中亚造山带南缘中段的北山杂岩:历史、现状与问题

王振义 ,  张进 ,  吴春娇 ,  张北航 ,  赵衡

地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 639 -666.

PDF (6386KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 639 -666. DOI: 10.3799/dqkx.2024.014

中亚造山带南缘中段的北山杂岩:历史、现状与问题

作者信息 +

Beishan Complex in the Middle Section of Southern Central Asian Orogenic Belt: History, Progress and Problems

Author information +
文章历史 +
PDF (6539K)

摘要

前寒武纪地质体是大地构造单元划分的重要依据,同时也为理解早期超大陆聚合离散和演化提供了重要信息,对其形成时代、分布范围、物质组成等的认识影响着对造山带结构、形成演化和造山样式的看法,具有重要的研究价值. 然而,由于构造改造置换,造成部分显生宙地质体与前寒武纪地质体难以区分,加之不同时段研究程度、测试手段不同,使得一些区域上的前寒武纪地质体分类命名、分布范围、大地构造属性等几经变革,影响着对造山带结构和形成演化的深入认识.以中亚造山带南缘中段北山杂岩为研究对象,探讨前寒武纪地质体划分对造山带结构和形成演化的影响. 北山杂岩长期被当作北山造山带中微陆块的前寒武纪基底,近些年关于其分布范围、形成时代和大地构造属性取得了新的重要进展. 本文在综述北山杂岩划分沿革的基础上,总结了前人关于北山南北两带的基底岩石划分对比等方面的看法,以及与相邻构造单元前寒武纪地质体的划分对比,并概括了关于北山杂岩基底属性方面的认识. 通过中亚造山带南缘中段各微陆块的岩石组合、前寒武纪碎屑锆石谱峰特征、构造-热事件序列和锆石Hf同位素特征等方面综合对比,初步认为这些微陆块可能经历了相似的前寒武纪演化历史. 结合前人资料,提出其源于Columbia超大陆裂解,并参与了Rodinia超大陆聚合最终裂解几个微陆块的演化过程. 鉴于具有前寒武纪基底属性地质体的重要性以及由不断变化的内涵和分布范围引起的分歧,建议进一步加强中亚造山带南缘中段北山造山带前寒武纪地质体的识别和划分沿革工作以及区域地质图编图工作.

Abstract

The Precambrian geological bodies in the orogenic belts are important for the division of tectonic units and also provide important information for understanding the amalgamation and fragmentation of early supercontinents. The understanding of their formation ages, distribution ranges, material compositions, etc. affects the view on the tectonics, evolution, and orogenic models of the different orogenic belts. It is the basis of many scientific issues and has important research values. However, due to structural deformation and replacement, it is difficult to differentiate some Phanerozoic and Precambrian geological bodies in ancient orogenic belts around the world. In addition, different research levels and testing methods in different periods have led to several changes in the classifications, nomenclatures, distribution ranges, and geotectonic attributes of some Precambrian geological bodies, affecting the understanding of the topics above. This study focuses on the Beishan Complex in the middle segment of the southern Central Asian Orogenic Belt (CAOB) to discuss the influence of the complicated and arbitrary classifications, divisions, and distribution of a Precambrian geological body on the tectonics and evolution of the orogenic belt. The Beishan Complex has long been regarded as the Precambrian basement of the microcontinents in the Beishan Orogenic Blet (BOB) in the middle section of the southern CAOB. In recent years, numerous advances have been made in its distribution ranges, ages, and basement affinities, which affect the tectonics and evolution of the BOB. This study reviews the classification history of the Beishan Complex, summarizes the previous views on the differences in the basement rocks between the southern and northern zones of the BOB, compares the Beishan Complex of the BOB with the Precambrian geological bodies of northern Alxa and the Central Tianshan blocks, and elaborates the understanding of the basement attribution of the tectonic units to which the Beishan Complex belongs. Based on the comprehensive comparison of rock assemblages, the Precambrian detrital zircon peak characteristics, magmatic event sequences, and zircon Hf isotope characteristics of the microcontinents in the middle section of the southern margin of the CAOB, it is considered that these microcontinents might experience a similar Precambrian evolution history. Integrated with previous data, it is proposed that these microcontinents may originate from the breakup of the Columbia Supercontinent, participate in the evolution of the Rodinia Supercontinent amalgamation, and finally break up into several microcontinent blocks. In view of the importance of geological bodies with Precambrian basement attributes and the various differences caused by the constantly changing connotation and distribution ranges, this paper calls for strengthening the research on the division and evolution of Precambrian geological bodies in the middle section of the southern CAOB and attaching importance to the compilation of regional geologic maps.

Graphical abstract

关键词

北山杂岩 / 北山造山带 / 基底归属 / 前寒武纪 / 超大陆 / 中亚造山带 / 构造地质.

Key words

Beishan Complex / Beishan Orogenic Belt / basement affinity / Precambrian / supercontinent / Central Asian Orogenic Belt (CAOB) / tectonics

引用本文

引用格式 ▾
王振义,张进,吴春娇,张北航,赵衡. 中亚造山带南缘中段的北山杂岩:历史、现状与问题[J]. 地球科学, 2025, 50(02): 639-666 DOI:10.3799/dqkx.2024.014

登录浏览全文

4963

注册一个新账户 忘记密码

造山带中散布的一些前寒武纪地质体,蕴含着丰富的地球早期构造演化信息. 或用于探讨所在构造单元的大地构造属性(Zhou et al., 2018; 许文良等, 2019),或为理解早期超大陆聚合离散演化过程提供重要信息(Zong et al., 2017Zhao et al., 2018),作为划分不同大地构造单元的重要依据(王鸿祯和张世红, 2002),其多寡又涉及大陆增生的问题(Jahn et al., 2004Kröner et al., 2014,2017b),具有重要的研究价值. 对前寒武纪地质体形成时代、分布范围、物质组成等的认识影响着对造山带结构、形成演化和造山机制的理解(肖文交等, 2019). 然而,由于后期强烈的变质变形和构造改造破坏,常常导致造山带中前寒武纪地质体与显生宙地质体难以区分(陆松年等, 2001; 周海等, 2018). 加之不同学者对前寒武纪地质体看法和命名不一,导致对造山带演化历程认识存在重要分歧,加剧了演化历史的复杂程度(Saktura et al., 2017). 而且,不同时间阶段调查精度和测试方法不同,造成前寒武纪地质体的形成时代、分布范围和构造属性不断变化,从而导致对造山带结构和形成演化的认识难以达成共识.
本文选取中亚造山带南缘中段-北山造山带的“北山杂岩”作为研究对象,其长期以来被视为北山地区的前寒武纪基底(左国朝和何国琦, 1990; 李景春等, 1996; 梅华林等, 1997; 魏学平等, 2000; 何世平等, 2002, 2005; 龚全胜等, 2003),近年来屡见于文献报道(刘雪敏等, 2010; 姜洪颖等, 2013; Song et al., 2013a,2013bZheng et al., 2017,2021Huang et al., 2022),成为北山造山带的重要研究对象之一. 但关于北山杂岩的划分定名、岩石组合、展布范围、形成时代、构造属性一直存在争议,影响着对北山造山带形成演化的认识. 本文以北山杂岩为切入点,回顾了在其原始分布范围内北山前寒武纪地质体的研究历史,分布范围沿革和构造属性的争议,并对前寒武纪演化历史进行了探讨. 以期抛砖引玉,增进对北山造山带中的微陆块前寒武纪基底形成演化的认识.

1 地质背景

中亚造山带位于西伯利亚、波罗的、塔里木和华北等克拉通之间,是全球显生宙以来大陆增生最为显著的地区,其主要由微陆块、弧盆体系、洋岛、蛇绿混杂岩带和增生杂岩等构造单元组成(Şengör et al., 1993,2022Jahn, 2004Kröner et al., 2007Windley et al., 2007; 李锦轶等, 2009; Xiao et al., 2018). 残存其中的中高级变质的地质体,一些曾被当作所在微陆块的前寒武纪基底,后被解体为古生代地质体. 例如阿尔泰地区的克木齐群(Long et al., 2007Sun et al., 2008),南蒙古微陆块的基底(Webb et al., 1999Taylor et al., 2013),北山造山带的北山杂岩(Song et al., 2013a,2013b2016Zheng et al., 2021),锡林郭勒地块的锡林郭勒杂岩(江思宏等, 2014)以及额尔古纳地块的兴华渡口群等(许文良等, 2019及其中的参考文献)都曾被解体为古生代地质体. 不同的形成时代认识对造山带结构和形成演化产生了重要影响,从而影响对造山模式的认识.

北山造山带位于中亚造山带南缘中段,东接兴蒙造山带,西连天山造山带,处在多板块交汇部位,其构造位置关键特殊,是研究中亚造山带增生造山作用及我国西北地区古生代大地构造演化问题的关键地区(刘雪亚和王荃, 1995; Xiao et al., 2010Liu et al., 2015Song et al., 2015,2016Yuan et al., 2018; 辛后田等, 2020). 北山造山带由前寒武纪地质体、不同时代的岩浆弧、蛇绿混杂岩和增生杂岩等构造单元经过复杂的拼合过程而形成(Xiao et al., 2010; 辛后田等, 2020). 由北至南发育四条蛇绿混杂岩带:红石山-百合山-蓬勃山蛇绿混杂岩带(以下简称“红石山带”)、芨芨台子-石板井-小黄山蛇绿混杂岩带(以下简称“小黄山带”)、红柳河-牛圈子-洗肠井蛇绿混杂岩带(以下简称“牛圈子带”)和柳园-帐房山蛇绿混杂岩带(以下简称“柳园带”)(杨合群等, 2010; Xiao et al., 2010; 辛后田等, 2020; 王国强等, 2021). 关于北山造山带的大地构造划分目前尚无统一认识. Xiao et al.(2010)以4条蛇绿混杂岩带将北山造山带由北至南划分为雀儿山、黑鹰山-旱山、马鬃山、双鹰山-花牛山和石板山5个构造单元(下文中涉及的地块范围均以此为依据);另有一些学者以小黄山带(左国朝等, 1990, 1993, 2003)或牛圈子带(杨合群等, 2008, 2010)或红石山带(龚全胜等, 2002, 2003)为界将北山划分为南北两个不同的构造单元;还有一些学者以红石山带和牛圈子带(辛后田等, 2020),或以红石山带和柳园带(刘雪亚和王荃, 1995; 聂凤军等, 2004)为界将北山分为南北中3个不同的构造单元. 由于本文的主要研究对象主要分布在牛圈子带两侧,为简化叙述,下文中以牛圈子带将北山分为南北两带.

北山造山带中的前寒武纪地质体主要有北山杂岩、古硐井群(部分为白湖群)、圆藻山群(包括野马街组、大豁落山群(组)、平头山组)和洗肠井群(内蒙古自治区地质矿产局, 1991). 除雀儿山地块未发育前寒武纪地质体外,其他各地块均不同程度的出露前寒武纪地质体. 北山杂岩主要由下部深变质的片麻岩、结晶片岩和混合岩及上部浅变质的碎屑岩、碳酸盐岩及少量火山岩等两部分组成,主要分布在明水-石板井一带以及南部的桥湾北至穿山驯一带(修泽雷等,1964)i,长期以来被视为北山的前寒武纪基底. 古硐井群主要分布在北山中部的马鬃山-盘陀山一带,以低级变质的细碎屑岩为主,时代多为中元古代晚期(Song et al., 2013c; 程海峰等, 2017; 余吉远等, 2018; Huang et al., 2022). 圆藻山群则主要为含有叠层石的白云质大理岩、碎裂状大理岩、硅质条带大理岩等碳酸盐岩夹一些浅变质碎屑岩,时代为蓟县-青白口纪(内蒙古自治区地质矿产局, 1991). 洗肠井群则以冰川沉积的冰碛岩系为特征(黄博涛等, 2023; Niu et al., 2024). 这些前寒武纪地质体中以北山杂岩的岩石组合最为复杂,关于其岩石组合、形成时代、分布范围几经变化,下面将进行详述.

2 北山杂岩划分沿革

北山地区的前寒武系最早由孙健初在马鬃山一带调查时提出(图1),认为其与前寒武系“敦煌系”相当. 1958年,姜春发和赵庆林认为北山牛圈子东南的片麻岩属于“前震旦系”,并被“震旦系”所覆盖(转引自左国朝等, 1990; 李志琛, 1994).

“北山杂岩”一词出自修泽雷等(1964)的《玉门幅1∶100万地质图说明书》i. 其岩石组合可分为连续的上下两个部分:“下部为一套深变质的片麻岩、结晶片岩和混合岩组成;上部由石英岩、变质砂岩、千枚岩、中基性火山岩和薄层灰岩等浅变质岩系组成,顶部常为碳酸盐岩. 与震旦系关系不明,未见直接接触. 暂笼统地置于前寒武系. ”可见定义之初,北山杂岩既有深变质岩系又有浅变质岩系,岩石组合比较复杂,随后的工作从中解体出其他地质体(图1).

1966年,甘肃省区调队在其浅变质层位中获得了奥陶纪化石将北山杂岩修订为“奥陶-志留系”. 随后至八十年代初进行的1∶20万区域地质调查工作,将原划的北山杂岩全部解体,部分划归“奥陶-志留系”、“石炭系”、“花牛山群”、“勒巴泉群”等古生代地层,部分划归震旦系 “白湖群”、“平头山群”和“大豁落山群”(图2). 1983年,《甘肃省前元古界》指出以前所采奥陶纪化石均产在浅变质岩系中,而深变质岩系中的化石依据不充分,难以确定地层时代,对原解体划分依据提出了质疑(转引自左国朝和何国琦(1990)). 至八十年代末期进行的区域地质调查工作在北山南带(疏勒河断裂以北,墩墩山-二断井断裂以南)获得了一批原划北山杂岩的Sm⁃Nd等时线年龄(约3.2~1.6 Ga),将其解体为太古宇敦煌群、古元古界地层、长城-蓟县系地层(李志琛, 1994). 1989年,《甘肃省区域地质志》将原“北山杂岩”划归为变质程度较高的敦煌岩群及变质程度较低的“奥陶-志留系”、“石炭系”等地层;后来的《甘肃省岩石地层》(1997)亦沿用相同观念. 然而,在邻区的内蒙古北山地区,《内蒙古自治区区域地质志》(1991)将“北山杂岩”转变为“群”正式地层单位,命名为北山群,并强调其岩石地层属性,“专指那些变质程度较深,具有一定区域地质构造特征和没有直接化石依据的地层,时代置于古元古代”. 此后,《内蒙古自治区岩石地层》(1996)则将“北山杂岩”命名为“北山岩群”,指“额济纳旗北部中低级变质程度的碎屑岩及碳酸盐岩岩系,以各种片岩及大理岩为主,局部见变质安山岩和流纹岩等,时代置于古元古代”. 可见“北山杂岩”和“北山岩群”是两个概念,后者的岩石组合较前者的岩石组合范畴要小,主要以变质表壳岩为主. 另外,二者的分布范围和形成时代也有稍许差异.

后来进行的1∶5万区调工作,则将原1∶20万区调划分的古生代地层部分重新厘定为前寒武系,但命名不一,如1∶5万东涧泉和梧桐井幅将原划的奥陶-志留系重新划归前长城系老君庙群、黄尖丘群、西尖山群等. 左国朝和何国琦(1990)经过野外调查和比较分析后认为北山南带(方山口-碱泉子以南,疏勒河以北地区)的“北山杂岩”是“一套复杂的可能由不同时代沉积岩系和花岗-变质岩层组成的地质体”,遂将其解体为前长城系敦煌群、蓟县系平头山组和长城系白湖群. 上世纪九十年代末,还有一些学者对“北山杂岩”进行了重新划分,多将其解体为太古宇和元古宇地层(图1)(梅华林等, 1997). 不难看出,在早期的研究历史中,“北山杂岩”的厘定几经变更,其分布范围和形成时代以及地层归属一直争议不断(图12).

上世纪末至本世纪初,同位素年代学的运用使得“北山杂岩”的形成时代有了较为确切的依据. 部分学者运用Sm⁃Nd等时线(魏学平等, 2000; 聂凤军等, 2004)、40Ar⁃39Ar(桑海清等, 1997)或ID⁃TIMS等测年方法(梅华林等, 1998a, 1998b, 1999; 孙新春等, 2005)在“北山杂岩”中获得的时代均为前寒武纪,除一个中元古代(聂凤军等, 2004)和一个新元古代年龄(梅华林等, 1999)外,其余多集中在古元古代-新太古代.

本世纪初以来,LA⁃ICP⁃MS锆石U⁃Pb法等较高精度年代学方法得到了广泛应用,一些学者对原划北山杂岩范围内的地质体的形成时代进行了研究,取得了许多重要进展和认识. 从“北山杂岩”解体出中元古代(贺振宇等, 2015; Yuan et al., 2019Huang et al., 2022)、新元古代(姜洪颖等, 2013; Zong et al., 2017; 王红杰等, 2022)和古生代(刘雪敏等, 2010; Song et al., 2013a,2013b, 2015,,, 2016; Zheng et al., 2017,2021)等4个不同年龄段的地质体(图3);从“北山岩群”厘定出古元古代(张正平等, 2017; 徐旭明等, 2018)、中元古代(范志伟, 2015)和新元古代(杨富林等, 2016; 王振义等,2022)等不同时期的地质体. 这些新的成果认识为解剖理解“北山杂岩”提供了重要依据. 古生代增生造山产物从中被大量识别(Song et al., 2013a,2013b, 2015,, 2016; Zheng et al., 2021),~0.9 Ga和~1.4 Ga构造-热事件也在北山杂岩中被大量发现(姜洪颖等, 2013; 贺振宇等, 2015; Zong et al., 2017He et al., 2018Yuan et al., 2019),变质作用类型和变质历史也获得了较为深入的研究(Zong et al., 2017). 这些新的进展和成果引起了北山前寒武纪地质体分布范围、基底归属新的变化,影响着对北山造山带大地构造划分和构造演化等问题的认识. 同时,不同机构在编制区域地质图时对部分地区的古生代地层,尤其是奥陶系、志留系,修订为“北山杂岩”,又将其展布范围扩大. 这使得本不清楚的“北山杂岩”的属性、形成时代及其展布范围更加扑朔迷离.

3 “北山杂岩”分布范围及与邻区划分对比

修泽雷等(1964)在创名时指出“北山杂岩”大体分布在96°E~100°E,40°20′N~42°20′N的范围内(图2),并明确表示其与相邻哈密幅的敦煌杂岩在岩性、变质程度和层序上可对比. 由于当时的工作程度差异,北山杂岩向西和向东的接图延伸问题未有明确. 加之后来的1∶20万区域地质调查,将北山杂岩全部解体,使得北山杂岩不复存在. 而后来的1∶25万图幅修测、1∶20万图幅修编等工作又部分恢复了北山杂岩,加之近些年来1∶5万区域地质调查填绘出北山岩群和一些学者的调查研究,又恢复了“北山杂岩”的存在. 这些不同程度的调查研究工作促进了学界对北山杂岩的认识,同时又造成了北山杂岩的分布范围众说纷纭,制约着对造山带结构和形成演化的认识. 如,甘肃省和内蒙古自治区的总结性文献中对“北山杂岩”的存在与否持不同意见(内蒙古自治区地质矿产局, 1991, 1996; 甘肃省地质矿产局, 1989, 1997).

图3 北山及邻区前寒武纪地质体及其年龄分布图

Fig. 3 Geological Map of Precambrian geological bodies and their ages in Beishan and adjacent areas

上角标字符为参考文献序号,数值为年龄(Ma),参考文献序号如下:(1)孙新春等(2005); (2)聂凤军等(2004); (3)Song et al.(2013a); (4)牛文超等(2019); (5)徐旭明等(2018); (6)杨富林等(2016); (7)张正平等(2017); (8)刘雪敏等(2010); (9~12)Song et al.(2013b); (13)王红杰等(2022); (14)Ao et al.(2016); (15)卜涛等(2022); (16~17)魏学平等(2000); (18)范志伟(2015); (19~23)Song et al.(2013a); (24~26)Song et al.(2013b); (27)Song et al.(2014); (28)周海等(2018); (29)王红杰等(2021); (30~35)Huang et al.(2022); (36)Song et al.(2013c); (37~38)梅华林等(1998); (39)Song et al.(2013a); (40~41)余吉远等(2018); (42)程海峰等(2017); (43)Ao et al.(2016); (44~48)Song et al.(2013c); (49)左国朝等(1990); (50)杨建国等(2010); (51)Liu et al.(2011); (52~56) Yuan et al.(2015); (57) Saktura et al.(2017); (58~59)Zong et al.(2017); (60)梅华林等(1999); (61~62)Liu et al.(2011); (63)叶晓峰等(2013); (64~66)Liu et al.(2015); (67)Yuan et al.(2015); (68)He et al.(2018); (69~70)Soldner et al.(2019); (71) 于海峰等(2000); (72)杨经绥等(2006); (73)He et al.(2018); (74~79) Li et al.(2023); (80~81)李沅柏等(2021); (82~84)Wang et al.(2021b); (85)Wang et al.(2021a); (86)李志琛(1994); (87)桑海清等(1997); (88~89)姜洪颖等(2013); (90~96)Song et al.(2016); (97)Yuan et al.(2015); (98~101)Zheng et al.(2017); (102~110)Zheng et al.(2021); (111)贺振宇等(2015); (112)Zong et al.(2017); (113~121)Yuan et al.(2019); (122~125)He et al.(2018); (126)张遵忠等(2005); (127)Wang et al.(2014); (128~133)He et al.(2014); (134~135)胡霭琴等(2010); (136~137)Huang et al.(2014a); (138)Liu et al.(2015); (139~140)Huang et al.(2014b); (141) Huang et al.(2014a); (142) Zhang et al.(2016); (143~144)马军等(2021); (145~146)王振义等(2022); (147)Wang et al.(2001); (148)张少华(2019); (149)周印章等(2013); (150)吴春娇等(2022); (151~153)Su et al.(2023); (154)范超鹏(2017); (155~159)Deng et al.(2022); (160)Yu et al.(2022); (161~163)史兴俊等(2016); (164~165)卿芸(2010);(168~171)Zhang et al.(2022).部分数据未上图. 原北山杂岩范围参照《1:100万玉门幅地质图》(1964). 图a 底图据Xiao et al.(2010),图b据底图据《1∶100万中国天山及邻区地质图》(王洪亮等,2007)ix、《1:100万中国西北区地质图》(徐学义等,2016)、Song et al. (2013a,2013b2016)和王振义等(2022)修改.东天山地区的北山杂岩分布尚有争议.图中参引数据见附表1(参考文献序次相同)

笔者总结了关于北山杂岩分布范围的相关争议,以及由此引起的前寒武纪基底构造亲缘性和大地构造划分对比方面的问题. 部分问题并非由讨论北山杂岩引起,但为保论据充分、论证客观,笔者此处加入了其他前寒武纪地质体数据;并从岩石组合、碎屑锆石谱峰显示的源区时代特征、构造-热事件、Hf同位素显示的地壳增生演化信息等方面总结了北山前寒武纪地质体的前人资料,对比分析相关争议. 需要说明的是,岩石组合方面由于造山带中的前寒武纪地层往往经历了强烈的构造置换和构造作用破坏,原有的层序、层厚和接触关系通常难以保留,为此难以用层序地层学的方法对比,本文虽列举了地层剖面(图4),对比仍是粗略的. 碎屑锆石方面,为充分显示源区时代特征,我们收集了该地块其他前寒武纪地质体(如古硐井群、平头山组、大豁落山群等)的碎屑锆石数据(图5). 构造-热事件方面,已被解体为古生代的“曾被认为前寒武纪形成”的地质体未统计,且相同坐标相同岩性的年龄仅保留一例,早期的同位素等时线全岩年龄等数据未统计(图6). Hf同位素特征方面亦是仅统计了锆石年龄为前寒武纪的Hf同位素数据(图7).

3.1 北山造山带内部前寒武纪地质体的划分对比

3.1.1 南北两带对比

北山南北两带此处以牛圈子带划分,其两侧北山杂岩异同涉及到北山的大地构造划分和造山带的演化,是重要的基础地质问题. “北山杂岩”主要分布在北山中部的明水-石板井和北山南部的桥湾北-穿山驯等南北两个带(修泽雷等, 1964)i. 但关于这两个带的北山杂岩之异同,不同学者持不同观点. 如,左国朝等(1990)认为小黄山带南北两侧的前寒武纪基底存在显著差别,南侧为敦煌岩群,北侧为星星峡群. 辛后田等(2020)认为以牛圈子带为界南北两侧的前寒武纪基底物质存在显著差异,认为“北山岩群”主要分布在明水-旱山地块(白梁-三个井韧性剪切带和石板井-小黄山构造带之间),且认为牛圈子带以南的前寒武纪地质体属于敦煌地块. 王振义等(2022)对比了北山南带和中带的前寒武系副变质岩碎屑锆石谱系,发现二者虽然峰值的相对频率虽有差异,但峰值基本一致,认为其可能属同一个构造带.

首先探讨小黄山带两侧前寒武纪地质体之异同,此处仅探讨两侧相邻地块. 旱山地块和马鬃山地块的北山杂岩现多被重新厘定为北山岩群(范志伟, 2015; 杨富林等, 2016; 张正平等, 2017; 徐旭明等, 2018; 王红杰等, 2022). 岩石组合方面,马鬃山地块东七一山地区以石英岩为主的岩石组合(范志伟, 2015),在旱山地块的标山ii、基东东北部iii均有出露(图4). 马鬃山地块野马大泉附近的石英岩夹斜长角闪岩(Huang et al., 2022)在旱山地块的盐碱洼西iv和标山地区亦有出露,野马大泉发育的片麻岩在旱山地块的交叉沟地区iv有较多出露. 源区时代特征方面,黑鹰山-旱山地块的碎屑锆石以新太古代晚期为主峰,在古元古代晚期、中元古代中期和新元古代早期均有较弱的峰值,这些峰值在马鬃山地块都有体现,但相对频率和具体峰值有所差异(图5c, 5d). 构造热事件方面,二者均卷入了与Rodinia聚合裂解相关事件,但时代有一些差异,旱山地块发育~0.9 Ga的片麻状花岗岩(牛文超等, 2019),而马鬃山地块则时代稍晚(713~787 Ma;Ao et al., 2016; 王红杰等, 2021; 卜涛等, 2022)(图6d, 6e). Hf同位素特征,因两地块数据有限,较难以对比,但从有限的数据可见北山杂岩的碎屑锆石具有相似的太古代源区特征(图7d, 7e). 综上,小黄山带两侧的前寒武纪地质体的岩石组合、源区时代特征表现了一定的相似性,均卷入Rodinia的裂解过程,两者可能经历了相似的构造演化历程. 且辛后田等(2020)经过调查后认为小黄山带不具有缝合带性质. 因此,马鬃山地块和黑鹰山-旱山地块可能具有相似的前寒武纪基底.

其次,探讨牛圈子带两侧前寒武纪地质体之异同. 岩石组合方面,北山南部石板山地块的西尖山地区的老君庙群二岩组底部的变粒岩夹斜长片麻岩,上部大段斜长片麻岩和变粒岩夹云母石英片岩组合,与北带的黑鹰山-旱山地块的交叉沟地区以底部变粒岩中下部片麻岩上部变粒岩等岩石组合为特征的北山岩群基本可对比,但后者上部的变粒岩较前者缺失云母石英片岩夹层;老君庙群上部的云母石英片岩夹阳起片岩在黑鹰山-旱山地块的盐碱洼西北山岩群也有发育,但前者顶部的片麻岩组合在后者未见出露(图4). 源区时代特征方面,南北两带的前寒武纪地质体的碎屑锆石峰值均有明显的中元古代峰值特征,且均有~1.7 Ga和~1.45 Ga的峰值,但北山北带明显的~2.5 Ga峰值在南带峰值较弱,南带~0.9 Ga的峰值在北带未体现(范志伟, 2015; 杨富林等, 2016; 徐旭明等, 2018; Zheng et al., 2021Huang et al., 2022; 王红杰等, 2022). 构造热事件方面,在北山南带古堡泉(梅华林等, 1999; 杨经绥等, 2006; Liu et al., 2011; 叶晓峰等, 2013; Liu et al., 2015Yuan et al., 2015Saktura et al., 2017Zong et al., 2017Li et al., 2023)、石板墩-白墩子(姜洪颖等, 2013)、雅丹(Yuan et al., 2015)、双尖山和白山堂(Wang et al., 2021a,2021b; 李沅柏等, 2021)等地发育的新元古代早期地质体在北山北带的哈珠南山(牛文超等, 2017, 2019)、马鬃山镇北咸水沟(王红杰等, 2021)、明水东侧小孤梁(卜涛等, 2022)已有发现;而北山南带旧井等地发现的中元古代~1.4 Ga年龄信息(贺振宇等, 2015; Yuan et al., 2019)在北带标山地区亦有发现(Wang et al.,)(图6);北带发现的~1.6 Ga正变质岩(张正平等, 2017)虽在南带的古堡泉曾有报道(梅华林等, 1998a),但近年来在古堡泉大量的研究却尚未有明确的古元古代信息被发现(杨经绥等, 2006; Liu et al., 2011Qu et al., 2011; 叶晓峰等, 2013;Liu et al., 2015; Yuan et al., 2015; Saktura et al., 2017; Zong et al., 2017; He et al., 2018; Soldner et al., 2019Li et al., 2023),故南带是否存在~1.6 Ga或者其他古元古代信息还有待证实. 而且马鬃山地块与双鹰山-花牛山地块的碎屑锆石Hf同位素特征具有相似的εHft)和模式年龄TDM值范围(图7e、7f),在~0.9 Ga锆石Hf同位素特征也较相似(图7d~7g). 结合以上特征,反映北山南北两带的前寒武纪地质体可能经历了相似的构造演化历程.

3.1.2 北山南带“北山杂岩”归属

北山南带的中高级变质地质体的划分命名也是长期有争议的问题,主要是石板山地块的北山杂岩归属问题,其划分归属涉及到北山造山带的范围和边界,是北山造山带重要的基础地质问题之一. 除图2所示的石板山地块北山杂岩分布范围争议外,一些学者认为石板山地块属于敦煌地块的一部分(刘雪亚和王荃, 1995; 李景春等, 1996; 梅华林等, 1997; 何世平等, 2002; Xiao et al., 2010;杨合群等, 2010; 辛后田等, 2020). 《中国天山及邻区1∶100万地质图》v、《北山成矿带1∶50万地质矿产图》vi及《中国西北区1∶100万地质图》vii均以小草滩-帐房山为界:北侧为“北山杂岩”,南侧将白墩子、石板墩以及东涧泉、旧井地区的“北山杂岩”划为敦煌岩群,将穿山驯及旧寺墩北的“北山杂岩”划分为铅炉子沟群. 姜洪颖等(2013)和Zheng et al.(2017,2021)则认为石板墩-桥湾北-穿山驯一线为北山杂岩.

不同的划分归属暗示了不同的大地单元划分,即石板山地块是属于敦煌地块还是北山造山带,中亚造山带中段的南界是在石板山地块的北界-柳园带(Xiao et al., 2010)还是如辛后田等(2020)所言的牛圈子带还是另有其他?

我们从以下几个方面对该问题进行了梳理. 源区时代特征方面,Zheng et al.(2017)对穿山驯地区的“北山杂岩”的碎屑锆石峰值特征研究后认为,石板山地块明显的中元古代峰值特征敦煌地块并未发育,两者亲缘性较弱. 即便部分前寒武纪地块为外来岩块(Zheng et al., 1996Song et al., 2013c),也不可能源自敦煌地块. 因为敦煌地块自~1.6 Ga之后直至晚震旦世一直为构造静寂期,目前没有发现相关的岩浆-变质-沉积记录(赵燕和孙勇, 2018;康磊等,2021,2023). 构造-热事件方面,石板山地块的旧井、桥湾北和石板墩南(贺振宇等, 2015; Yuan et al., 2019)、穿山驯地区(Zheng et al., 2017)均发现了~1.4 Ga的锆石年龄信息. 地壳增生演化信息方面,姜洪颖等(2013)通过石板墩和白墩子的“北山杂岩”的锆石Hf同位素特征显示的最古老基底为古元古代,与敦煌地块具新太古代地壳基底存在明显区别,从而认为石板山地块不属于敦煌地块. 所以石板山地块仍为北山造山带的一部分,中亚造山带中段的南界不在柳园带也不在牛圈子带,而应在石板山地块的南界(图3). Yuan et al.(2019)在桥湾西侧发现的~1.4 Ga地质体以及花海西部发育的中元古代古硐井群(图3),非敦煌地块的产物,可能也是石板山地块的一部分. 那么,北山造山带南缘边界即中亚造山带中段南界可能在疏勒河至桥湾南一带(图3).

3.2 与相邻构造单元划分对比

除北山造山带内部的北山杂岩分布问题外,近年来,关于北山杂岩是否可延伸入相邻地块或构造带引起了新的讨论. 这些外延问题则不可避免地影响着地块基底亲缘性对比的问题, 主要可概括为与阿拉善地区和与中天山地块的划分对比问题.

3.2.1 与阿拉善地区的划分对比

弱水以东、恩格尔乌苏蛇绿混杂岩带以北的阿拉善北部地区,长期以来被认为是北山造山带的东延(刘雪亚, 1984; 左国朝等, 1992,2003; 王廷印等, 1994; Wu et al., 1998Liu et al., 2019). 内蒙古自治区地质矿产局(1996)指出在雅干一带有“北山岩群”分布,然而其层型、岩石组合特征和形成时代一直没有明确报道. 张维杰等(2018)viii将傲干德力格东部的大理岩、浅粒岩、变粒岩夹石英岩、片麻岩组合(原1∶20万区域地质调查所划的嘎顺陶来群)重新厘定为“北山岩群”. 王振义等(2022)在雅干南部少木尚德地区新识别出“北山岩群”,该岩群与北山地区的“北山岩群”的岩石组合、形成时代、碎屑锆石频谱均可对比,从而明确了北山地区和阿拉善北部的前寒武纪地质体在变质表壳岩方面具有一定的相似性. Deng et al.(2022)根据阿拉善北部与中天山和北山南部都发育~1.4 Ga岩浆岩且具有相似的构造环境,认为三者具有相似的构造演化历程和构造亲缘性. 本次工作发现阿拉善北部的碎屑锆石谱峰与北山地区的微陆块相比均具有中元古代碎屑锆石谱峰(图5). 此外,变质深成岩的形成时代也较为一致(图6). 例如,阿拉善北部~0.9 Ga的片麻状花岗岩(Wang et al., 2001Zhang et al., 2016; 马军等, 2021)或淡色花岗岩(周印章等, 2013)与北山北部哈珠南山地区(牛文超等, 2017,2019)以及北山南部古堡泉-白墩子-白山堂一带(梅华林等, 1999; 叶晓峰等, 2013; 姜洪颖等, 2013; Liu et al., 2015; Yuan et al., 2015; Saktura et al., 2017; Zong et al., 2017; 李沅柏等, 2021; Wang et al., 2021a,2021bLi et al., 2023)的片麻状花岗岩的形成时代较为一致;与阿拉善北部~1.4 Ga的片麻状花岗岩(范超鹏, 2017; Deng et al., 2022Yu et al., 2022)年龄类似的花岗岩在北山南带也有发现(贺振宇等, 2015; He et al., 2018; Yuan et al., 2019)(图3, 6). 而且,阿拉善北部这两期岩浆事件的Hf同位素特征也与北山地区的相一致(图7a,7f,7g). 可以看出北山地区和阿拉善北部的前寒武纪地质体表现了一定的相似性. 由于部分构造单元数据较不完善,具体的分带对比还需要更详尽的数据.

此外,在沙拉扎山构造带发育的前寒武纪地质体与北山地区也表现出了部分相似性. 在该构造带的塔木素北至笋布尔乌拉地区同样发育~1.4 Ga片麻岩(图6b)(史兴俊等, 2016);且与北山地区相同时代侵入体的Hf同位素特征大致相当(图7b, 7g)(贺振宇等, 2015; 史兴俊等, 2016; Yuan et al., 2019),可能指示沙拉扎山构造带与北山参与了同一期构造热事件. 《中国西北区1∶100万地质图》将塔木素西部的原1∶20万划分的阿拉善群划归“北山杂岩”. Zhang et al.(2015)通过同位素特征对比认为中亚造山带南缘边界应该在沙拉扎山构造带南界的查干础鲁蛇绿混杂岩带,所以沙拉扎山构造带中的前寒武纪地质体所代表的微陆块也可能是中亚造山带众多微陆块中的一个.

虽然阿拉善地块也发育~0.9 Ga岩浆事件(耿元生等, 2002, 2010),并且李景春等(1996)认为阿拉善岩群(龙首山)和“北山杂岩”均具有底部混合岩、中部片麻岩变粒岩、顶部片岩大理岩等三段式特征,两者可对比. 但我们通过碎屑锆石谱峰对比发现,阿拉善地块与中亚造山带南缘中段中的微陆块具有明显不同的区别(图5),即其缺乏中元古代峰值,主要以古元古代年龄信息为主;而且阿拉善地块在古元古代的岩浆-热事件以及古元古代晚期的变质事件(张建新和宫江华, 2018; 牛鹏飞等, 2022a)在北山微陆块中也不可寻迹,所以可以排除两者的相关性.

通过以上变质表壳岩的岩石组合和变质深成岩的形成时代所代表的构造热事件等信息,北山地区的部分前寒武纪地质体可与阿拉善北部进行对比,而阿拉善中部和南部可能也参与了相似的构造-热事件,然而北山和阿拉善地区的前寒武纪构造格架和演化历史还需要进一步研究.

3.2.2 与中天山地块划分对比

左国朝等(1990)、左国朝和何国琦(1990)认为北山旱山、微波山地区的“北山杂岩”,与东疆阿克苏南玉山一带中天山的中元古界星星峡群的中、下部岩石组合极为相似,并认为明水-旱山地块的褶皱基底即是长城系星星峡群. 左国朝等(1992)认为中天山地块与北山中部的明水-旱山地块具有相同的前寒武纪基底-星星峡群. 刘雪亚和王荃(1995)认为马鬃山地块(马鬃山-月牙山一线以南,花牛山北至鹰嘴红山一线以北的地区)与伊犁、哈密和卡瓦布拉克等地块具有相似的结晶基底和沉积盖层. 《中国天山及邻区地质图》ix认为“北山杂岩”延伸至中天山地区. 部分学者认为北山南带和中天山地区均发育中元古代、新元古代侵入岩,两者可能经历了相似的前寒武纪演化历史以及拥有相似的前寒武纪基底(Yuan et al., 2015,2019; 贺振宇等, 2015; He et al., 2018). Zong et al.(2017)通过探究北山南部北山杂岩的变质历史和变质作用特征,认为北山南部的石榴石片岩可能在新元古代早期经历了高达麻粒岩相的高级变质作用,代表了俯冲增生过程;并结合中天山广泛发育的~0.9 Ga弧岩浆岩,认为北山南部和中天山在新元古代早期存在一个沿Rodinia超大陆周缘最终聚合时形成的陆缘弧. 李铨等(2002)认为东天山的前寒武基底岩系已延至甘肃北山明水-盐池东山-勒巴泉一带,但明确指出东天山地区与北山的前寒武纪地质体有着显著区别. Song et al.(2013c)认为北山南部的前寒武纪岩石与中天山地块的变质碎屑岩源区时代特征不同,认为北山造山带不是中天山的东延.

我们从岩石组合、源区时代特征和构造-热事件序列等方面进行了北山以及中天山地块东段前寒武纪地质体的对比. 首先,岩石组合方面,星星峡岩群底部的混合岩夹斜长片麻岩与北山南部西尖山地区的老君庙群(原划北山杂岩)一岩组底部的混合岩和片麻岩组合相似,且其顶底的大理岩也可与星星峡对比,星星峡群顶部的大理岩在标山地区发育,但星星峡地区发育的大段混合岩在北山地区鲜少出露(图4). 碎屑锆石方面,北山及中天山东段的源区时代特征均具有中元古代和新元古代早期峰值特征(图5). 再者,二者均发育~1.4 Ga和~0.9 Ga构造-热事件(图6);而且,这两期岩浆事件的Hf同位素特征也大致相当(图7g, 7h). 所以中天山与北山的各地块可能经历了相似的前寒武纪历史,但目前还需要进一步的工作,尤其是构造地质和古地磁等方面的工作限定.

4 北山杂岩所在地块的基底属性

造山带中一些前寒武纪地质体常被当作所在构造单元的前寒武纪基底,用于探讨其所在微陆块的属性. 由于多期构造及岩浆活动改造,这些前寒武纪地质体通常范围小、露头不连续,给造山带的基底划分对比造成极大困难(陆松年等, 2001),致使对造山带中微陆块的基底属性产生许多分歧. 近年来从“北山杂岩”中解体出不同时代的地质体,对其归属和构造演化出现了不同的认识,已成为北山造山带研究的重要问题之一.

4.1 与相邻克拉通的关系

一些学者多认为北山的微陆块是从塔里木克拉通裂离出去的(图8I)(左国朝等, 1990, 1992, 2003; 刘雪亚和王荃, 1995; 李景春等, 1996; 龚全胜等, 2003; Li et al., 2022). 近年来,多数学者运用碎屑锆石显示的源区时代特征或变质深成岩的形成时代以及锆石Hf同位素特征进行基底亲缘性探讨工作,认为北山造山带的前寒武纪岩石的物源与地壳增生演化特征与塔里木克拉通相似性较差(Song et al., 2013a,2013c; 姜洪颖等, 2013; 贺振宇等, 2015; Yuan et al., 2015Zheng et al., 2017). 但Liu et al.(2015)根据中天山东段、北山南部和塔里木均具有~0.9 Ga的变质深成岩,认为新元古代早期北山南带、中天山地块和塔里木克拉通位于Rodinia超大陆的周缘;Zong et al.(2017)则持相同观点,但将塔里木克拉通排除在外. 周海等(2018)认为北山造山带在中元古代中期(~1.45 Ga)之前与敦煌地块可能具有统一的前寒武纪基底,在中元古代末期(~1.1 Ga)之前显示多源区特征,与塔里木克拉通不同,但与蒙古地块相似. 王振义等(2022)通过雅干南部的“北山岩群”的碎屑锆石频谱特征对比认为阿拉善北部的前寒武纪岩石基底归属与塔里木克拉通关系较弱.

本次工作发现北山中的微陆块以明显具有中元古代峰值特征与塔里木克拉通北缘相区别(图5),而且塔里木北缘具有古元古代岩浆-热事件,但在中亚造山带南缘中段的微陆块却无响应(图6),所以二者相似性较弱. 但是也发现这些微陆块中的新太古代-古元古代碎屑锆石Hf同位素特征与塔里木克拉通北缘表现出相似特征(图7),考虑到全球多数克拉通在~2.7 Ga、~2.5 Ga、~2.1 Ga、~1.9 Ga和~1.7 Ga都经历了相似的地壳增生事件(Condie et al., 2009),这些微陆块与古老克拉通的关系还有待进一步考证.

同样的,西伯利亚克拉通无中元古代源区时代特征(王振义等, 2022),可以排除其相关性. 华北克拉通虽然显现了一些中元古代峰值特征(Dong et al, 2023),但其中元古代岩浆岩的时代、构造环境(耿元生等,2020)却与研究区不相符,也可以排除其相关性. 但中亚造山带南缘中段的这些微陆块在源区时代特征等方面表现出与波罗的克拉通有一定的相似性(图5)(He et al., 2018Huang et al., 2022),其构造热事件和地壳演化增生信息以及具体的构造演化历史还有待进一步研究.

4.2 基底归属相关争议

在北山造山带的研究中,关于其中的微陆块的源区以及这些微陆块的前寒武纪基底属性是北山造山带大地构造演化探讨的主要焦点之一. 由于北山杂岩宽泛的岩石组合、分布范围宽广(图3),而且不同历史阶段测试手段不同、研究程度不同,对北山造山带基底归属产生了诸多认识.

早期所获的北山杂岩的形成时代多为新太古代-古元古代年龄(左国朝和何国琦, 1990; 李志琛, 1994; 桑海清等, 1997; 梅华林等, 1998a; 魏学平等, 2000; 孙新春等, 2005),致使一部分学者认为北山造山带中的微陆块具有统一的前寒武纪基底(左国朝等, 1990, 1992, 2003; 李景春等, 1996; 刘雪亚和王荃, 1995; 代双儿, 2001; 龚全胜等, 2002, 2003; 何世平等, 2002, 2005). 随后,一些学者从中识别出古生代地质体(刘雪敏等, 2010; Song et al., 2013a,2013b; Zheng et al., 2017, 2021),对北山杂岩所代表的前寒武纪基底提出了质疑. 如,部分学者从原划北山杂岩中解体出古生代地质体,从而认为北山杂岩形成于显生宙俯冲增生过程(Song et al., 2013a,2013bZheng et al., 2021),北山造山带没有统一的变质基底(Song et al., 2013a)或北山造山带的前寒武纪基底较原认为面积要小,一些前寒武纪的岩石可能源自卷入活动大陆边缘俯冲增生杂岩里的大陆板片,而不是微大陆(Song et al., 2016). Song et al.(2013c)调查了北山南带原认为是北山杂岩上覆盖层的前寒武纪岩石的锆石U-Pb和Hf同位素特征,获得了其形成时代主要为前寒武纪,但作为基底的北山杂岩却是古生代(Song et al., 2013a,2013b),加之该区存在大规模推覆作用(左国朝等, 1991; Zheng et al., 1996),认为这些前寒武纪地质体可能是外来推覆体. 最近,一些学者又提出了统一地块认识. 如,He et al.(2018)通过北山造山带主要地块产出的中元古代至早中生代花岗岩的锆石U⁃Pb和Hf同位素特征分析,认为北山造山带的这些弧性质的地体源自一个统一陆壳基底(图8III). 王振义等(2022)分析了雅干南部前寒武纪碎屑锆石频谱特征并与邻区对比后认为雅干地区和北山地区具有相近的源区,可能源自一个统一陆块.

一些学者认为北山造山带中的微陆块与相邻地块具有相似的前寒武纪基底. 如,左国朝等(1990)认为北山地区的明水-旱山“微大陆”(原文原称,下同)是中天山的东延部分,阿拉善北部可能是中天山的东延. 左国朝等(1992)认为旱山“微大陆”与中天山构造带两者的变质岩系岩石组合及花岗岩类岩浆活动极为相似,是同一个构造带的产物,将其统称为“中天山微大陆”,可能向东断续与南蒙古微大陆连为一体. 刘雪亚和王荃(1995)认为北山中部的马鬃山“地体”与伊犁、哈密、卡瓦布拉克等地块在早古生代时可能为统一地体. 李铨等(2002)认为东天山前寒武纪基底岩系已延至甘肃北山明水-盐池东山-勒巴泉一带,将其作为一个单独的大地构造单元,称为“东天山古陆”. He et al.(2018)将北山的统一陆壳基底称为“柳园大陆地体”(Liuyuan continental terrane);该地体还显示了中元古代(~1.4 Ga)年轻地壳增生的典型特征,其构造残片散布于中亚造山带南缘超过上千公里范围. Yuan et al.(2019)同样关注了北山南部的~1.4 Ga的岩浆事件,并结合区域资料认为该岩浆事件在中亚造山带南缘东至锡林郭勒地块,西至吉尔吉斯斯坦的北天山,长达3 000 km范围内可追溯;并结合岩石地球化学数据认为1 450~1 360 Ma期间为Nuna超大陆边缘由挤压向伸展环境转变时期.

还有一些学者认为北山造山带中的微陆块与中亚造山带内的其他地块具有相似的前寒武纪基底. 如,Yue et al.(2001)根据北山和兴蒙造山带的蛇绿岩和岩石构造单元特征对比,认为北山地区的旱山微陆块可与兴蒙造山带的锡林浩特地块对比. 辛后田等(2020)认为北山中部的马鬃山“微陆块”与东部的阿拉善地块、宝音图地块及锡林浩特微陆块可能属于同一块体的裂离体. 张振法等(1997)根据阿拉善北部(查干础鲁蛇绿混杂岩带以北地区)与北山地区具有一致的负磁异常和高重力背景,认为阿拉善-敦煌是在前寒武纪就已形成陆壳的刚性块体.

对于前寒武纪地质体的源区和构造样式亦有争议. Xiao et al.(2010)认为前寒武纪时北山地区存在敦煌、双鹰山和旱山等地块,被大洋分隔开(图8II). Zheng et al.(2017)Song et al.(2013c)分析了北山南部的前寒武纪变质表壳岩的碎屑锆石频谱特征认为北山造山带前寒武系源区应该是多源的,非单一块体来源. 多源区模式暗示了群岛多陆块增生拼贴模式(Kröner et al., 2007Windley et al., 2007). 单一源区则可能暗示了由俯冲板块后撤引起的拉张占主导作用,形成了后撤型造山带(He et al., 2018),也可能指示相同的前寒武纪基底被逆冲冲断叠置或不同微陆块体经历了相似的演化历程.

5 前寒武纪演化探讨

通过以上分析对比,中亚造山带南缘中段的这些微陆块在前寒武纪碎屑锆石谱峰、岩浆-热事件和锆石Hf同位素特征等方面均具有一定的相似性,推测其可能经历了相似的前寒武纪演化历史,可能源自一个古大陆. 从碎屑锆石年龄统计直方图中可以看出这些微陆块有一些古元古代峰值和零星的新太古代年龄(图5),但缺乏相应的地质实体或构造-热事件. 由此推测,北山微陆块可能源于一个更古老的大陆或接受了一个更古老大陆的物源,或者其具有更古老的地质体存在尚缺乏证据证实. 无论在北山还是阿拉善北部地区的微陆块,均发现大量的1.8~1.6 Ga的谱峰,说明其物源区可能参与了Columbia的聚合事件(图8IVa)(Zhao et al., 2003,2004Meert and Santosh, 2017). 从~1.6 Ga开始北山、中天山东段和阿拉善北部的各微陆块的前寒武纪碎屑锆石谱峰与周围克拉通开始出现差异,即表现为北山含有大量的1.5~1.1 Ga的碎屑锆石谱峰和~1.4 Ga的岩浆事件,而塔里木、华北克拉通及阿拉善地块、敦煌地块则明显缺少这一信息,推测该时期这些微陆块从Columbia超大陆裂解时期分离出去(Rogers and Santosh, 2002Zhao et al., 2003),与周围克拉通和古老地块发生了不同的构造演化历史(图8IVb). ~1.4 Ga时期的岩浆事件被认为与岩浆弧环境有关(胡霭琴等, 2006; He et al., 2015,2018Deng et al., 2022),Wang et al.(2024)最近在标山地区也获得了~1.4 Ga的年龄信息,推测该时期在北山的南部和北部(现地理坐标)均为俯冲相关构造环境(图8IVc). 中元古代中晚期,北山南部双鹰山-花牛山地区以及北山中部野马大泉沉积的古硐井群、平头山组等中元古代地层(Song et al., 2013cHuang et al., 2022),无论从碎屑锆石谱峰特征还是岩石组合方面均显示了被动陆缘特征(Cawood et al., 2012),在约1.3~1.0 Ga长达数亿年无岩浆活动记录,但有碎屑锆石谱峰显示,推测可能为弧后有限洋盆沉积(图8IVd). 中亚造山带南缘中段的这些微陆块以及塔里木北缘广泛发育的~0.9 Ga的构造热事件(图3, 6),显然参与了Rodinia超大陆的汇聚过程(图8IVe;Huang et al., 2014aWang et al., 2014Liu et al., 2015; Yuan et al., 2015; Zong et al., 2017Wang et al., 2021a,2021b; 马军等, 2021),随后逐步裂解(图8IVf; 叶晓峰等, 2013; 汤志敏和孟凡敏, 2014; 牛文超等, 2019; 卜涛等, 2022). 而牛圈子带两侧的大陆冰川沉积的洗肠井群显示了在震旦系该地区仍为陆地(左国朝等, 1993). 在此冰川作用晚期,在红柳河北、破城山及洗肠井南等地出现了中基性火山活动,为大陆裂解的先兆(何世平等, 2005). 而最早的蛇绿混杂岩带年龄记录发生在寒武纪(张元元和郭召杰, 2008; Ao et al., 2012; 侯青叶等, 2012; Cleven et al., 2014; 胡新茁等, 2015; Shi et al., 2018),说明在寒武纪时以牛圈子带和小黄山带所代表的大洋已经拉开,随后进入古生代俯冲增生碰撞的演化历程中(图8IVg).

需要指出的是,笔者所探讨的北山地区前寒武纪演化历史仅根据现有的数据进行地推演. 由于造成物源阻隔变化的原因有很多,并非只有大陆裂解、大洋阻隔物源形成不同的碎屑锆石谱峰;而且前寒武纪的地质体大多经历了后期改造,地质记录并不完整. 以上的演化模型随着工作深入新数据的发掘亟待修正.

6 结论

中亚造山带南缘中段的北山杂岩具有复杂的组成和年代学信息,其内涵与外延随着研究手段的提高而有不同的内容. 原始的“北山杂岩”既有深变质岩系又有浅变质岩系,既包括了前寒武纪地质体又有显生宙地质体,且其分布范围几经变化. 为避免不必要的争议,在使用该名词时应尤为谨慎.

中亚造山带南缘中段一些微陆块的前寒武纪基底,在源区时代特征、构造-热事件序列和地壳演化增生信息等方面具有相似性,可能指示这些微陆块源于一个不同于塔里木、华北克拉通的大陆,~1.6 Ga时期从Columbia裂解,并参与了Rodinia的汇聚过程,古生代增生演化过程可能是在此Rodinia大陆裂解出的多个微陆块基础上演化的.

i.修泽雷, 赵祥生, 王建中, 唐海清, 1964. 玉门幅K⁃47 1/100万地质图说明书. 全国地质资料馆: 1-110.

ii. 河北省区域地质矿产调查研究所,2016.标山幅地质图及其说明书.

iii. 河北省区域地质矿产调查研究所,2016.基东、尖山、蒜井子、三道明水等四幅1∶5万区域地质调查报告.

iv. 首钢地质勘查院地质研究所, 2015.千条沟、盐碱洼、沙河北、十九号西、萤石矿等五幅1∶5万区域地质矿产调查报告.

v. 王洪亮, 徐学义, 何世平, 陈隽璐,杨军录,于浦生,潘晓萍,李向民,马中平,朱宝清,李小侠, 2007. 中国天山及邻区地质图(1∶1 000 000),北京:地质出版社.

vi. 李向民,张占武,王国强,冯晓强,杨应章,陈榕,梁积伟, 2016. 北山成矿带地质矿产图(1∶500 000).西安地调中心,内部资料.

vii. 徐学义, 张二朋, 王洪亮, 陈隽璐, 李智佩, 马中平, 李婷, 李晓英, 朱涛, 白建科, 杨应章, 张保平, 李小侠, 2016.中国西北区地质图(1∶1 000 000).

viii. 张维杰, 周洪瑞, 程捷, 王行军, 王小牛, 尹海权, 安令坤, 吕秉廷, 肖胶, 宋伟, 王艳凯, 赵捷. 2018. 阿拉善地区古生代大地构造格架和构造演化. 中国地质大学(北京), 北京, 1-338.

ix. 王洪亮, 徐学义, 何世平, 陈隽璐,杨军录,于浦生,潘晓萍,李向民,马中平,朱宝清,李小侠. 2007. 中国天山及邻区地质图(1∶1 000 000),北京:地质出版社.

x. 甘肃省地质局第一区域地质测量队.1966.1∶20万星星峡幅(K4624)区域地质调查报告.

参考的1∶20万图件如下:

甘肃省地质局第二区域地质测量队, 1970. 1∶20万明水幅(K4713)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1971. 1∶20万红石山幅(K4714)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1980. 1∶20万黑鹰山幅(K4715)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1979. 1∶20万六驼山幅(K4716)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1980. 1∶20万嘎顺淖尔幅(K4717)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1980. 1∶20万索果淖幅(K4718)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1969. 1∶20万牛圈子幅(K4719)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1971. 1∶20万公婆泉幅(K4720)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1972. 1∶20万石板井幅(K4721)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1979. 1∶20万路井幅(K4722)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1982. 1∶20万建国营幅(K4723)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1982. 1∶20万额济纳旗幅(K4724)区域地质图及调查报告.

甘肃省地质局第一区域地质测量队,1967. 1∶20万安北幅(K4725)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1969. 1∶20万后红泉幅(K4726)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1971. 1∶20万红柳大泉幅(K4727)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1979. 1∶20万五道明幅(K4728)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1982. 1∶20万湖西新村幅(K4729)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1982. 1∶20万务桃亥幅(K4730)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1969. 1∶20万报恩寺幅(K4731)区域地质图及调查报告.

甘肃省地质局第二区域地质测量队,1972. 1∶20万玉门镇幅(K4732)区域地质图及调查报告.

甘肃省地质局第一区域地质测量队,1969. 1∶20万旧寺墩幅(K4733)区域地质图及调查报告.

甘肃省地质局第一区域地质测量队,1969. 1∶20万天仓幅(K4734)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1982. 1∶20万咸水幅(K4735)区域地质图及调查报告.

甘肃省地质局地质力学区域测量队,1982. 1∶20万古鲁乃幅(K4736)区域地质图及调查报告.

参考文献

[1]

Andersen, T., Laajoki, K., Saeed, A., 2004. Age, Provenance and Tectonostratigraphic Status of the Mesoproterozoic Blefjell Quartzite, Telemark Sector, Southern Norway. Precambrian Research, 135(3): 217-244. https://doi.org/10.1016/j.precamres.2004.08.006

[2]

Ao, S., Xiao, W., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149: 606-625. https://doi.org/10.1017/S0016756811000884.

[3]

Ao, S., Xiao, W., Windley, B., et al., 2016. Paleozoic Accretionary Orogenesis in the Eastern Beishan Orogen: Constraints from Zircon U⁃Pb and 40Ar/39Ar Geochronology. Gondwana Research, 30: 224-235. https://doi.org/10.1016/J.GR.2015.03.004

[4]

Bao, C., Chen, Y.L., Li, D.P., 2013. LA⁃MC⁃ICP⁃MS Zircons U⁃Pb Dating and Hf Isotopic Compositions of the Paleoproterozoic Amphibolite in Bayan Ul Area, Inner Mongolia. Geological Bulletin of China, 32(10): 1513-1524 (in Chinese with English abstract).

[5]

Bingen, B., Nordgulen, Ø., Sigmond, E. M. O., et al., 2003. Relations between 1.19-1.13 Ga Continental Magmatism, Sedimentation and Metamorphism, Sveconorwegian Province, S Norway. Precambrian Research, 124(2/3/4): 215-241. https://doi.org/10.1016/S0301⁃9268(03)00087⁃1

[6]

Bu, T., Wang, G.Q., Huang, B.T., et al., 2022. Neoproterozoic A⁃Type Granites in Northern Beishan Orogenic Belt: Early Response of the Rodinia Supercontinent Break⁃Up. Acta Petrologica Sinica, 38(10): 2988-3002 (in Chinese).

[7]

Bureau of Geology and Mineral Resources of Gansu Province, 1989. Regional Geological Records of Gansu Province. Geological Publishing House, Beijing(in Chinese with English brief text)

[8]

Bureau of Geology and Mineral Resources of Gansu Province, 1997. Stratigraphy (Lithostratic) of Gansu Province. China University of Geosciences Press, Wuhan,11-34(in Chinese).

[9]

Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region,1991. Regional Geological Records of Inner Mongolia Autonomous Region. Geological Publishing House,Beijing,32-70(in Chinese with English brief text).

[10]

Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region,1996. Stratigraphy (Lithostratic) of Nei Mongol Autonomous Region. China University of Geosciences Press,Wuhan,64-70(in Chinese).

[11]

Cawood, P., Hawkesworth, C., Dhuime, B., 2012. Detrital Zircon Record and Tectonic Setting. Geology, 40(10): 875-878. https://doi.org/10.1130/g32945.1

[12]

Chen, Y., Wu, T. R., Gan, L. S., et al., 2019. Provenance of the Early to Mid⁃Paleozoic Sediments in the Northern Alxa Area: Implications for Tectonic Evolution of the Southwestern Central Asian Orogenic Belt. Gondwana Research, 67: 115-130. https://doi.org/10.1016/j.gr.2018. 10.017

[13]

Cheng, H. F., Xu, X. M., Liu, G., et al., 2017. LA⁃ICP⁃MS U⁃Pb Geochronology of Detrital Zircons from the Gudongjing Complex⁃Group in Pantuoshan Area of Beishan Region within Inner Mongolia during Changchengian Period and its Geological Significance. Geological Bulletin of China, 36(8):1385-1392 (in Chinese with English abstract).

[14]

Cleven, N., Lin, S. F., Guilmette, C., et al., 2014. Petrogenesis and Implications for Tectonic Setting of Cambrian Suprasubduction⁃Zone Ophiolitic Rocks in the Central Beishan Orogenic Collage, Northwest China. Journal of Asian Earth Sciences, 113: 369-390. https://doi.org/10.1016/J.JSEAES.2014.10.038

[15]

Condie, K., Belousova, E., Griffin, W., et al., 2009.Granitoid Events in Space and Time: Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15: 228-242. 10.1016/j.gr.2008.06.001

[16]

Dai, S.E., 2001. The Evolution of Plate Tectonic and Its Copper and Multi⁃Metal Metallogenic Series in Beishan Region. Journal of Lanzhou University, 37(6): 112-120 (in Chinese with English abstract).

[17]

Dai, W.J., Gong, Q.S., 2000. Redividing of “Lebaquan Group” in Beishan Area of Gansu Province and Its Geological Implication. Acta Geologica Gansu, 9(1): 23-29 (in Chinese with English abstract).

[18]

Dan, W., Li, X. H., Guo, J. H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China: Evidence from in Situ Zircon U⁃Pb Dating and Hf⁃O Isotopes. Gondwana Research, 21: 838-864. https://doi.org/10.1016/j.gr.2011.09.004

[19]

Deng, W. B., Shao, Z. G., Xu, H. J., et al., 2022. Tectonic Affinity of the Zhusileng⁃Hangwula Belt in the Northern Alxa Area: Evidence from the Zircon U⁃Pb Ages and Hf Isotopic Compositions of the Mesoproterozoic (~1.4 Ga) Igneous Rocks. Geological Journal, 57(11): 4451-4473. https://doi.org/10.1002/gj.4551

[20]

Dong, C. Y., Liu, D. Y., Li, J. J., et al., 2007. Palaeoproterozoic Khondalite Belt in the Western North China Craton: New Evidence from SHRIMP Dating and Hf Isotope Composition of Zircons from Metamorphic Rocks in the Bayan Ul⁃Helan Mountains Area. Chinese Science Bulletin, 52(21): 2984-2994. https://doi.org/10.1007/s11434⁃007⁃0404⁃9

[21]

Dong, Y. M., Zuo, P. F., Xiao, Z. H., et al., 2023. A Database of Detrital Zircon U⁃Pb Ages in the North China Craton from the Paleoproterozoic to the Early Palaeozoic. Geoscience Data Journal, 11(4): 365-373. https://doi.org/10.1002/gdj3.192

[22]

Fan, Z.W., 2015. Formation Period of Quartzite of Beishan Group in Ejina Banner, Inner Mongolia⁃LA⁃ICP⁃MS Zircon U⁃Pb Dating Evidence. Contributions to Geology and Mineral Resources Research, 30(4): 575-581 (in Chinese with English abstract).

[23]

Geng, Y.S., Kuang, H.W., Du, L.L., et al., 2020. The Characteristics of Meso⁃Neoproterozoic Magmatic Rocks in North China, South China and Tarim Blocks and Their Significance of Geological Correlation. Acta Petrologica Sinica, 36(8): 2276-2312 (in Chinese with English abstract).

[24]

Geng, Y.S., Wang, X.S., Shen, Q.H., et al., 2002. The Discovery of Neoproterozoic Jinningian Deformed Granites in Alax Area and Its Significance. Acta Petrologica et Mineralogica, 21(4): 412-420 (in Chinese with English abstract).

[25]

Geng, Y.S., Zhou, X.W., 2010. Early Neoproterozoic Granite Events in Alax Area of Inner Mongolia and Their Geological Significance: Evidence from Geochronology. Acta Petorlogica et Mineralogica, 29(6): 779-795 (in Chinese with English abstract).

[26]

Gong, J. H., Zhang, J. X., Wang, Z. Q., et al., 2015. Origin of the Alxa Block, Western China: New Evidence from Zircon U⁃Pb Geochronology and Hf Isotopes of the Longshoushan Complex. Gondwana Research, 36: 359-375. https://doi.org/10.1016/j.gr.2015.06.014

[27]

Gong, J.H., Zhang, J.X., Yu, S.Y., 2011. The Origin of Longshoushan Group and Associated Rocks in the Southern Part of the Alxa Block: Constraint from LA⁃ICP⁃MS U⁃Pb Zircon Dating. Acta Petrologica et Mineralogica, 30(5): 795-818 (in Chinese with English abstract).

[28]

Gong, J.H., Zhang, J.X., Yu, S.Y., et al., 2012. Ca. 2.5 Ga TTG Rocks in the Western Alxa Block and Their Implications. Chinese Science Bulletin, 57(31): 4064-4076.

[29]

Gong, Q.S., Liu, M.Q., Li, H.L., et al., 2002. The Type and Basic Characteristics of Beishan Orogenic Belt, Gansu. Northwestern Geology, 35(3): 28-34 (in Chinese with English abstract).

[30]

Gong, Q.S., Liu, M.Q., Liang, M.H., et al., 2003. The Tectonic Facies and Tectonic Evolution of Beishan Orogenic Belt, Gansu. Northwestern Geology, 36(1): 11-17 (in Chinese with English abstract).

[31]

He, S.P., Ren, B.C., Yao, W.G., et al., 2002. The Division of Tectonic units of Beishan Area, Gansu⁃Inner Mongolia. Northwestern Geology, 35(4): 30-40 (in Chinese with English abstract).

[32]

He, S.P., Zhou, H.W., Ren, B.C., et al., 2005. Early Neoproterozoic Granite Events in Alax Area of Inner Mongolia and Their Geological Significance: Evidence from Geochronology. Northwestern Geology, 38(3): 6-15 (in Chinese with English abstract).

[33]

He, Z. Y., Klemd, R., Yan, L. L., et al., 2018. The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt. EarthScience Reviews, 185: 1-14. https://doi.org/10.1016/j.earscirev.2018.05.012

[34]

He, Z. Y., Klemd, R., Zhang, Z. M., et al., 2015. Mesoproterozoic Continental Arc Magmatism and Crustal Growth in the Eastern Central Tianshan Arc Terrane of the Southern Central Asian Orogenic Belt: Geochronological and Geochemical Evidence. Lithos, 236: 74-89. https://doi.org/10.1016/J.LITHOS.2015.08.009

[35]

He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190: 485-499. https://doi.org/10.1016/j.lithos.2013.12.023

[36]

He, Z.Y., Sun, L.X., Mao, L.J., et al., 2015. Zircon U⁃Pb and Hf Isotopic Study of Gneiss and Granodiorite from the Southern Beishan Orogenic Collage: Mesoproterozoic Magmatism and Crustal Growth. Chinese Science Bulletin, 60(4):389-399 (in Chinese with English abstract).

[37]

Hou, Q.Y., Wang, Z., Liu, J.B., et al., 2012. Geochemistry Characteristics and SHRIMP Dating of Yueyashan Ophiolite in Beishan Orogen. Geoscience, 26(5): 1008-1018 (in Chinese with English abstract).

[38]

Hu, A.Q., Wei, G.J., Deng, W.F., et al., 2006. 1.4 Ga SHRIMP U⁃Pb Age for Zircons of Granodiorite and Its Geological Significance from the Eastern Segment of the Tianshan Mountains, Xinjiang, China. Geochimica, 35(4): 333-345 (in Chinese with English abstract).

[39]

Hu, X,Z., Zhao, G.C., Hu, X.R., et al., 2015. Geological Characteristics, Formation Epoch and Geotectonic Significance of the Yueyashan Ophiolitic Tectonic Mélange in Beishan Area, Inner Mongolia. Geological Bulletin of China, 2015, 34(2/3): 425-436(in Chinese with English abstract).

[40]

Huang, B. T., He, Z. Y., Zhang, Z. M., et al., 2014a. Early Neoproterozoic Granitic Gneisses in the Chinese Eastern Tianshan: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 113: 339-352. https://doi.org/10.1016/j.jseaes.2014.08.021

[41]

Huang, B. T., He, Z. Y., Zong, K. Q., et al., 2014b. Zircon U⁃Pb and Hf Isotopic Study of Neoproterozoic Granitic Gneisses from the Alatage Area, Xinjiang: Constraints on the Precambrian Crustal Evolution in the Central Tianshan Block. Chinese Science Bulletin, 59(1): 100-112. https://doi.org/10.1007/s11434⁃013⁃0010⁃y

[42]

Huang, B. T., Wang, G. Q., Li, X. M., et al., 2022. Precambrian Tectonic Affinity of the Beishan Orogenic Belt: Constraints from Proterozoic Metasedimentary Rocks. Precambrian Research, 376. https://doi.org/10.1016/j.precamres.2022.106686

[43]

Huang, B.T., Wang, G.Q., Wang, J.L., et al., 2023. Sedimentary Age, Provenance and Tectonic Implications of the diamictite in Pochengshan Area, Beishan: Constraints from Detrital Zircon U⁃Pb Dating and Hf Isotope. Acta Geologica Sinica, 97(10): 3213-3224 (in Chinese with English abstract).

[44]

Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100.

[45]

Jahn, B.M., Windley, B., Natal'in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23: 599-603. https://doi.org/10.1016/s1367⁃9120(03)00124⁃x

[46]

Jiang, H.Y., He, Z.Y., Zong, K.Q., et al., 2013. Zircon U⁃Pb Dating and Hf Isotopic Studies on the Beishan Complex in the Southern Beishan Orogenic Belt. Acta Petrologica Sinica, 29(11): 3949-3967 (in Chinese with English abstract).

[47]

Jiang, S.H., Liang, Q.L., Nie, F.J., et al., 2014. A Preliminary Study of Zircon LA⁃MC⁃ICP⁃MS U⁃Pb Ages of the Shuangjingzi Complex in Linxi, Inner Mongolia. Geology in China, 41(4):1108-1123 (in Chinese with English abstract).

[48]

Kang, L., Li, T.H., Wang, J., et al., 2021. Discovery of Late Sinian⁃Early Cambrian Sedimentary Strata in Dunhuang Area and Its Tectonic Significances. Acta Petrologica Sinica, 37(7): 2103-2122 (in Chinese with English abstract).

[49]

Kang, L., Wang, T., Li, T.H., et al., 2023. Cambrian⁃Early Ordovician Intrusive Bodies in Dunhuang Block: Records of Paleo⁃Asian Ocean Subduction and Implications for Regional Early Paleozoic Tectonic Evolution. Acta Petrologica Sinica, 39(3): 823-844 (in Chinese with English abstract)

[50]

Kröner, A., Alexeiev, D. V., Kovach, V. P., et al., 2017a. Zircon Ages, Geochemistry and Nd Isotopic Systematics for the Palaeoproterozoic 2.3⁃1.8 Ga Kuilyu Complex, East Kyrgyzstan: the Oldest Continental Basement Fragment in the Tianshan Orogenic Belt. Journal of Asian Earth Sciences, 135: 122-135. https://doi.org/10.1016/j.jseaes. 2016.12.022

[51]

Kröner, A., Kovach, V., Alexeiev, D., et al., 2017b. No Excessive Crustal Growth in the Central Asian Orogenic Belt: Further Evidence from Field Relationships and Isotopic Data. Gondwana Research, 50: 135-166. https://doi.org/10.1016/j.gr.2017.04.006

[52]

Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1): 103-125. https://doi.org/10.1016/j.gr.2012.12.023

[53]

Kröner, A., Windley, B., Badarch, G., et al., 2007. Accretionary Growth and Crust⁃Formation in the Central Asian Orogenic Belt and Comparison with the Arbian-Nubian Shield. Memoir of the Geological Society of America, 200: 181-209. https://doi.org/10.1130/2007.1200(11)

[54]

Li, J., Wu, C., Chen, X. H., et al., 2022. Tectonic Evolution of the Beishan Orogen in Central Asia: Subduction, Accretion, and Continent⁃Continent Collision during the Closure of the Paleo⁃Asian Ocean. Geological Society of America Bulletin, 135(3/4): 819-851. https://doi.org/10.1130/B36451.1

[55]

Li, J., Wu, C., Chen, X. H., et al., 2023. Tectonic Setting of Metamorphism and Exhumation of Eclogite⁃Facies Rocks in the South Beishan Orogen, Northwestern China. Geosphere, 19(1):100-138.

[56]

Li, J.C., Zhao, A.S., Cui, H.W., 1996. The Characteristics of Geological Tectonic in the North Belt of Beishan. Journal of Precious Metallic Geology, 5(1): 59-68 (in Chinese with English abstract).

[57]

Li, J.Y., Zhang, J., Yang, T.N., et al., 2009. Crustal Tectonic Division and Evolution of the Southern Part of the North Asian Orogenic Region and Its Adjacent Areas. Journal of Jilin University (Earth Science Edition), 39(4): 584-605 (in Chinese with English abstract).

[58]

Li, Q., Yu, H.F., Xiu, J.Y., 2002. On Precambrian Basement of the Eastern Tiansan Mountains, Xinjiang. Xinjiang Geology, 20(4): 346-351 (in Chinese with English abstract)..

[59]

Li, Q.G., Liu, S.W., Song, B., et al., 2009. Late Mesoproterozoic to Paleozoic Tectonothermal Events in the Eastern Segment of the Central Tianshan Tectonic Zone of Northwestern China: Constraints from SHRIMP Zircon Geochronology. Earth Science Frontiers, 2009, 16(2): 175-184(in Chinese with English abstract).

[60]

Li, Y.B., Li, H.Q., Zhou, W.X., et al., 2021. Neoproterozoic Thermal Events and Tectonic Implications in the Beishan Orogenic Belt: Geochemical and Geochronological Evidence from Two Sets of Granitic Rocks from Southern Beishan Orogenic Belt, Gansu Province. Geological Bulletin of China, 40(7): 1117-1139 (in Chinese with English abstract).

[61]

Li, Z.C.,1994. New Speculation of the Age of the Metamorphic Rock Series of the Dunhuang Massif. Regional Geology of China, (2): 131-134(in Chinese with English abstract).

[62]

Liu, Q., Zhao, G. C., Han, Y. G., et al., 2019. Timing of the Final Closure of the Middle Segment of the Paleo⁃Asian Ocean: Insights from Geochronology and Geochemistry of Carboniferous⁃Triassic Volcano Sedimentary Successions in Western Inner Mongolia, China. GSA Bulletin, 131: 941-965. https://doi.org/10.1130/b32023.1

[63]

Liu, Q., Zhao, G. C., Sun, M., et al., 2015. Ages and Tectonic Implications of Neoproterozoic Ortho⁃ and Paragneisses in the Beishan Orogenic Belt, China. Precambrian Research, 266: 551-578. https://doi.org/10.1016/j.precamres.2015.05.022

[64]

Liu, X.C., Chen, B.L., Jahn, B.M., et al., 2011. Early Paleozoic (ca. 465 Ma) Eclogites from Beishan (NW China) and Their Bearing on the Tectonic Evolution of the Southern Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 42: 715-731. https://doi.org/10.1016/j.jseaes.2010.10.017

[65]

Liu, X.M., Chen, Y.L., Li, D.P., et al., 2010. The U⁃Pb Ages and Hf Isotopes of Zircons in the Metadiabase and Gneissic Granite, Beishan Orogenic Belt, Inner Mongolia, China and Its Significance. Geological Bulletin of China, 29(4):518-529 (in Chinese with English abstract)..

[66]

Liu, X.Y., 1984. Magmatism of Calc⁃Alkaline Series in the Beishan Region of Gansu Province and Its Relation to Plate Tectonics. Bulletin of the Chinese Academy of Geological Sciences, (10):151-165(in Chinese with English abstract)..

[67]

Liu, X.Y., Wang, Q., 1995. Tectonics of Orogenic Belts in Beishan MTS., Western China and Their Evolution. In:Collected Works of the Institute of Geology, Chinese Academy of Geological Sciences, (28): 37-48(in Chinese with English abstract)..

[68]

Long, X. P., Sun, M., Yuan, C., et al., 2007. Detrital Zircon Age and Hf Isotopic Studies for Metasedimentary Rocks from the Chinese Altai: Implications for the Early Paleozoic Tectonic Evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015. https://doi.org/10.1029/2007TC002128

[69]

Lu, S.N., Li, H.K., Yu, H.F., 2001. Geological Events, Event Sequence and Event Group. Geological Review, 47(5): 521-526 (in Chinese with English abstract).

[70]

Ma, J., Lei, C.C., Wang, W.B., et al., 2021. A Study on Geochemistry, Zircon U⁃Pb Dating and Tectonic Setting of the Zhuxiaobuhe Mylonitized Granite in the Yagan Area of Northern Margin of the Alxa Terrain. Bulletin of Mineralogy, Petrology and Geochemistry, 40(6): 1357-1368 (in Chinese with English abstract).

[71]

Meert, J. G., Santosh, M., 2017. The Columbia Supercontinent Revisited. Gondwana Research, 50: 67-83. https://doi.org/10.1016/j.gr.2017.04.011

[72]

Mei, H. L., Yu, H. F., Li, Q., et al., 1999. The First Discovery of Eclogite and Palaeoproterozoic Granitoids in the Beishan Area, Northwestern Gansu Province, China. Chinese Science Bulletin, 44(4): 356-361. https://doi.org/10.1007/BF02885491

[73]

Mei, H.L., Li, H.M., Lu, S.N., et al., 1999. The Age and Origin of the Liuyuan Granitoid, Northwestern Gansu. Acta Petorlogica et Mineralogica, 18(1): 14-17 (in Chinese with English abstract).

[74]

Mei, H.L., Yu, H.F., Li, Q., et al., 1997. Preliminary Litho⁃Tectonic Framework of Early Precambrian Rocks in Dunhuang⁃Beishan Area, Gansu, West China. Progress in Precambrian Research, 20(4): 47-54 (in Chinese with English abstract).

[75]

Mei, H.L., Yu, H.F., Lu, S.N., et al., 1998b. Archean Tonalite in the Dunhuang, Gansu Province: Age from the U⁃Pb Single Zircon and Nd Isotope. Progress in Precambrian Research, 21(2): 41-45(in Chinese with English abstract).

[76]

Nie, F.J., Jiang, S.H., Bai, D.M., 2002. Metallogenic Studies and Ore Prospecting in the Conjuction Area of Inner Mongolia Autonomous Region, Gansu Province and Xinjiang Uygur Autonomous Region (Beishan Mt.), Northwest China. Geological Publishing House, Beijing, 1-33(in Chinese with English abstract).

[77]

Nie, F.J., Jiang, S.H., Liu, Y., et al., 2004. Sm⁃Nd Isotope Study on Metamorphosed Volcano⁃Sedimentary Rocks of the Jiaochagou Metamorphic Complex, Beishan Mt., Inner Mongolia. Acta Geologica Sinica, 78(6): 807-812 (in Chinese with English abstract).

[78]

Niu, P. F., Qu, J. F., Zhang, J., et al., 2021. Precambrian Tectonic Affinity of the Southern Langshan Area, Northeastern Margin of the Alxa Block: Evidence from Zircon U⁃Pb Dating and Lu⁃Hf Isotopes. Acta Geologica SinicaEnglish Edition, 96(5): 1516-1533. https://doi.org/10.1111/1755⁃6724.14886

[79]

Niu, P.F., Qu, J.F., Zhang, J., et al., 2019. Deformation Study of the Diebusige Complex in the Langshan Area and Its Tectonic Implications. Acta Geologica Sinica, 93(8): 1867-1884 (in Chinese with English abstract).

[80]

Niu, P.F., Qu, J.F., Zhang, J., et al., 2022a. The Property and Tectonic Affinity of the Early Precambrian Metamorphic Basements in the Eastern Alxa Block. Acta Petrologica et Mineralogica, 41(2): 446-466 (in Chinese with English abstract).

[81]

Niu, P.F., Qu, J.F., Zhang, J., et al., 2022b. Zircon U⁃Pb Age and Hf Isotopic Characteristics of the Diebusige Complex in Langshan Area, Inner Mongolia, and Its Constraints on the Tectonic Evolution of the Alxa Block. Geological Bulletin of China, 41(5): 754-773 (in Chinese with English abstract).

[82]

Niu, W.C., Ren, B.F., Ren, Y.W., et al., 2017. Discovery of Neoproterozoic Gneissic Granite from the Beishan Area, Inner Mongolia: Zircon U⁃Pb Chronologic Evidence. Geology in China, 44(2): 409-410 (in Chinese with English abstract).

[83]

Niu, W.C., Ren, B.F., Ren, Y.W., et al., 2019. Neoproterozoic Magmatic Records in the North Beishan Orogenic Belt: Evidence of the Gneissic Granites from the Hazhu Area, Inner Mongolia. Earth Science, 44(1): 284-297 (in Chinese with English abstract).

[84]

Niu, Y.Z., Shi, G.R., Zhang, Q., 2024. Ediacaran Cordilleran⁃type Mountain Ice Sheets and Their Erosion Effects. Earth⁃Science Reviews, 249: 104671.https://doi.org/10.1016/j.earscirev.2023.104671

[85]

Qu, J. F., Xiao, W. J., Windley, B. F., et al., 2011. Ordovician Eclogites from the Chinese Beishan: Implications for the Tectonic Evolution of the Southern Altaids. Journal of Metamorphic Geology, 29(8): 803-820. https://doi.org/10.1111/j.1525⁃1314.2011.00942.x

[86]

Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5-22. https://doi.org/10.1016/S1342⁃937X(05)70883⁃2

[87]

Saktura, W. M., Buckman, S., Nutman, A. P., et al., 2017. Continental Origin of the Gubaoquan Eclogite and Implications for Evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China. Lithos, 294: 20-38. https://doi.org/10.1016/j.lithos.2017.10.004

[88]

Sang H.Q., Qiu J., Wang S.S., et al., 1997. A Preliminary Study on Ar⁃Ar Chronology of Dakouzi Gneiss from Beishan Area. Acta Geoscientia Sinica, 18(sup.): 58-61(in Chinese).

[89]

Şengör, A. M. C., Sunal, G., Natal'in, B. A., et al., 2022. The Altaids: A Review of Twenty-Five Years of Knowledge Accumulation. Earth-Science Reviews, 228. https://doi.org/10.1016/j.earscirev.2022.104013

[90]

Şengör, A., Natal’in, B., Burtman, V., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299-307. https://doi.org/10.1038/364299A0

[91]

Shi, X.J., Zhang, L., Wang, T., et al., 2016. Zircon Geochronology and Hf Isotopic Compositions for the Mesoproterozoic Gneisses in Zongnaishan Area, Northern Alxa and Its Tectonic Affinity. Acta Petrologica Sinica, 32(11): 3518-3536 (in Chinese with English abstract).

[92]

Shi, Y. R., Zhang, W., Kröner, A., et al., 2018. Cambrian Ophiolite Complexes in the Beishan Area, China, Southern Margin of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153: 193-205. https://doi.org/10.1016/j.jseaes.2017.05.021

[93]

Soldner, J., Yuan, C., Schulmann, K., et al., 2019. Grenvillean Evolution of the Beishan Orogen, NW China: Implications for Development of an Active Rodinian Margin. Geological Society of America Bulletin, 132: 1657-1680. https://doi.org/10.1130/b35404.1

[94]

Song, D. F., Xiao, W. J., Han, C. M., et al., 2013a. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U⁃Pb and Hf Isotopic Data of High⁃Grade Complexes. Precambrian Research, 227: 368-388. https://doi.org/10.1016/j.precamres.2012.06.011

[95]

Song, D. F., Xiao, W. J., Han, C. M., et al., 2013b. Geochronological and Geochemical Study of Gneiss⁃Schist Complexes and Associated Granitoids, Beishan Orogen, Southern Altaids. International Geology Review, 55(14): 1705-1727. https://doi.org/10.1080/00206814. 2013. 792515

[96]

Song, D. F., Xiao, W. J., Han, C. M., et al., 2013c. Provenance of Metasedimentary Rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from Detrital Zircon U⁃Pb and Hf Isotopic Data. Gondwana Research, 24(3/4): 1127-1151. https://doi.org/10.1016/j.gr.2013. 02.002

[97]

Song, D. F., Xiao, W. J., Windley, B. F., et al., 2016. Metamorphic Complexes in Accretionary Orogens: Insights from the Beishan Collage, Southern Central Asian Orogenic Belt. Tectonophysics, 688: 135-147. https://doi.org/10.1016/j.tecto.2016.09.012

[98]

Song, D. F., Xiao, W., Han, C. M., et al., 2014. Polyphase Deformation of a Paleozoic Forearc⁃Arc Complex in the Beishan Orogen, NW China. Tectonophysics, 632: 224-243. https://doi.org/10.1016/J.TECTO.2014.06.030

[99]

Song, D. F., Xiao, W., Windley, B., et al., 2015. A Paleozoic Japan⁃Type Subduction⁃Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224-225: 195-213. https://doi.org/10.1016/j.lithos.2015.03.005

[100]

Song, W., 2014. Research on Precambrian Metamorphosed Plutonic Intrusions in the Northern Alxa, Inner Mongolia (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).

[101]

Spencer, C. J., Roberts, N. M. W., Cawood, P. A., et al., 2014. Intermontane Basins and Bimodal Volcanism at the Onset of the Sveconorwegian Orogeny, Southern Norway. Precambrian Research, 252: 107-118. https://doi.org/10.1016/j.precamres.2014.07.008

[102]

Sun, M., Yuan, C., Xiao, W., et al., 2008. Zircon U⁃Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai: Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247: 352-383. 10.1016/j.chemgeo.2007.10.026

[103]

Sun, X,C., Zhang, H.J., Wei, Z,J., et al., 2005. Time of Definition and Geological Meaning for Metamorphic Intrusive Rock Body in Xiaohongshan Region, Beishan Area of Gansu and Inner Mongolia. Northwestern Geology, 38(3):61-67 (in Chinese with English abstract).

[104]

Tang, Z.M., Meng, F.M., 2014.Geochemistry and Genesis of Neoproterozoic Metamorphic Intrusion in the South to Labaquan, Beishan Region of Gansu. Gansu Geology, 23(1): 35-40 (in Chinese with English abstract).

[105]

Taylor, J. P., Webb, L., Johnson, C., et al., 2013.The Lost South Gobi Microcontinent: Protolith Studies of Metamorphic Tectonites and Implications for the Evolution of Continental Crust in Southeastern Mongolia. Geosciences, 3: 543-584. https://doi.org/10.3390/geosciences3030543

[106]

Wang, B. R., Yang, X. S., Li, S. C., et al., 2021a. Age, Depositional Environment, and Tectonic Significance of an Early Neoproterozoic Volcano⁃Sedimentary Sequence in the Eastern Beishan Orogenic Belt, Southern Central Asian Orogenic Belt. Geological Journal, 56(3): 1346-1357. https://doi.org/10.1002/gj.3985

[107]

Wang, B. R., Yang, X. S., Li, S. C., et al., 2021b. Geochronology, Geochemistry, and Tectonic Implications of Early Neoproterozoic Granitic Rocks from the Eastern Beishan Orogenic Belt, Southern Central Asian Orogenic Belt. Precambrian Research, 352: 106016. https://doi.org/10.1016/j.precamres.2020.106016

[108]

Wang, G.Q., Li, X.M., Xu, X.Y., et al., 2021. Research Status and Progress of Paleozoic Ophiolites in Beishan Orogenic Belt. Geological Bulletin of China, 40(1): 71-81 (in Chinese with English abstract).

[109]

Wang, H.J., Guo, F., Feng, N.Q., et al., 2021. Confirmation of the Granite during Neoproterozoic in Beishan of Gansu Province, and Its Constraints on the Tectonic⁃Evolutional Pattern of Beishan Orogen. Geological Survey of China, 8(5): 84-94 (in Chinese with English abstract).

[110]

Wang, H.J., Ma, C., Zhao, H.B., et al., 2022. U⁃Pb Age of Detrital Zircons from Neoproterozoic Metamorphic Sedimentary Rocks in Mazongshan, Gansu and Its Limitation to the Sedimentary Floor of the Beishan Orogenic Belt. Geology in China, 49(1): 344-345 (in Chinese with English abstract).

[111]

Wang, H.Z., Zhang, S.H., 2002. Tectonic Pattern of the World Precambrian Basement and Problems of Paleocontinent Reconstruction. Earth Science, 27(5): 467-481 (in Chinese with English abstract).

[112]

Wang, T., Zheng, Y. D., Gehrels, G. E., et al., 2001. Geochronological Evidence for Existence of South Mongolian Microcontinent: A Zircon U⁃Pb Age of Grantoid Gneisses from the Yagan⁃Onch Hayrhan Metamorphic Core Complex. Chinese Science Bulletin, 46(23): 2005-2008. https://doi.org/10.1007/BF02901917

[113]

Wang, T.Y., Wang, S.Z., Wang, J.R.,1994. The Formation and Evolution of Paleozoic Continental Crust in Alaxa Region. Lanzhou University Press,Lanzhou(in Chinese with English abstract).

[114]

Wang, Z. M., Han, C. M., Xiao, W. J., et al., 2014. The Petrogenesis and Tectonic Implications of the Granitoid Gneisses from Xingxingxia in the Eastern Segment of Central Tianshan. Journal of Asian Earth Sciences, 88: 277-292. https://doi.org/10.1016/j.jseaes.2014.03.015

[115]

Wang, Z.Y., Li, G.Z., Ding, H.S., et al., 2022. Determination and Geological Significance of Beishan Group in Yagan Area, Ejiana, Inner Mongolia. Earth Science, 47(4): 1177-1193 (in Chinese with English abstract).

[116]

Wang, Z.Y., Zhang, J., Wu, C.J., et al., 2024. A Uniform Uasement: Implications for the Uectonics of Beishan Orogenic Belt in the Uouthern Central Asian Orogenic Belt. Precambrian Research, 404: 107340. https://doi.org/10.1016/j.precamres.2024.107340

[117]

Webb, L., Graham, S., Johnson, C., et al., 1999. Occurrence, Age, and Implications of the Yagan⁃Onch Hayrhan Metamorphic Core Complex, Southern Mongolia. Geology, 27: 143-146. https://doi.org/10.1130/0091⁃7613(1999)0270143: OAAIOT>2.3.CO;2

[118]

Wei, X.P., Gong, Q.S., Liang, M.H., et al., 2000. Metamorphic⁃Deformational and Evolutionary Characteristics of Pre⁃Changcheng Dunhuang Terrain Occuring on Mazongshan Upwelling Area. Acta Geologica Gansu, 9(1): 36-43 (in Chinese with English abstract).

[119]

Windley, B., Alexeiev, D., Xiao, W., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164: 31-47. https://doi.org/10.1144/0016⁃76492006⁃022

[120]

Wu, C.J., Wang, Z.Y., Ma, J., et al., 2022. New Constraints on the Scope of the Southern Mongolian Microcontinent:Evidence from Zircon U⁃Pb Age of Quartz Diorite in the Southwest of Yagan. Geology in China, 49(3): 1000-1002 (in Chinese with English abstract).

[121]

Wu, H. X., Zhang, F. Q., Dilek, Y., et al., 2022. Mid⁃Neoproterozoic Collision of the Tarim Craton with the Yili⁃Central Tianshan Block towards the Final Assembly of Supercontinent Rodinia: a New Model. EarthScience Reviews, 228: 103989. https://doi.org/10.1016/j.earscirev.2022.103989

[122]

Wu, S. J., Hu, J. M., Ren, M. H., et al., 2014. Petrography and Zircon U⁃Pb Isotopic Study of the Bayanwulashan Complex: Constrains on the Paleoproterozoic Evolution of the Alxa Block, Westernmost North China Craton. Journal of Asian Earth Sciences, 94: 226-239. https://doi.org/10.1016/j.jseaes.2014.05.011

[123]

Wu, T. R., He, G. Q., Zhang, C., 1998. On Palaeozoic Tectonics in the Alxa Region, Inner Mongolia, China. Acta Geologica SinicaEnglish Edition, 72(3): 256-263. https://doi.org/10.1111/j.1755⁃6724.1998.tb00402.x

[124]

Wu, T.R., He, G.Q., 1993. Tectonic Units and Their Fundamental Characteristics on the Northern Margin of the Alxa Block, Acta Geologica Sinica, 67(2): 97-108 (in Chinese with English abstract).

[125]

Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll⁃Back and Oroclinal Bending of the Mongolia Collage in Central Asia. EarthScience Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020.

[126]

Xiao, W.J., Mao, Q.G., Windley, B.F., et al., 2010.Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310: 1553-1594. https://doi.org/10.2475/10.2010.12

[127]

Xiao, W.J., Li, J.L., Song, D.F., et al., 2019. Structural Analyses and Spatio⁃Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract).

[128]

Xin, H.T., Niu, W.C., Tian, J., et al., 2020. Spatio⁃Temporal Structure of Beishan Orogenic Belt and Evolution of Paleo⁃Asian Ocean, Inner Mongolia. Geological Bulletin of China, 39(9):1297-1316 (in Chinese with English abstract).

[129]

Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing’an⁃Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract).

[130]

Xu, X.M., Cheng, H.F., Duan, B.X., et al., 2018. The LA⁃ICP⁃MS U⁃Pb Geochronology of Detrital Zircons from Quartzite in the Beishan Complex⁃Group in Biaoshan Area in Beishan Region during Changchengian Period and Its Geologic Significance. Xinjiang Geology, 36(3): 393-398 (in Chinese with English abstract).

[131]

Yang, F.L., Zhao, Z.X., Jia, W.Y., et al., 2016. Discussion on the Forming Age of the Beishan Group in the Beishan Area,Inner Mongolia. Geological Survey and Research, 39(2): 89-94 (in Chinese with English abstract).

[132]

Yang, H.Q., Li, Y., Li, W.M., et al., 2008. General Discussion on Metallogenitic Tectonic Setting of Beishan Mountain Northwestern China. Northwestern Geology, 41(1): 22-28 (in Chinese with English abstract).

[133]

Yang, H.Q., Li, Y., Zhao, G.B., et al., 2010. Character and Structural Attribute of the Beishan Ophiolite. Northwestern Geology, 43(1): 26-36 (in Chinese with English abstract).

[134]

Yang, J.G., Zhai, J.Y., Yang, H.W., et al., 2010. LA⁃ICP⁃MS Zircon U⁃Pb Dating of Basalt and Its Geological Significance in Huaniushan Pb⁃Zn Deposit, Beishan Area, Gansu, China. Geological Bulletin of China, 29(7): 1017-1023 (in Chinese with English abstract).

[135]

Yang, J.S., Wu, C.L., Chen, S.Y., et al., 2006. Neoproterozoic Eclogitic Metamorphic Age of the Beishan Eclogite of Gansu, China: Evidence from SHRIMP U⁃Pb Isotope Dating. Geology in China, 33(2): 317-325 (in Chinese with English abstract).

[136]

Ye, X.F., Zong, K.Q., Zhang, Z.M., et al., 2013. Geochemistry of Neoproterozoic Granite in Liuyuan Area of Southern Beishan Orogenic Belt and Its Geological Significance. Geological Bulletin of China, 32(2): 307-317 (in Chinese with English abstract).

[137]

Yu, H.F., Lu, S.N., Xiu, Q.Y., et al., 2000. Assembly and Crack Events of Neoproterozoic Continental Blocks in Western Beishan Mountain, Gansu Province, China. Progress in Precambrian Research, 23(2): 98-102 (in Chinese with English abstract).

[138]

Yu, J.Y., Ji, B., Guo, L., et al., 2018. Geological Characteristics and Age Determination of the Palaeoproterozoic Gudongjing Group Complex in the Beishan Mountain, Gansu Province. Geological Bulletin of China, 37(4): 704-715 (in Chinese with English abstract).

[139]

Yu, W., Shao, Z. G., Niu, M. L., et al., 2022. Discovery of a Mesoproterozoic Granite in the Northern Alxa Block and Its Tectonic Implication. Geological Journal, 57(9): 3706-3720. https://doi.org/10.1002/gj.4497

[140]

Yuan, Y., Zong, K. Q., Cawood, P. A., et al., 2019. Implication of Mesoproterozoic (∼1.4 Ga) Magmatism within Microcontinents along the Southern Central Asian Orogenic Belt. Precambrian Research, 327: 314-326. https://doi.org/10.1016/j.precamres.2019.03.014

[141]

Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2015. Geochemical and Geochronological Evidence for a Former Early Neoproterozoic Microcontinent in the South Beishan Orogenic Belt, Southernmost Central Asian Orogenic Belt. Precambrian Research, 266: 409-424. https://doi.org/10.1016/j.precamres.2015.05.034

[142]

Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2018. Geochemical Evidence for Paleozoic Crustal Growth and Tectonic Conversion in the Northern Beishan Orogenic Belt, Southern Central Asian Orogenic Belt. Lithos, 302: 189-202. https://doi.org/10.1016/j.lithos.2017.12.026

[143]

Yue, Y. J., Liou, J., Graham, S.,2001.Tectonic Correlation of Beishan and Inner Mongolia Orogens and Its Implications for the Palinspastic. Memoir of the Geological Society of America, 194. https://doi.org/10.1130/0⁃8137⁃1194⁃0.101

[144]

Zhang, B. H., Zhang, J., Zheng, R. G., et al., 2020. Paleozoic Tectonic Evolution of the Central Part of the Southern Central Asian Orogenic Belt: Constraints from the Detrital Zircon U⁃Pb Ages and Sedimentary Characteristics. Gondwana Research, 101: 1-20. https://doi.org/10.1016/j.gr.2021.07.019

[145]

Zhang, J. J., Wang, T., Zhang, L., et al., 2015. Tracking Deep Crust by Zircon Xenocrysts within Igneous Rocks from the Northern Alxa, China: Constraints on the Southern Boundary of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 108: 150-169. https://doi.org/10.1016/j.jseaes.2015.04.019

[146]

Zhang, J.X., Gong, J.H., 2018. Revisiting the Nature and Affinity of the Alxa Block. Acta Petrologica Sinica, 34(4): 940-962 (in Chinese with English abstract).

[147]

Zhang, Q., Niu, Y. Z., Yao, J. L., et al., 2022. Paleogeographic Affinity of the Alxa Block across the Archean⁃Proterozoic: Insights from Metamorphosed Archean Basement. Precambrian Research, 381: 106864.

[148]

Zhang, S.H., 2019. Geological Characteristics and Later Reformation of the Permo⁃Carboniferous Basin in Yingen⁃Ejina Area, NW China (Dissertation). Northwest University, Xi’an(in Chinese with English abstract).

[149]

Zhang, W., Pease, V., Meng, Q. P., et al.,2016. Discovery of a Neoproterozoic Granite in the Northern Alxa Region, NW China: Its Age, Petrogenesis and Tectonic Significance. Geological Magazine, 153: 512-523. https://doi.org/10.1017/S0016756815000631

[150]

Zhang, Y.Y., Guo, Z.J., 2008. Accurate Constraint on Formation and Emplacement Age of Hongliuhe Ophiolite, Boundary Region between Xinjiang and Gansu Provinces and Its Tectonic Implications. Acta Petrologica Sinica, 24(4): 803-809 (in Chinese with English abstract).

[151]

Zhang, Z.F., Li, C.Y., Niu, Y.Z., 1997. Role, Significance, Characteristics and Range of Alashan⁃Dunhuang Land Block. Inner Mongolia Geology, (2): 1-14.(in Chinese with English abstract).

[152]

Zhang, Z.P., Duan, B.X., Meng, Q.T., 2017. LA⁃ICP⁃MS Zircon U⁃Pb dating of Amphibolites of the Beishan Group in the Beishan Area, Inner Mongolia and its Geological Significance. Geology and Exploration, 53(6):1129-1139 (in Chinese with English abstract).

[153]

Zhao, G. C., Sun, M., Wilde, S. A., et al., 2003. Assembly, Accretion and Breakup of the Paleo⁃Mesoproterozoic Columbia Supercontinent: Records in the North China Craton. Gondwana Research, 6(3): 417-434. https://doi.org/10.1016/S1342⁃937X(05)70996⁃5

[154]

Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo⁃Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. EarthScience Reviews, 67(1/2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003

[155]

Zhao, G. C., Wang, Y. J., Huang, B. C., et al., 2018. Geological Reconstructions of the East Asian Blocks: From the Breakup of Rodinia to the Assembly of Pangea. EarthScience Reviews, 186: 262-286. https://doi.org/10.1016/j.earscirev.2018.10.003

[156]

Zhao, R.Y., Hu, N.G., Chen, Y.J., et al., 2011. Geology Characteristics and Tectonic Setting of Beishan Group in Heishanliang Area, in Ruoqiang County of Xinjiang. Xinjiang Geology, 29(4): 398-402 (in Chinese with English abstract).

[157]

Zhao, Y., Sun, Y., 2018. Composition and Evolution of Precambrian Geological Units in the Composite Dunhuang Orogenic Belt, Northwest China. Acta Petrologica Sinica, 34(4): 963-980 (in Chinese with English abstract).

[158]

Zheng, R. G., Li, J. Y., Xiao, W. J., et al., 2017. Nature and Provenance of the Beishan Complex, Southernmost Central Asian Orogenic Belt. International Journal of Earth Sciences, 107(2): 729-755. https://doi.org/10.1007/s00531⁃017⁃1525⁃2

[159]

Zheng, R. G., Li, J. Y., Zhang, J., et al., 2021. A Prolonged Subduction-Accretion in the Southern Central Asian Orogenic Belt: Insights from Anatomy and Tectonic Affinity for the Beishan Complex. Gondwana Research, 95: 88-112. https://doi.org/10.1016/j.gr.2021.02.022

[160]

Zheng, Y., Zhang, Q., Wang, Y., et al., 1996. Great Jurassic Thrust Sheets in Beishan (North Mountains): Gobi Areas of China and Southern Mongolia. Journal of Structural Geology, 18(9): 1111-1126. https://doi.org/10.1016/0191⁃8141(96)00038⁃7

[161]

Zhou, H., Chen, L., Sun, Y., 2018. Zircon U⁃Pb Chronology and Hf Isotopic Study on the Mesoproterozoic Metasedimentary Rocks: Insight into the Evolution of Precambrian Materials in the South Section of Beishan Orogen. Acta Geologica Sinica, 92(5): 928-945 (in Chinese with English abstract).

[162]

Zhou, J. B., Wilde, S., Zhao, G. C., et al., 2018. Nature and Assembly of Microcontinental Blocks within the Paleo⁃Asian Ocean. EarthScience Reviews, 186: 76-93. https://doi.org/10.1016/j.earscirev.2017.01.012

[163]

Zhou, Y.Z., Han, B.F., Xu, Z., et al., 2013. The Age of the Proterozoic Rocks in Yingba Area in Western Inner Mongolia: Constraints on the Distribution of the South Gobi Micro⁃Continent in the Central Asian Orogenic Belt. Geological Bulletin of China, 32(2/3):318-326(in Chinese with English abstract).

[164]

Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia: The Correlation of Early Neoproterozoic (Ca. 900 Ma) High⁃Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48. https://doi.org/10.1016/j.precamres.2016.12.010

[165]

Zuo, G.C., Feng, Y.Z., Liu, C.Y., et al., 1991. Discovery of Super Large Thrust Bodies in the Beishan Area. Regional Geology of China, (3):274(in Chinese).

[166]

Zuo, G.C., Feng, Y.Z., Liu, C.Y.. et al., 1992. Old Continental Crust Feature of Proterozoic Era and Crust Tyoe of Early Paleozoic Era in Gansu⁃Menggu Beishan Area and Eastern Xinjiang Tianshan MTS. Acta Geologica Gansu, 1(1): 55-67.

[167]

Zuo, G.C., He, G.Q., 1990. Plate Tectonics and Ore⁃Formation Regularity of Beishan. Peking University Pulishing House, Beijing, 1-21(in Chinese with English abstract)..

[168]

Zuo, G.C., Li, M.S., 1996, Formation and Evolution of the Early Palaeozoic Lithosphere in the Beishan Area, Gansu⁃Inner Mongolia, China. Gansu Science and Technology Press, Lanzhou, 5-22..

[169]

Zuo, G.C., Liu, Y.K., Liu, C.Y., 2003.Framework and Evolution of the Tectonic Structure in Beishan Area across Gansu Province, Xinjiang Autonomous Region and Inner Mongolia Autonomous Region. Acta Geologica Gansu, 12(1): 1-15 (in Chinese with English abstract).

[170]

Zuo, G.C., Zhang, S.L., He, G.Q., et al., 1990. Early Paleozoic Plate Tectonics in Beishan Area. Chinese Journal of Geology, 25(4): 305-314, 411(in Chinese with English abstract).

[171]

Zuo, G.C., Zhang, W.G., Zhang, S.L., et al., 1993. et al., 1993. Mountain Glacial Deposits of Late Sinian in Beishan Area. Acta Sedimentologica Sinica, 11(1): 41-46 (in Chinese with English abstract).

基金资助

中国地质科学院基本科研业务费专项(JKYZD202309)

中国地质调查局项目(DD20230217)

中国地质调查局项目(DD20221649)

国家自然科学基金项目(U2344215)

国家自然科学基金项目(41972224)

国家自然科学基金项目(42102272)

AI Summary AI Mindmap
PDF (6386KB)

93

访问

0

被引

详细

导航
相关文章

AI思维导图

/