西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U⁃Pb年龄的约束
黄倩 , 吴松 , 刘晓峰 , 申亚辉 , 阿旺旦增 , 次琼 , 陈烈 , 魏守才
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 621 -638.
西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U⁃Pb年龄的约束
The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U⁃Pb Geochronology
,
,
石榴子石原位U⁃Pb定年是近年来新发展的低U矿物同位素定年方法,目前已在矽卡岩矿床中广泛应用.首次报道了西藏唐格矽卡岩型铜铅锌矿床石榴子石LA⁃ICP⁃MS U⁃Pb年龄及微量元素组成,结合矿床石英斑岩锆石U⁃Pb年龄结果,对唐格矿床成岩成矿时代及过程进行了探讨.唐格石榴子石U⁃Pb年龄为65.5±3.9 Ma,石英斑岩锆石U⁃Pb年龄为68.1±0.9 Ma,限定了其成岩成矿时代为晚白垩世-古新世. 唐格石榴子石稀土配分曲线呈轻稀土富集、重稀土亏损,LREE/HREE比值为0.01~12.68,进一步可划分为两期石榴子石(GrtⅠ和GrtII),Eu异常由不明显(Eu/Eu*为0.87~0.94)向明显Eu正异常(Eu/Eu*为1.49~8.29)再向微弱Eu正异常(Eu/Eu*为0.67~1.83)变化,U平均含量先降低(GrtⅠ⁃1:1.14×10-6,GrtⅠ⁃2:0.65×10-6)后升高(GrtⅡ:2.34×10-6)都表明氧逸度先升高后降低. 第一期石榴子石核部(GrtⅠ⁃1)的Hf、Ta平均含量(8.84×10⁃6和0.52×10-6)均大于边部(GrtⅠ⁃2:1.60×10-6和0.23×10-6)和第二期石榴子石(GrtⅡ:1.47×10-6和0.37×10-6)平均含量,指示成矿过程由封闭状态转为开放、震荡的环境. 冈底斯成矿带同碰撞时期矽卡岩型矿床的成岩成矿年龄从西向东呈现由老变新的趋势,揭示了其火山活动具有穿时性,反映了印度-亚洲大陆不均匀碰撞的特征.唐格矿床为在南冈底斯带上新发现的同碰撞期矽卡岩型铜多金属矿床,将会为朱诺矿集区及周边乃至整个南冈底斯带找矿提供新方向.
In⁃situ U⁃Pb dating of garnet is a newly developed isotope dating method for low⁃U minerals recently, which has been widely used in skarn deposits study. In this paper, the LA⁃ICP⁃MS U⁃Pb age and trace element compositions of garnet are reported for the first time in the Tangge skarn⁃type copper⁃lead⁃zinc deposit in Xizang. Combining with the results of zircon U⁃Pb dating of quartz porphyry, this study investigates the timing of magmatism and related mineralization and the ore⁃forming processes of the Tangge deposit. The garnet U⁃Pb age is 65.5±3.9 Ma, and the zircon U⁃Pb age of quartz porphyry is 68.1±0.9 Ma. These ages indicate both the granitic rocks and mineralization of the Tangge deposit were formed at Late Cretaceous⁃Palaeocene. The rare earth distribution patterns of garnet show an enrichment in light rare earth elements and depleted in heavy rare earth elements in the Tangge deposit with a LREE/HREE ratio is 0.01 to 12.68.Thegarnet can be further divided into two stages (Grt I and Grt II). The different Eu anomalies and average U contents in Grt Ⅰ and Grt Ⅱ indicate that the oxygen fugacity increases at first and then decreases. The average contents of Hf and Ta in the core of the first⁃stage garnet(GrtI⁃1) (8.84×10-6 and 0.52×10-6) are higher than those in the rim (GrtI⁃2:1.60×10-6 and 0.23×10-6), and in the second⁃stage garnet (GrtII:1.47×10-6 and 0.37×10-6), indicating that the metallogenic environment changes from a relatively closed system to an open and oscillating one. The ore⁃forming age of the skarn⁃type deposits in the syn⁃collisional Gangdese metallogenic belt is gradually getting older from east to west, which reveals the diachronous volcanic activity and reflects the characteristics of uneven collision between the Indian continent and the Asia continent. The Tangge deposit is a newly discovered syn⁃collisional skarn⁃type copper polymetallic deposit in the South Gangdese, which will provide a new direction for mineral prospecting in the Zhunuo ore concentration area and its surrounding areas, and even in the entire South Gangdese.
石榴子石 / U⁃Pb定年 / 矽卡岩矿床 / 唐格 / 冈底斯 / 地球化学.
Garnet / U⁃Pb dating / skarn deposit / Tangge / Gangdese / geochemistry
| [1] |
Aysal, N., Guillong, M., Bayanova, T., et al., 2023. A New Natural Secondary Reference Material for Garnet U⁃Pb Dating by TIMS and LA⁃ICP⁃MS. Geostandards and Geoanalytical Research, 47(2): 297-310. https://doi.org/10.1111/ggr.12493 |
| [2] |
Chang, Z., Shu, Q., Meinert, L.D., 2019. Skarn Deposits of China. Society of Economic Geologists,Special Publication, 22:189-234. |
| [3] |
Chen, H., Zheng, Y.Y., Yu, Z.Z., et al., 2022. Petrogenesis and Prospecting Significance of Ore⁃Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218 (in Chinese with English abstract). |
| [4] |
Chung, S., Liu, D. Y., Ji, J., et al., 1998. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31: 1021-1024. https://doi.org/10.1130/G19796.1 |
| [5] |
Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite⁃Rich Garnet U⁃Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71. https://doi.org/10.1007/s00410⁃017⁃1389⁃2 |
| [6] |
Fan, X. J., Wang, X. D., Lü, X. B., et al., 2019. Garnet Composition as an Indicator of Skarn Formation: LA⁃ICP⁃MS and EPMA Studies on Oscillatory Zoned Garnets from the Haobugao Skarn Deposit, Inner Mongolia, China. Geological Journal, 54(4): 1976-1992. https://doi.org/10.1002/gj.3273 |
| [7] |
Fei, G.C., Wen, C.Q., Zhou, X., et al., 2010. Laser Microprobe 40Ar⁃39Ar Geochronology of Quartz from Dongzhongla Lead⁃Zinc Deposit in Tibet and Its Significance. Journal of Mineralogy and Petrology, 30(3): 38-43 (in Chinese with English abstract). |
| [8] |
Fu, W.C., Kang, Z.Q., Pan, H.B., 2014. Geochemistry, Zircon U⁃Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6): 850-859 (in Chinese with English abstract). |
| [9] |
Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb⁃Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929 |
| [10] |
Gao, X., Deng, J., Meng, J.Y., et al., 2014. Characteristics of Garnet in the Hongniu Skarn Copper Deposit Western Yunnan. Acta Petrologica Sinica, 30(9): 2695-2708 (in Chinese with English abstract). |
| [11] |
Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: a LA⁃ICP⁃MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. https://doi.org/10.1016/j.gca.2007.09.033 |
| [12] |
Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post⁃Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1/2/3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006 |
| [13] |
Hou, Z.Q., Gao,Y.F., Meng, X.S., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract). |
| [14] |
Hou, Z.Q., Wang, E.Q., 2008. Metallogenesis of the Indo⁃Asian Collisional Orogen: New Advances. Acta Geoscientica Sinica, 29(3): 275-292 (in Chinese with English abstract). |
| [15] |
Jamtveit, B., Ragnarsdóttir, K., Wood, B.,1995. On the Origin of Zoned Grossular⁃Andradite Garnets in Hydrothermal Systems. European Journal of Mineralogy, 7(6): 1399-1410.https://doi.org/10.1127/ejm/7/6/1399 |
| [16] |
Jiang, J.S., 2018. Genesis of Polymetallic Deposits and Prospecting Potential in the Linzizong Group Volcanic Rock Area, Western Gangdise(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). |
| [17] |
Jiang, X. J., Zheng, Y. Y., Gao, S. B., et al., 2021. In⁃Situ U⁃Pb Geochronology of Ti⁃Bearing Andradite as a Practical Tool for Linking Skarn Alteration and Pb⁃Zn Mineralization: a Case Study of the Mengya’a Deposit, Tibet. Ore Geology Reviews, 139: 104565. https://doi.org/10.1016/j.oregeorev.2021.104565 |
| [18] |
Kamvong, T., Zaw, K., 2009. The Origin and Evolution of Skarn⁃Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand: Evidence from Fluid Inclusion and Sulfur Isotope Studies. Journal of Asian Earth Sciences, 34(5): 624-633. https://doi.org/10.1016/j.jseaes.2008.09.004 |
| [19] |
Li, G.M., Liu, B., Qu, W.J., et al., 2005. The Porphyry⁃Skarn Ore⁃Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re⁃Os Age of Porphyry⁃Type Copper Deposits and Skarn⁃Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490 (in Chinese with English abstract). |
| [20] |
Li, J.Z., Wu, S., Lin, Y.B., et al., 2022. Alteration⁃Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244 (in Chinese with English abstract). |
| [21] |
Li, X. F., Wang, C. Z., Mao, W., et al., 2014. The Fault⁃Controlled Skarn W⁃Mo Polymetallic Mineralization during the Main India⁃Eurasia Collision: Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58: 27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006 |
| [22] |
Li, Y.Y., Xie, Y.L., Chen, W., et al., 2017. U⁃Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033 (in Chinese with English abstract). |
| [23] |
Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. https://doi.org/10.1016/j.oregeorev.2022.104823 |
| [24] |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [25] |
Liu, Z.C., Wu, F.Y., Guo, C.L., et al., 2011. In Situ U⁃Pb Dating of Xenotime by Laser Ablation (LA)⁃ICP⁃MS. Chinese Science Bulletin, 56(27): 2948-2956 |
| [26] |
Massimo, C., Urs, S., Richard, S., et al., 2013. How Accurately Can We Date the Duration of Magmatic⁃Hydrothermal Events in Porphyry Systems? An Invited Paper. Economic Geology, 108(4): 565-584. https://doi.org/10.2113/econgeo.108.4.565 |
| [27] |
Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology, 100th Anniversarry Volume, 299-336. |
| [28] |
Mo, X.X., Zhao, Z.D., Depaolo, D., et al., 2006. Three Types of Collisional and Post⁃Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization: Evidence from Sr⁃Nd Isotopes. Acta Petrologica Sinica, 22(4): 795-803 (in Chinese with English abstract). |
| [29] |
Ouyang, Y.P., Zhou, X.R., Yao, Z.Y., et al., 2020. Study on the Two⁃Stage Garnets and Their Indication of Mineralization in the Zhuxi W(Cu)Deposit, Northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219-231 (in Chinese with English abstract). |
| [30] |
Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial⁃Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract). |
| [31] |
Park, C., Song, Y., Kang, I. M., et al., 2017. Metasomatic Changes during Periodic Fluid Flux Recorded in Grandite Garnet from the Weondong W⁃Skarn Deposit, South Korea. Chemical Geology, 451: 135-153. https://doi.org/10.1016/j.chemgeo.2017.01.011 |
| [32] |
Qin, K.Z., Xia, D.X., Li, G.M., et al., 2014. The Qulong Porphyry⁃Skarn Copper⁃Molybdenum Deposit in Tibet. Science Press, Beijing(in Chinese with English abstract). |
| [33] |
Shu, Q. H., Deng, J., Chang, Z. S., et al.,2024. Skarn Zonation of the Giant Jiama Cu⁃Mo⁃Au Deposit in Southern Tibet, SW China. Economic Geology, 119 (1): 1-22. https://doi.org/10.5382/econgeo.5038 |
| [34] |
Shu, Q., Al, E., 2015. Fluid Compositions Reveal Fluid Nature, Metal Deposition Mechanisms, and Mineralization Potential: an Example at the Haobugao Zn⁃Pb Skarn, China. Geology, 49:473-477.https://doi.org/10.1130/G48348.1 |
| [35] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [36] |
Sun, X., Hollings, P., Lu, Y. J., 2021. Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet. Mineralium Deposita, 56(3): 457-480. https://doi.org/10.1007/s00126⁃020⁃00970⁃0 |
| [37] |
Tang, J.X., Chen, Y.C., Duo, J., et al., 2009. Main Deposit Types, Metallogenic Regularities and Prospecting Evaluation in the Eastern Segment of the Gangdise Metallogenic Belt, Tibet. Acta Mineralogica Sinica, 29(S1): 476-478(in Chinese with English abstract). |
| [38] |
Turner, S., Arnaud, N., Liu, J., et al., 1996. Post⁃Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology,37(1): 45-71.https://doi.org/10.1093/petrology/37.1.45 |
| [39] |
Vermeesch, P., 2018. IsoplotR: a Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 |
| [40] |
Wang, L. Q., Tang, J. X., Deng, J., et al., 2015. The Longmala and Mengya’a Skarn Pb⁃Zn Deposits, Gangdese Region, Tibet: Evidence from U⁃Pb and Re⁃Os Geochronology for Formation during Early India⁃Asia Collision. International Geology Review, 57(14): 1825-1842. https://doi.org/10.1080/00206814.2015.1029540 |
| [41] |
Wang, Y. F., Merino, E., 1992. Dynamic Model of Oscillatory Zoning of Trace Elements in Calcite: Double Layer, Inhibition, and Self-Organization. Geochimica et Cosmochimica Acta, 56(2): 587-596. https://doi.org/10.1016/0016⁃7037(92)90083⁃U |
| [42] |
Wang, Y.C., Duan, D.F., 2021. REE Distribution Character in Skarn Garnet and Its Geological Implication. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(3): 446-458 (in Chinese with English abstract). |
| [43] |
Wen, G., Li, J. W., Hofstra, A. H., et al., 2020. Textures and Compositions of Clinopyroxene in an Fe Skarn with Implications for Ore⁃Fluid Evolution and Mineral-Fluid REE Partitioning. Geochimica et Cosmochimica Acta, 290: 104-123. https://doi.org/10.1016/j.gca.2020.08.020 |
| [44] |
Wu, S., 2016. The Zhunuo Super⁃Large Porphyry Copper Deposit in the Gangdise Region, Tibet: Magmatism and Mineralization(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). |
| [45] |
Xie,F.W., Lang,X.H., Tang,J.X., et al., 2022. Metallogenic regularity of Gangdese Metallogenic Belt,Tibet. Mineral Deposits, 41(5):952-974 (in Chinese with English abstract). |
| [46] |
Xie, G.Q., Chen, X.L., Ma, L.J., et al., 2021. Chengba Copper Polymetallic Skarn Deposit in Linzhou County, Gangdese Metallogenic Belt: Implications for Mineral Exploration of Regional Paleocene Cu Deposits in Southern Tibet. Mineral Deposits, 40(3): 625-630 (in Chinese with English abstract). |
| [47] |
Xu, J., Zheng, Y.Y., Sun, X., et al., 2014. Mineralogical Characteristics of Zhibula Skarn⁃Type Cu Deposit in Tibet and Their Geological Significance. Earth Science, 39(6): 654-670, 768(in Chinese with English abstract). |
| [48] |
Yang, Z.M., Hou, Z.Q., Xia, D.X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27(1): 28-36 (in Chinese with English abstract). |
| [49] |
Yin, A., Harrison, T., 2006. Geologic Evolution of the Himalayan⁃Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211. |
| [50] |
Zhang, A. P., Zheng, Y. C., Xu, B., et al., 2019. Metallogeny of the Lietinggang⁃Leqingla Fe⁃Cu⁃(Mo)⁃Pb⁃Zn Polymetallic Deposit, Evidence from Geochronology, Petrogenesis, and Magmatic Oxidation State, Lhasa Terrane. Ore Geology Reviews, 106: 318-339. https://doi.org/10.1016/j.oregeorev.2019.02.004 |
| [51] |
Zhao, Y.M., Lin, W.W., Bi, C.S., 2012.Skarn Ore Deposits in China. Geological Publishing House, Beijing,1-115(in Chinese with English abstract). |
| [52] |
Zhao, Y.Y., Liu, X.F., Yang, C.S., et al., 2022. Recongnition of A⁃Type Granite and Its Implication for Magmatism and Mineralization in Tangge Skarn⁃Type Cu⁃Polymetallic Deposit, Tibet. Geology in China, 49(2): 496-517 (in Chinese with English abstract). |
| [53] |
Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434⁃007⁃0406⁃7 |
| [54] |
Zheng, Y.Y., Duoji, Wang, R.J., et al., 2007. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet. Geology in China, 34(2): 324-334 (in Chinese with English abstract). |
| [55] |
Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239 (in Chinese with English abstract). |
| [56] |
Zheng, Y.Y., Wu, S., Ci, Q., et al., 2021. Cu⁃Mo⁃Au Metallogenesis and Minerogenetic Series during Superimposed. Earth Science, 46(6): 1909-1940 (in Chinese with English abstract). |
| [57] |
Zhou, S., Mo, X.X., Dong, G.C., et al., 2004. The 40Ar/39Ar Chronological Framework of the Linzizong Volcanic Rocks in the Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103 (in Chinese). |
| [58] |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre⁃Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002. |
| [59] |
Zhu, D.C,. Wang, Q., Zhao, Z.D., et al., 2015. Magmatic Record of India-Asia Collision. Sci Rep. 2015 Sep 23;5:14289. https://doi.org/ 10.1038/srep14289. |
| [60] |
Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution: New Perspective. Earth Science Frontiers, 16(2): 1-20 (in Chinese with English abstract). |
国家自然科学基金(U22A20572)
国家自然科学基金(42072109)
西藏自治区中央引导地方科技计划项目(XZ202202YD0006C)
紫金矿业科技项目“西藏朱诺斑岩铜钼矿床外围找矿靶区优选与资源潜力评价”
/
| 〈 |
|
〉 |