地区复杂的油气运聚过程.目前,不同学者对该地区的油气地质特征(米立军等,2016)、油气成因(朱俊章等,2008;龙祖烈等,2020)以及富集规律与主控因素(Mi et al., 2018)开展了大量研究,并取得了诸多认识.针对该地区的油气充注期次以及成藏时间问题,朱俊章等(2012b)指出白云凹陷东部LW3⁃1构造主要发生两期油气充注事件:第一期充注时间为8~0 Ma,主要为油充注;第二期充注时间为5~0 Ma,为油气同时充注,两期充注事件在时间上存在重叠.米立军等(2019)则认为白云凹陷至少存在两期油气充注,第1期时间为13.1~7.3 Ma,主要为成熟油充注;第2期时间为5.5~ 0 Ma,主要为高成熟油和天然气充注.而龙祖烈等(2020)的研究成果则表明白云凹陷主体经历了3期油气充注,第1期为坳陷期成藏(约23 Ma以来),第2期为新构造运动成藏(约16 Ma以来),第3期为天然气晚期充注(约10 Ma以来).由此可以看出,尽管不同学者已开展了相关研究,但其研究结果仍存在明显分歧,进而无法有效指导油气勘探工作.基于此,本研究拟以白云凹陷东部为研究对象,在典型油气藏解剖工作的基础上,采用流体包裹体分析与盆地模拟相结合的方法,对该地区的油气充注历史开展精细厘定,以期为深化油气分布规律认识以及指导油气勘探提供科学依据.

1 地质背景

珠江口盆地位于中国大陆广东省外侧的南海北部大陆架上(Zhang et al., 2014;米立军等,2019),地处海南岛与台湾岛之间,面积约17.5×104 km2图1a).该盆地整体呈NE向展布,内部包含北部断阶带、北部坳陷带、中部隆起带、南部坳陷带以及南部隆起带等5个构造单元,整体表现出南北分带、东西分块以及坳隆相间的分布格局.该盆地主要经历古新世‒始新世的伸展断陷、渐新世‒中中新世的坳陷沉降及晚中新世以后的块断升降等3大构造演化阶段(米立军等,2019).

白云凹陷位于珠二坳陷东部的陆棚边缘斜坡带,是珠江口盆地中面积最大、埋藏最深的沉积凹陷(图1b),也是整个盆地的沉积和沉降中心,水深约200~2 800 m(庞雄等,2014).该凹陷总体上呈NEE向展布,可进一步划分为白云西洼、白云主洼、白云东洼及白云南洼.白云凹陷新生代沉积地层自下而上依次为古近系文昌组、恩平组、珠海组,新近系珠江组、韩江组、粤海组、万山组以及第四系,地层最大厚度约为12 km(图2).

白云凹陷主要发育文昌组和恩平组两套有效烃源岩,拥有累计厚度达数千米的暗色泥岩(米立军等,2019;陈聪等,2021),具有较好的生烃能力,在白云凹陷中心部位已处于过成熟(Ro>2.0%)阶段.珠海组内发育的浅海陆架三角洲砂体及珠江组内发育的陆缘三角洲砂体和水道‒深水扇砂体为研究区主要的储集层(米立军等,2016,2019),而恩平组内发育的湖盆三角洲砂体由于压实作用强、物性较差,为研究区次要储集层.珠江组上段和韩江组泥岩厚度大,分布稳定,是研究区良好的区域性盖层.

2 白云凹陷东部油气藏特征

白云凹陷东部油气以凝析气藏为主,并发育少量油藏,整体表现出“上气下油”的分布格局(图3),其中气藏包括L3A、L29A在内的一系列大中型气藏,油藏主要是L3B和L29B油藏.垂向上,油气主要分布在珠江组下段、珠海组以及恩平组,其中珠江组下段探明储量占该地区油气总储量的90%以上.

白云主洼东部凝析气藏和油藏井流物气油比(GOR)介于610.1~27 769.9 m3/m3之间,露点压力与地层压力的压差在0~5.8 MPa之间(表1).整体而言,从洼陷的近源端至远源端,井流物GOR逐渐增大,地露压差逐渐减小,油气藏类型由欠饱和挥发性油藏变成饱和凝析气藏,例如近源端L34B⁃1井的井流物GOR为610.1 m3/m3,地露压差为5.8 MPa,对应的油气藏为欠饱和挥发性油藏;而距洼陷较远、位于构造高点的L28A⁃1井的井流物GOR达到 27 770 m3/m3,地露压差为0,对应的油气藏为饱和凝析气藏.同时,白云主洼东部凝析油和原油物性特征更相对一致,具有密度相对小(0.76~0.83 g/cm3)、含硫量(<0.10%)以及含蜡量低(0.10%~6.09%)的特点(马宁等,2019).天然气组分中烃类气体为主,甲烷含量占71.9%~89%,干燥系数介于0.75~0.93之间(表1).

正常情况下,单源油中正构烷烃的摩尔分数与碳数呈指数关系,即正构烷烃摩尔分数的对数与碳数呈近线性关系,但当原油遭受生物降解、水洗、热裂解以及气洗和蒸发分馏作用后,其正构烷烃摩尔分数的对数与碳数往往呈非线性关系(Kissin,1987Thompson, 1987,1988Losh et al., 2002).通过整理白云主洼东典型原油正构烷烃摩尔分数对数与碳数的对应关系可以得出(图4),L3B⁃3井与L34A⁃1井原油正构烷烃摩尔分数的对数与碳数呈明显的近线性关系,相比之下,L29A⁃1井与L29B⁃2井原油正构烷烃摩尔分数的对数与碳数之间的线性关系并不明显,且在较低碳数部分出现拐点.考虑到白云凹陷原油并未受到生物降解、水洗和热蚀变等作用的影响(陈涛等,2015;李美俊等,2019),可以判断L29A⁃1井与L29B⁃2井早期充注的石油受到后期天然气的改造作用.此外,原油与天然气成熟度差异以及原油芳香度和石蜡度等参数(陈涛等,2015;马宁等,2019;米立军等,2019;陈聪等,2021)同样表明白云主洼东部的石油曾经受到后期天然气的改造作用.

3 流体包裹体分析与石油充注时间厘定

3.1 流体包裹体岩相学特征

本次研究包括15块岩心和岩屑样品,并将其制备成近80 µm厚、双面抛光的包裹体厚片.利用Zeiss Axio Imager A2m偏光显微镜,对石油包裹体开展系统的岩相学分析.石油包裹体主要呈椭圆形、细长形、方形或者不规则形态,直径一般为5~20 μm,气体充填度一般为5%~40%(图5).石油包裹体大部分沿切穿石英颗粒的愈合裂隙分布,由两相(LoilVSbitLoil)和三相(SbitLoilV)流体包裹体组成,并包括少量的多相(SbitLH2OLoilV)和纯液相(Loil)石油包裹体.石油包裹体在单偏光下呈无色或者淡黄色,在UV激发光下荧光颜色多变,可以从黄白色、黄绿色、蓝绿色一直变化到蓝白色.综合石油包裹体烃类相态、荧光颜色以及气液比特征,储层中共划分出I和II类两类不同的石油包裹体,其中I类石油包裹体在单偏光下为气液(LoilV)两相,在UV光激发下发黄白色、黄绿色荧光,气液比一般小于10%,在储层中零星发育(图5a、5b);II类石油包裹体通常呈两相(LoilVSbitLoil)或者三相(SbitLoilV),在UV激发光下发黄绿色、蓝绿色以及蓝白色荧光,气液比变化较大(10%~30%),在储层中广泛发育(图5c~5j).II类石油包裹体中的沥青通常沿包裹体壁分布或悬浮于油包裹体中,在显微加热过程中其并未溶于液态烃中,可能指示部分II类石油包裹体为非均一相捕获.利用Horiba iHR320成像光谱仪,对单个石油包裹体的显微荧光光谱信息开展定量表征.研究结果表明(图6),I类石油包裹体的荧光光谱参数λmaxQ650/500以及QF⁃535值分别为540.4~543.5 nm、0.8~1.1和2.3~2.8, II类石油包裹体的荧光光谱参数λmaxQ650/500以及QF⁃535值分别为531.1~543.0 nm、0.8~1.0和1.3~2.7.同时,储层孔隙中发育大量固体沥青,在单偏光下呈黑色、不透明状,边缘呈港湾状;在UV激发光下呈黄褐色或者不发荧光(图5k~5l).

3.2 显微测温分析

根据Goldstein and Reynolds(1994)提出的循环测温流程,通过Linkam THMSG600冷热台,对研究区流体包裹体开展显微测温分析,其中均一温度(Th)的测量精度为±1 ºC,冰点温度(Tm)的测量精度为±0.1 ºC.盐水包裹体的等效NaCl盐度根据Bodnar(1993)提出的公式计算.研究结果表明,I类石油包裹体均一温度介于86.2~93.2 °C之间(图7a),伴生的盐水包裹体在100.9~104.1 °C之间,冰点温度为-4.3~-4.2 °C,对应的等效NaCl盐度为6.7~6.9 wt%(图7b);II类石油包裹体均一温度介于71.1~112.4 °C之间(图7a),众数在80~85 °C区间,伴生盐水包裹体在96.8~108.6 °C之间,众数在95~100 °C区间,冰点温度为-3.2~-2.7 °C,对应的等效NaCl盐度为4.5~5.3 wt%(图7b).

3.3 石油充注时间厘定及古压力恢复

利用PetroMod含油气系统模拟软件对白云东典型单井(L34B⁃1井以及L29A⁃1井)的埋藏史‒热史进行恢复.通常情况下,石油充注时间可以将石油包裹体伴生盐水包裹体的Th值投影到研究区典型单井的埋藏史‒热史图上加以确定(Karlsen et al., 1993),本研究选择盐水包裹体均一温度的最小值代表其最小捕获温度,以消除流体包裹体再平衡效应的潜在影响(Larson et al., 1973Prezbindowski and Tapp, 1991).由图8可以得出,I类石油包裹体对应的石油充注时间为10.8 Ma, II类石油包裹体对应的石油充注时间为2.8 Ma.

采用Zeiss LSM 5 Pascal激光共聚焦扫描显微镜(CLSM),对石油包裹体的气体充填度进行测定,激发波长为488 nm,激光扫描功率设定为1.5 mW.根据石油包裹体的荧光特征,利用CLSM对其开展逐层扫描,并通过Zeiss 3D for LSM图像处理软件重建石油包裹体的三维形态,计算出相应的体积.研究结果表明,白云凹陷东I类石油包裹体气体充填度介于5.1%~7.9%之间,平均值为6.5%;II类石油包裹体气体充填度介于12.1%~26.2%,平均值为15.1%(图9).

结合石油相态模拟软件PIT、石油包裹体气体充填度以及伴生盐水包裹体均一温度数据,对单个石油包裹体的捕获压力进行恢复.首先通过在PIT软件中输入石油包裹体的均一温度最小值和气体充填度数据获得满足石油包裹体成分信息的αβ曲线,并结合石油包裹体荧光光谱参数(Q650/500或者QF⁃535)换算的API重度(Yang et al.,2022)确定石油包裹体对应的αβ值;在此基础上,利用PIT软件模拟石油包裹体的相图,并根据石油包裹体的均一温度获得相应的等容线,最后根据伴生盐水包裹体的均一温度最小值计算得到石油包裹体的捕获压力.研究结果表明,I类石油包裹体对应的地层压力为24.0 MPa,压力系数约为1.0,整体表现为常压(图10a);II类石油包裹体对应的地层压力为 30.3 MPa,压力系数约为1.2,表现为弱超压(图10b).

4 白云凹陷东部油气充注过程

白云凹陷广泛发育文昌组和恩平组II2~III型烃源岩,具有油气兼生的特点,在早期成熟阶段以生油为主,而到晚期高熟阶段则生成大量天然气,且生气量远大于生油量(Mi et al., 2018;陈聪等,2021).由于受到陆架坡折带和低位体系域共同控制,白云凹陷广泛发育陆架边缘三角洲前缘及深水重力流沉积的砂岩储层,并相继形成一系列构造‒岩性圈闭(米立军等,2016,2019).白云东地区广泛发育的断层与油气充注在时间上的有效匹配为油气运移到圈闭中聚集提供了重要通道条件(Mi et al., 2018).同时,白云东地区广泛发育的深水扇三角洲砂体、不整合界面之下砂体以及T70地层不整合面可以形成油气运移有效运载层,共同控制油气侧向运移(图3).

综合以上分析,本研究对白云凹陷东部的油气充注历史进行重建:(1)珠海期,由于沉积地层的持续沉降,白云凹陷文昌组烃源岩已经进入早期生油阶段(Mi et al., 2018),但由于此时白云凹陷尚未形成有效的储盖组合,故成藏意义不大.(2)珠江‒韩江期,白云凹陷发生剧烈的构造沉降,在地壳减薄和拆离作用的影响下,研究区古地温快速上升,导致烃源岩热演化所需的时间大大缩短(Mi et al., 2018).文昌组和恩平组烃源岩均达到成熟阶段,同时白云凹陷内部断层活动频繁,有效沟通了中深层的烃源岩与上部储集层,油气沿断层‒砂体输导体系发生垂向和侧向运移.然而,由于珠海‒恩平组储层上部缺乏有效盖层,故该时期未能大规模成藏,只在局部地区形成一些相对规模的常压油藏.(3)粤海期至今,白云凹陷发生持续的构造沉降,文昌组和恩平组烃源岩进入生气阶段.天然气与珠海‒恩平组储层中的石油发生溶解混合作用,形成混溶相流体或欠饱和的凝析气或挥发性油(图11),并沿着断裂或砂体输导通道运移.在运移过程中,该混溶相流体发生相态及组分分馏,低碳数的轻质组分则被分异出的天然气所携带,在上部层系聚集成藏,而形成饱和凝析气藏或者挥发性油藏;而高碳数中‒重质组分则在近源位置或者气藏下部地层中富集,形成残余油藏,并在储层孔隙中析出一些固体沥青(图5k~5l).随着运移距离增加,浅层的饱和挥发性油藏或者凝析气藏中的石油组分发生分馏作用(Zhang, 2000),导致其内部轻质油含量逐渐降低、气油比逐渐增高以及石油的荧光颜色逐渐发生蓝移(图6),并演化成一系列无油环的凝析气藏.最终,白云凹陷东部地区形成“上气下油”的分布格局(图3).

5 结论

(1)白云凹陷东部油气藏整体表现出“上气下油”的分布特征;从洼陷的近源端至远源端,油气藏井流物GOR逐渐增大,地露压差逐渐减小,油气藏类型由欠饱和挥发性油藏变成饱和凝析气藏;早期充注的石油受到后期天然气的改造作用.

(2)储层中识别出两类不同的石油包裹体类型(I类和II类),二者在烃类相态、气体充填度、荧光光谱特征以及显微测温数据等方面存在显著差异.

(3)I类石油包裹体对应的油气充注时间为距今约10.8 Ma,地层压力为24.0 MPa,压力系数约为1.0,整体表现为常压;II类石油包裹体对应的油气充注年龄为2.8 Ma,地层压力为30.3 MPa,压力系数约为1.2,表现为弱超压.

(4)珠江组‒韩江组沉积期,由于珠海组‒恩平组储层上部缺乏有效盖层,故该时期未能形成大规模油气藏,在局部形成一些相对规模的油藏;粤海期至现今,文昌组和恩平组烃源岩生成的大量天然气与珠海组‒恩平组储层中的石油发生溶解混合作用,并在油气运移过程中,混溶相流体发生相态及组分分馏,形成上面的饱和凝析气藏或者挥发性油藏以及下部的残余油藏.随着运移距离增加,浅层的饱和挥发性油藏或者凝析气藏中的石油组分发生分馏作用,导致其轻质油含量逐渐降低、气油比逐渐增高,并演化成一系列无油环的凝析气藏.

参考文献

[1]

Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O⁃NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684. https://doi.org/10.1016/0016⁃7037(93)90378⁃a

[2]

Chen, C., Long, Z.L., Zhu, J.Z., et al., 2021. The Study of Diamondoids in Petroleum from the Baiyun Sag. Geochimica, 50(2): 163-174 (in Chinese with English abstract).

[3]

Chen, T., Hou, D.J., Mi, J.L., et al., 2015. Study on Gas Washing of Crude Oils in Baiyun Sag. Journal of Northeast Petroleum University, 39(3): 60-66, 4-5 (in Chinese with English abstract).

[4]

Chen, X., Wang, Z. Q., Gu, S., et al., 2023. Global Deepwater Oil and Gas Development Characteristics, Potential Distribution and Development Trend. Petroleum Science and Technology Forum, 42(6):69-76 (in Chinese with English abstract).

[5]

Goldstein, R. H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 31. SEPM (Society for Sedimentary Geology),Tulsa. https://doi.org/10.2110/scn.94.31

[6]

Karlsen, D. A., Nedkvitne, T., Larter, S. R., et al., 1993. Hydrocarbon Composition of Authigenic Inclusions: Application to Elucidation of Petroleum Reservoir Filling History. Geochimica et Cosmochimica Acta, 57(15): 3641-3659. https://doi.org/10.1016/0016⁃7037(93)90146⁃n

[7]

Kissin, Y. V., 1987. Catagenesis and Composition of Petroleum: Origin of n⁃Alkanes and Isoalkanes in Petroleum Crudes. Geochimica et Cosmochimica Acta, 51(9): 2445-2457. https://doi.org/10.1016/0016⁃7037(87)90296⁃1

[8]

Larson, L. T., Miller, J. D., Nadeau, J. E., et al., 1973. Two Sources of Error in Low Temperature Inclusion Homogenization Determination, and Corrections on Published Temperatures for the East Tennessee and Laisvall Deposits. Economic Geology, 68(1): 113-116. https://doi.org/10.2113/gsecongeo.68.1.113

[9]

Li, M.J., Zhang, Z.T., Chen, C., et al., 2019. Origin of Reservoir Bitumen and Its Implications for Adjustment and Reformation of Hydrocarbon⁃Accumulation in Baiyun Sag, Pearl River Mouth Basin. Oil & Gas Geology, 40(1): 133-141 (in Chinese with English abstract).

[10]

Li, Y., Deng, Y.H., Li, Y.C., et al., 2016.Development Characteristics and Favorable Facies of Coal Measures Source Rocks in River⁃Delta System in Pearl River Mouth Basin. Journal of Northeast Petroleum University, 40(1): 62-71 (in Chinese with English abstract).

[11]

Long, Z. L., Chen, C., Ma, N., et al., 2020.Geneses and Accumulation Characteristics of Hydrocarbons in Baiyun Sag, Deep Water Area of Pearl River Mouth Basin. China Offshore Oil and Gas, 32(4): 36-45 (in Chinese with English abstract).

[12]

Losh, S., Cathles, L., Meulbroek, P., 2002. Gas Washing of Oil along a Regional Transect, Offshore Louisiana. Organic Geochemistry, 33(6): 655-663. https://doi.org/10.1016/s0146⁃6380(02)00025⁃6

[13]

Ma, M., Lin, C.S., Tao, Z., et al., 2017. Sedimentary Architecture and Evolution of Slope Channel System and Sequence Stratigraphic Framework: A Case from Northeast of Baiyun Sag, Pearl River Mouth Basin. Journal of Northeast Petroleum University, 41(6): 85-95, 125 (in Chinese with English abstract).

[14]

Ma, N., Long, Z. L., Li, Q. Q., et al., 2019. Origin Mechanism of Condensate Gas Pools in the East of Baiyun Sag in Pearl River Mouth Basin. Journal of Northeast Petroleum University, 43(2):89-96, 10-11(in Chinese with English abstract).

[15]

Mi, L.J., 2018. Continuous Breakthroughs on Petroleum Exploration of the Eastern South China Sea with Innovative Understanding: Review of Recent Exploration Progress. China Offshore Oil and Gas, 30(1): 1-10 (in Chinese with English abstract).

[16]

Mi, L.J., He, M., Zhai, P.Q., et al., 2019. Integrated Study on Hydrocarbon Types and Accumulation Periods of Baiyun Sag, Deep Water Area of Pearl River Mouth Basin under the High Heat Flow Background. China Offshore Oil and Gas, 31(1): 1-12 (in Chinese with English abstract).

[17]

Mi, L.J., Liu, B.J., He, M., et al., 2016. Petroleum Geology Characteristics and Exploration Direction in Baiyun Deep Water Area, Northern Continental Margin of the South China Sea. China Offshore Oil and Gas, 28(2): 10-22 (in Chinese with English abstract).

[18]

Mi, L. J., Zhang, Z. T., Pang, X., et al., 2018. Main Controlling Factors of Hydrocarbon Accumulation in Baiyun Sag at Northern Continental Margin of South China Sea. Petroleum Exploration and Development, 45(5): 963-973. https://doi.org/10.1016/s1876⁃3804(18)30100⁃9

[19]

Pang, X., Shen, J., Yuan, L.Z., et al., 2006. Petroleum Prospect in Deep⁃Water Fan System of the Pearl River in the South China Sea. Acta Petrolei Sinica, 27(3): 11-15, 21 (in Chinese with English abstract).

[20]

Pang, X., Shi, H. S., Zhu, M., et al., 2014. A Further Discussion on the Hydrocarbon Exploration Potential in Baiyun Deep Water Area. China Offshore Oil and Gas, 26(3): 23-29 (in Chinese with English abstract).

[21]

Pang, X., Zheng, J.Y., Ren, J.Y., et al., 2022. Structural Evolution and Magmatism of Fault Depression in Baiyun Sag, Northern Margin of South China Sea. Earth Science, 47(7): 2303-2316 (in Chinese with English abstract).

[22]

Ping, H. W., Chen, H. H., Zhai, P. Q., et al., 2019. Petroleum Charge History in the Baiyun Depression and Panyu Lower Uplift in the Pearl River Mouth Basin, Northern South China Sea: Constraints from Integration of Organic Geochemical and Fluid Inclusion Data. AAPG Bulletin, 103(6): 1401-1442. https://doi.org/10.1306/11151817369

[23]

Prezbindowski, D. R., Tapp, J.B., 1991. Dynamics of Fluid Inclusion Alteration in Sedimentary Rocks: A Review and Discussion. Organic Geochemistry, 17(2): 131-142. https://doi.org/10.1016/0146⁃6380(91)90071⁃q

[24]

Qu, H.J., Zhang, G.C., Sun, X.H., et al., 2022. Research Progress on Hydrocarbon Exploration and Accumulation of Deep Water Basins in China: Taking the Northern South China Sea as an Example. Journal of Northwest University (Natural Science Edition), 52(6): 1028-1043 (in Chinese with English abstract).

[25]

Shi, H.S., He, M., Zhang, L.L., et al., 2014. Hydrocarbon Geology, Accumulation Pattern and the Next Exploration Strategy in the Eastern Pearl River Mouth Basin. China Offshore Oil and Gas, 26(3): 11-22 (in Chinese with English abstract).

[26]

Tang, X.Y., Hu, S.B., Zhang, G.C., et al., 2014. Geothermal Characteristics and Hydrocarbon Accumulation of the Northern Marginal Basins, South China Sea. Chinese Journal of Geophysics, 57(2): 572-585 (in Chinese with English abstract).

[27]

Thompson, K. F. M., 1987. Fractionated Aromatic Petroleums and the Generation of Gas⁃Condensates. Organic Geochemistry, 11(6): 573-590. https://doi.org/10.1016/0146⁃6380(87)90011⁃8

[28]

Thompson, K. F. M., 1988. Gas⁃Condensate Migration and Oil Fractionation in Deltaic Systems. Marine and Petroleum Geology, 5(3): 237-246. https://doi.org/10.1016/0264⁃8172(88)90004⁃9

[29]

Wang, X.F., Li, L., Wang, G.Y., et al., 2021. Petroleum Geological Characteristics and Exploration Directions of Deep Water Basins in South China Sea. Marine Geology Frontiers, 37(1): 1-10 (in Chinese with English abstract).

[30]

Wen, Z. X., Wang, J. J., Wang, Z. M., et al., 2023. Analysis of the World Deepwater Oil and Gas Exploration Situation. Petroleum Exploration and Development, 50(5): 1060-1076. https://doi.org/10.1016/s1876⁃3804(23)60449⁃5

[31]

Yang, P., Liu, K. Y., Li, Z., et al., 2022. Evolution of Ordovician YJ1X Ultra⁃Deep Oil Reservoir in the Yuecan Oilfield, Tarim Basin, NW China. Petroleum Exploration and Development, 49(2): 300-312. https://doi.org/10.1016/s1876⁃3804(22)60025⁃9

[32]

Zhang, S. C., 2000. The Migration Fractionation: An Important Mechanism in the Formation of Condensate and Waxy Oil. Chinese Science Bulletin, 45(14): 1341-1344. https://doi.org/10.1007/BF03182916

[33]

Zhang, Y. F., Sun, Z., Pang, X., 2014.Relationship between Lower Crust Extension and Shelf Break in Baiyun Sag, Pearl River Mouth Basin. Science China Earth Sciences, 57(3): 550-557. https://doi.org/10.1007/s11430⁃013⁃4676⁃4

[34]

Zhu, J. Z., Shi, H. S., He, M., et al., 2008. Geochemical Characteristics and Genesis of Natural Gas in Well LW3⁃1⁃1 of Baiyun Sag, Pearl River Mouth Basin. Natural Gas Geoscience, 96(2): 229-233 (in Chinese with English abstract).

[35]

Zhu, J.Z., Shi, H.S., Pang, X., et al., 2012a. Discussion on Natural Gas Generation and Giant⁃Medium Size Gas Field Formation in Baiyun Sag. Natural Gas Geoscience, 23(2): 213-221 (in Chinese with English abstract).

[36]

Zhu, J.Z., Shi, H.S., Pang, X., et al., 2012b. Origins and Accumulation Characteristics of Hydrocarbons in Eastern Baiyun Deepwater Area. China Petroleum Exploration, 17(4): 20-28, 6 (in Chinese with English abstract).

[37]

Zhu, W.L., Zheng, J.Y., 2020. Deep Water Oil and Gas in Northern South China Sea: New Insights. Science & Technology Review, 38(18): 89-98 (in Chinese with English abstract).

基金资助

青岛海洋科学与技术试点国家实验室“十四五”重大项目(2021QNLM020001)

中海石油(中国)有限公司综合科研项目(KJZH⁃2021⁃0003⁃00)

中国石油大学(华东)自主创新科研计划项目(22CX06045A)

AI Summary AI Mindmap
PDF (5158KB)

95

访问

0

被引

详细

导航
相关文章

AI思维导图

/