西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U⁃Pb年龄的约束

黄倩 ,  吴松 ,  刘晓峰 ,  申亚辉 ,  阿旺旦增 ,  次琼 ,  陈烈 ,  魏守才

地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 621 -638.

PDF (6731KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 621 -638. DOI: 10.3799/dqkx.2024.017

西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U⁃Pb年龄的约束

作者信息 +

The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U⁃Pb Geochronology

Author information +
文章历史 +
PDF (6892K)

摘要

石榴子石原位U⁃Pb定年是近年来新发展的低U矿物同位素定年方法,目前已在矽卡岩矿床中广泛应用.首次报道了西藏唐格矽卡岩型铜铅锌矿床石榴子石LA⁃ICP⁃MS U⁃Pb年龄及微量元素组成,结合矿床石英斑岩锆石U⁃Pb年龄结果,对唐格矿床成岩成矿时代及过程进行了探讨.唐格石榴子石U⁃Pb年龄为65.5±3.9 Ma,石英斑岩锆石U⁃Pb年龄为68.1±0.9 Ma,限定了其成岩成矿时代为晚白垩世-古新世. 唐格石榴子石稀土配分曲线呈轻稀土富集、重稀土亏损,LREE/HREE比值为0.01~12.68,进一步可划分为两期石榴子石(GrtⅠ和GrtII),Eu异常由不明显(Eu/Eu*为0.87~0.94)向明显Eu正异常(Eu/Eu*为1.49~8.29)再向微弱Eu正异常(Eu/Eu*为0.67~1.83)变化,U平均含量先降低(GrtⅠ⁃1:1.14×10-6,GrtⅠ⁃2:0.65×10-6)后升高(GrtⅡ:2.34×10-6)都表明氧逸度先升高后降低. 第一期石榴子石核部(GrtⅠ⁃1)的Hf、Ta平均含量(8.84×10⁃6和0.52×10-6)均大于边部(GrtⅠ⁃2:1.60×10-6和0.23×10-6)和第二期石榴子石(GrtⅡ:1.47×10-6和0.37×10-6)平均含量,指示成矿过程由封闭状态转为开放、震荡的环境. 冈底斯成矿带同碰撞时期矽卡岩型矿床的成岩成矿年龄从西向东呈现由老变新的趋势,揭示了其火山活动具有穿时性,反映了印度-亚洲大陆不均匀碰撞的特征.唐格矿床为在南冈底斯带上新发现的同碰撞期矽卡岩型铜多金属矿床,将会为朱诺矿集区及周边乃至整个南冈底斯带找矿提供新方向.

Abstract

In⁃situ U⁃Pb dating of garnet is a newly developed isotope dating method for low⁃U minerals recently, which has been widely used in skarn deposits study. In this paper, the LA⁃ICP⁃MS U⁃Pb age and trace element compositions of garnet are reported for the first time in the Tangge skarn⁃type copper⁃lead⁃zinc deposit in Xizang. Combining with the results of zircon U⁃Pb dating of quartz porphyry, this study investigates the timing of magmatism and related mineralization and the ore⁃forming processes of the Tangge deposit. The garnet U⁃Pb age is 65.5±3.9 Ma, and the zircon U⁃Pb age of quartz porphyry is 68.1±0.9 Ma. These ages indicate both the granitic rocks and mineralization of the Tangge deposit were formed at Late Cretaceous⁃Palaeocene. The rare earth distribution patterns of garnet show an enrichment in light rare earth elements and depleted in heavy rare earth elements in the Tangge deposit with a LREE/HREE ratio is 0.01 to 12.68.Thegarnet can be further divided into two stages (Grt I and Grt II). The different Eu anomalies and average U contents in Grt Ⅰ and Grt Ⅱ indicate that the oxygen fugacity increases at first and then decreases. The average contents of Hf and Ta in the core of the first⁃stage garnet(GrtI⁃1) (8.84×10-6 and 0.52×10-6) are higher than those in the rim (GrtI⁃2:1.60×10-6 and 0.23×10-6), and in the second⁃stage garnet (GrtII:1.47×10-6 and 0.37×10-6), indicating that the metallogenic environment changes from a relatively closed system to an open and oscillating one. The ore⁃forming age of the skarn⁃type deposits in the syn⁃collisional Gangdese metallogenic belt is gradually getting older from east to west, which reveals the diachronous volcanic activity and reflects the characteristics of uneven collision between the Indian continent and the Asia continent. The Tangge deposit is a newly discovered syn⁃collisional skarn⁃type copper polymetallic deposit in the South Gangdese, which will provide a new direction for mineral prospecting in the Zhunuo ore concentration area and its surrounding areas, and even in the entire South Gangdese.

Graphical abstract

关键词

石榴子石 / U⁃Pb定年 / 矽卡岩矿床 / 唐格 / 冈底斯 / 地球化学.

Key words

Garnet / U⁃Pb dating / skarn deposit / Tangge / Gangdese / geochemistry

引用本文

引用格式 ▾
黄倩,吴松,刘晓峰,申亚辉,阿旺旦增,次琼,陈烈,魏守才. 西藏唐格矽卡岩型铜铅锌矿床成矿时代:来自石榴子石U⁃Pb年龄的约束[J]. 地球科学, 2025, 50(02): 621-638 DOI:10.3799/dqkx.2024.017

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

矽卡岩型矿床是全球铜、铁、铅、锌、钨、银、金等金属矿产以及硼、透辉石、硅灰石等非金属矿产的重要来源之一,是国内外学者的研究焦点(Meinert et al.,2005Kamvong et al.,2009Tang et al.,2009Zhao et al.,2012Li et al.,2014Shu et al., 2024). 冈底斯成矿带是青藏高原碰撞造山带内最具成矿潜力的区域,是我国西部重点的成矿区带之一(Zheng et al.,2007;郑有业等,2021;陈浩等,2022;李家桢等,2022). 近年来,前人在冈底斯带晚白垩世-古新世岩浆作用(姜军胜等,2018;Gao et al.,2021;谢桂青等,2021)和矽卡岩成矿作用研究等方面取得了重要成果(李光明等,2005;唐菊兴等,2009);在年代学方面,建立了林子宗群火山岩的年代格架,早期的定年结果限定火山活动时间为65~40 Ma(周肃等,2004;莫宣学等,2006),而最近的系统定年结果将其形成时间限定为60~52 Ma(Zhu et al., 2015);在同位素定年方面,采用Ar⁃Ar、U⁃Pb法等不同的定年方法得到的年龄差别较大,暗示冈底斯东部和西部碰撞时间的差异(付文春等,2014).

石榴子石是变质、岩浆和交代环境中常见的造岩矿物,在矽卡岩矿床中普遍存在,通常在矿物共生序列的早期出现(Meinert et al.,2005Chang et al., 2019). 在矽卡岩矿床或斑岩-矽卡岩型矿床找矿勘查及矿床成因研究中,传统成岩作用时限多用含矿岩体的锆石U⁃Pb测年进行测定,对矽卡岩的形成时限较难厘定. 随着激光剥蚀电感耦合等离子质谱仪(LA⁃ICP⁃MS)的不断发展,石榴子石微区原位的U⁃Pb同位素分析逐步实现,有效避免了显微富U矿物包体的干扰,为限定石榴子石矽卡岩成岩时代提供了精确的年代学证据,是研究矽卡岩矿床成因机制的重要方法之一(Massimo et al.,2013Deng et al.,2017Aysal et al.,2023).

唐格矿床为近年来在冈底斯成矿带西段朱诺矿集区新发现的具有找矿前景的矽卡岩型斑岩-矽卡岩成矿系统,目前研究程度极低. 前人对唐格矿床含矿A型花岗岩开展了年代学研究,获得其锆石U⁃Pb年龄为78.0±0.9 Ma(赵亚云等,2022),但其是否能代表成矿年龄,还需要更多的年代学证据支撑. 本文以西藏唐格矽卡岩型铜铅锌矿床为研究对象,利用LA⁃ICP⁃MS U⁃Pb测定了石榴子石结晶年龄,分析了两期石榴子石的微量元素特征,并将测年结果与矿床石英斑岩中锆石U⁃Pb测年结果进行了对比分析,从而限定了矿床成岩成矿时代,探讨了热液演化过程,并与冈底斯成矿带矽卡岩型矿床区域成矿作用进行了对比,对于认识冈底斯成矿带铜多金属矿床时空分布规律具有重要意义.

1 区域地质背景

唐格矿床位于冈底斯陆缘火山-岩浆弧带西段朱诺矿集区(潘桂棠等,2006;朱弟成等,2009),行政区划隶属于西藏昂仁县亚木乡萨拉达村北. 冈底斯火山-岩浆弧经历了复杂而漫长的地质演化历史,在青藏高原的形成与演化中占有极为重要的地位. 该火山-岩浆弧长约2 500 km,宽约150~300 km,是一条近东西向延伸的构造-岩浆岩带,从中间往东西两侧逐渐变窄,被班公湖-怒江缝合带和印度-雅鲁藏布江缝合带分隔(Yin and Harrison, 2006). 冈底斯火山-岩浆作用强烈,主要出露林子宗群火山岩(65~43 Ma)、冈底斯岩基(205~41 Ma)和前寒武结晶基底(图1Zhu et al., 2013). 此外,还发育渐新世-中新世高Sr/Y花岗质侵入体(Chung et al., 1998Hou et al., 2009)和中新世钾质-超钾质岩(Turner et al., 1996).

冈底斯是我国著名的铜多金属成矿带,根据区域构造特点及矿床分布特征可分为2个亚带(李光明等,2005;郑有业等,2006;杨志明,2008;秦克章等,2014):①北成矿亚带位于狮泉河-申扎-嘉黎蛇绿混杂岩带以南、沙莫勒-麦拉-洛巴堆-米拉山断裂以北,是通常大家所说的隆格尔-工布江达弧背断隆多金属带;②南成矿亚带位于雅江缝合带以北、沙莫勒-麦拉-洛巴堆-米拉山断裂以南,也就是通常大家所说的狭义的冈底斯斑岩铜矿带. 总体上,这些矿床具有“东西成带、北东成行、交汇成矿、近等间距分布”的规律性,北东向构造为重要的控岩控矿构造(图1;郑有业等,2021). 北成矿亚带矽卡岩型矿床主要为Pb⁃Zn(⁃Ag)、Fe(⁃Cu)以及W⁃Mo多金属矿床,成矿时代主要集中在晚白垩世-古新世,以蒙亚啊、亚贵拉、加多捕勒、哈海港为代表(费光春等,2010;Jiang et al., 2021);南成矿亚带矽卡岩型矿床主要为Cu多金属矿床,成矿时代主要为中新世,以知不拉、甲玛为代表,鲜有同碰撞期矽卡岩型矿床报道(徐净等,2014;Shu et al., 2024).

朱诺矿集区位于冈底斯陆缘火山-岩浆弧西段达多盆地,区内化探异常和火山-岩浆作用强烈,呈北东-南西向展布,主要出露侏罗系-下白垩统桑日群、古近系林子宗群火山-沉积地层、始新世-中新世花岗质侵入岩,成矿条件优越(吴松,2016). 近年来,在中国地调局、西藏地勘局的大力支持下,前人在朱诺矿集区发现和评价了多个矿床(点),包括朱诺、北姆朗、落布岗木、次玛班硕、无巴多来、懂师布等,显示巨大的铜多金属找矿潜力(郑有业等, 2021;Liu et al., 2022). 区内主要发育3种成矿类型的矿床,包括:与中新世岩浆有关的斑岩型铜矿床(朱诺、北姆朗、次玛班硕等);与林子宗群次火山热液有关的浅成低温热液型银金铅锌矿床(落布岗木等);与中酸性侵入岩有关的矽卡岩型铜铅锌矿床(唐格等). 总体上,矿集区内斑岩型和浅成低温热液型矿床已开展了大量的研究,而矽卡岩型矿床相关研究还十分薄弱(郑有业等,2006,2007;Sun et al.,2021).

2 矿床地质特征

唐格矿床出露地层主要为侏罗系-下白垩统桑日群(麻木下组、比马组)和古近系林子宗群(典中组、年波组)两套火山-沉积岩石组合及第四系. 麻木下组(J3k1m)主要分布在矿床中部,主要岩性为灰绿色粉砂岩、泥晶灰岩、生物碎屑灰岩,与上覆地层比马组呈整合接触关系. 比马组(K1b)主要分布在矿床中部及东北部,岩性比较复杂,其上与林子宗群地层呈角度不整合接触,被典中组角度不整合覆盖,可以分为三个岩性段:一段为土灰色厚层状质凝灰砂岩;二段岩石类型有灰色条带状灰岩夹透镜状矽卡岩、褐色碎裂状矽卡岩、孔雀石化石英脉;三段为深灰色厚层状砂岩. 典中组(E1d)在矿床大面积分布,岩性为灰绿色安山质晶屑凝灰岩,流纹质和安山质火山角砾岩,与下伏比马组呈角度不整合接触. 年波组(E2n)主要分布在矿床东部,为一套中-酸性火山碎屑岩和沉积碎屑岩组合,与下伏典中组呈角度不整合接触(图2). 矿床发育近东西向和近南北向的断裂构造,断层处的破碎带蚀变极强,蚀变主要发育于断层破碎带和不同岩性接触部位,以绿帘石化、绿泥石化、硅化为主,破碎带裂隙充填石英、硫化物、绢云母、绿泥石、方解石等细脉. 矿床出露的岩浆岩主要有石英斑岩、花岗闪长岩和二长花岗岩,主要呈岩株状产出,其中石英斑岩斑晶主要以石英、长石为主,石英呈他形粒状,粒径为2.0~3.0 mm,约占总体的30%;长石主要以斜长石为主,呈柱状,粒径为0.5~2.0 mm,约占10%;基质为浅白色隐晶质,约占60%.

唐格矿床目前发现4条矽卡岩带,圈定6个铜多金属矿(化)体,均产于比马组二段矽卡岩及矽卡岩化灰岩中,呈层状或似层状产出,估算Cu+Pb+Zn资源量11.25万t,伴生银216.35 t(据多美曲Cu矿普查报告). Ⅱ号铜矿化矽卡岩带为主矿带,走向94°,向北陡倾,倾角65°~78°,长1 600 m,宽20~180 m,平均宽度约40 m,孔雀石化、褐铁矿化发育,主矿体为Ⅱ⁃1、Ⅱ⁃2铜多金属矿体(图2). 其中,Ⅱ⁃2号铜矿体为上层矿,长390 m,厚1.4~30.5 m,平均厚8.0 m,控制斜深155 m,平均品位Cu 1.40%、Pb 1.03%、Zn 2.34%、Ag 116.19×10-6. Ⅱ-1号铜矿体为下层矿,长487 m,厚1.1~18.9 m,平均厚4.1 m,控制斜深55~85 m,平均品位Cu 0.87%、Pb 0.26%、Zn 2.83%、Ag 34.85×10-6(据多美曲Cu矿普查报告).

唐格矿床发育石榴子石化、辉石化、硅灰石化、绿帘石化、绿泥石化、硅化以及碳酸盐化,蚀变最强部位位于岩性分界线附近,其蚀变程度由矽卡岩、大理岩至火山角砾岩具有递减的趋势. 依据矿物共生组合及相互的穿插关系,唐格矿床成矿可划分为矽卡岩期和石英硫化物期,细分为进变质矽卡岩阶段、退变质矽卡岩阶段、石英-铁铜硫化物阶段、石英-铅锌硫化物阶段、石英-碳酸盐阶段. 矿石矿物主要为闪锌矿、黄铁矿、磁黄铁矿,方铅矿和黄铜矿,脉石矿物主要为石榴子石、透辉石、绿帘石、绿泥石、硅灰石、石英、方解石等. 矿石结构主要为自形粒状、交代残余、固溶体分离以及共结边结构,矿石构造主要为浸染状、团块状、脉状. 黄铁矿多与磁黄铁矿共生,常呈微细脉状、填隙结构产出,二者接触界线明显(图3d). 黄铁矿化及黄铜矿化主要以团块状产出于绿帘石化、石榴子石化的火山角砾岩及凝灰岩中. 硅化及绿帘石化发育部位,黄铁矿、黄铜矿矿化较为明显. 闪锌矿化主要以浸染状、团块状或脉状产出,伴生有少量的黄铁矿和黄铜矿,并常与黄铜矿构成固溶体分离结构(图3d). 在黄铁矿与闪锌矿接触边缘,黄铁矿呈港湾状或闪锌矿产于黄铁矿裂隙间(图3d),所以黄铁矿矿化应早于闪锌矿矿化. 依据赋矿围岩类型、产状以及矿石组合特征可分为:浸染状黄铜矿-闪锌矿矽卡岩矿石、块状闪锌矿矽卡岩矿石、脉状及团块状闪锌矿矽卡岩矿石、大理岩中的稠密浸染状闪锌矿矿石、脉状石英±黄铁矿-黄铜矿-闪锌矿矿石(图3a)、团块状石英-方解石±方铅矿-磁黄铁矿矿石(图3b)以及团块状黄铜-磁黄铁矿矽卡岩矿石(图3c).

3 分析测试方法

本次测试样品采自矿床钻孔岩心(ZK801和ZK001)和地表样品(D008⁃1)(图3f). 锆石U⁃Pb测年在中国地质大学(武汉)地质过程与矿产资源国家重点实验室利用飞秒激光剥蚀系统高分辨率电感耦合等离子体质谱仪完成(fs⁃LA⁃ICP⁃MS),分析用激光剥蚀系统为GeoLas 2005,ICP⁃MS为Agilent7500a,激光能量70 mJ, 频率8 Hz, 激光束斑直径32 μm,具体分析条件及流程详见文献Liu el al.(2008),对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及年龄计算)采用软件ICPMSDataCal(Liu et al.,2008)完成.

石榴子石的U⁃Pb年龄和微量元素在武汉上谱分析科技有限责任公司利用LA⁃ICP⁃MS完成. 武汉上谱分析科技有限责任公司使用193 nm ArF准分子激光烧蚀系统(GeoLasHD)和安捷伦7700e ICP⁃MS进行原位U⁃Pb同位素分析,激光频率为5 Hz,束斑尺寸为44 μm. 由于石榴子石原位U⁃Pb定年技术还在初步发展中,目前仍缺乏广泛适用的石榴子石U⁃Pb定年标样,前人多选择其他标样矿物(如锆石91500)来代替石榴子石标样,并已成功应用(Deng et al., 2017Fan et al., 2019). 为降低不同矿物之间存在的基体效应带来的误差,通常选用较小的激光能量密度(Liu et al., 2011). 在本次石榴子石U⁃Pb定年过程中,笔者选择较小的激光能量密度(5 J/cm2),有效地降低了基体效应带来的误差. 研究发现锆石91500标样可以有效矫正石榴子石定年过程中产生的U⁃Pb同位素分馏和质量歧视(Deng et al., 2017),因此选择锆石标样(91500)作为石榴子石U⁃Pb定年的标样. 利用Tera⁃Wasserburg年龄曲线的线性回归确定石榴子石U⁃Pb年龄,Concordia曲线的较低截距代表石榴子石的年龄(Fan et al.,2019). 石榴子石微量元素分析的激光频率为5 Hz,束斑尺寸为32 μm. 根据不同的标准物质(NIST⁃610、BHVO⁃2G、BCR⁃2G和BIR⁃IG)校准石榴子石的微量元素含量. 微量元素分析的时间漂移校正和定量校准均使用ICPMSDataCal_ver10.9软件进行. 使用Isoplot软件绘制Concordia曲线图(Vermeesch, 2018). LA⁃ICP⁃MS的检测限低于0.1×10-6,大多数微量元素的分析精度超过±5%.

4 结果

4.1 石榴子石U⁃Pb年龄及稀土元素组成

本次研究对TG801⁃111、TG801⁃85和TG001⁃70样品中的石榴子石分析了56个测点,除测试过程中可能剥蚀到包体或其他裂隙导致数据信号差、不稳定外,经过筛选共得到27个有效数据点(表1). 测试结果显示,唐格铜铅锌矿床矽卡岩中石榴子石Th含量为7.60×10-9~1.65×10-6,U含量为0.20×10-6~3.66×10-6,其中207Pb/206Pb比值变化为0.07~0.99. U⁃Pb同位素分析结果在Tera⁃Wasserburg U⁃Pb谐和图上显示所有分析点含有不同程度的普通Pb,其下交点年龄为65.5±3.9 Ma(n=27,MSWD=1.4)(图4).

将唐格矿床3件石榴子石样品原位LA⁃ICP⁃MS U⁃Pb微量元素分析数据归一化为Sun and McDonough(1989)的球粒陨石值(表2),石榴子石中稀土含量为98.3×10-6~467×10-5,平均值800×10-6,球粒陨石标准化配分曲线呈轻稀土富集、重稀土亏损的右倾配分模式,LREE值为52.1×10-6~850×10-6,HREE值为15.5×10-6~39.5×10-4,LREE/HREE比值为0.01~12.68,平均值2.07,显示不同的Eu异常特征. 值得一提的是,大多数测试点的LREE/HREE比值大于1,部分小于1的情况存在于样品TG801⁃85和TG801⁃111. 根据样品石榴子石镜下特征(图3图7),早期石榴子石(GrtⅠ)粒径相对大,多为1.0~5.0 mm,受后期热液蚀变影响呈半自形-他形,与辉石共生,破碎的石榴子石裂隙被辉石、方解石填充. 与石榴子石相关的矿化以闪锌矿化、黄铁矿化、磁黄铁矿化为主,以稠密浸染状或团块状产出,金属沉淀物晚于石榴子石,多呈他形填充于石榴子石颗粒之间或石榴子石裂隙中. GrtⅠ 核部无明显生长环带发育,边部出现细窄环带结构,再往外侧又无环带发育,呈现聚片双晶结构;晚期石榴子石(GrtⅡ)粒径相对GrtⅠ 小,粒径0.1~1.0 mm,呈自形-半自形,非均质,石榴子石被后期绿帘石交代,发育绿帘石化及少量浸染状、块状黄铁矿化. 因此认为样品TG801⁃85和TG801⁃111中含早期石榴子石GrtⅠ,样品TG001⁃70中的石榴子石为晚期石榴子石GrtⅡ.

4.2 锆石U⁃Pb年龄

对唐格矿床石英斑岩样品D008⁃1进行LA⁃ICP⁃MS锆石U⁃Pb测试. 锆石CL图像及分析点见图6a. 测试点多选在锆石环带之上,少部分位于锆石核部. 锆石大小多在100~150 μm,晶体长宽比在1∶1~4∶1之间. 锆石的Th/U值在0.46~1.71之间,除3颗锆石外,其余锆石Th/U值均大于1,CL图像显示锆石内部结构清楚,均发育明显岩浆震荡环带,应属于岩浆成因锆石.

LA⁃ICP⁃MS锆石U⁃Pb测试结果见表3图6b. 锆石的Th和U含量分别为124×10-6~693×10-6和146×10-6~723×10-6,Th/U值在0.46~1.71之间,加权平均年龄为68.1±0.9 Ma(n=10,MSWD=1.8).

5 讨论

5.1 唐格矿床成矿时代

本次对唐格矽卡岩型铜铅锌矿床含矿矽卡岩中石榴子石进行U⁃Pb同位素测年,获得其矽卡岩形成时代为65.5±3.9 Ma(n=27,MSWD=1.4). 同时,结合矿区地表与成矿关系密切的石英斑岩锆石U⁃Pb测年结果,获得锆石结晶年龄为68.1±0.9 Ma(n=10,MSWD=1.8). 因此,石英斑岩成岩时代和矽卡岩形成时代,二者在误差范围内基本一致,从而有效限定唐格矿床成岩成矿时代为晚白垩世. 本次获得的唐格矽卡岩型铜铅锌矿床成岩成矿年龄(65.5±3.9 Ma)略晚于前人获得的石英斑岩的成岩年龄(78.0±0.9 Ma)(赵亚云等,2022),证明矿区存在多期次的岩浆活动,在后续的地质填图及找矿勘查工作中应予以区分.

5.2 石榴子石稀土元素组成

石榴子石的化学通式为X2Y3[SiO43,其中X位置代表Ca2+、Mn2+、Mg2+或Fe2+等二价阳离子,Y位置代表Fe3+、Al3+或Cr3+等三价阳离子(Meinert et al., 2005). 稀土元素由于其离子半径范围(0.94Å~1.19Å)与Ca2+(1.12Å)相近,通常通过替代X位置上的Ca2+进入到石榴子石晶格中(Wen et al., 2020). 根据样品石榴子石镜下特征(图3图7),将唐格矿床石榴子石按形成时间大致分为早晚两期. 早期石榴子石核部(GrtⅠ⁃1)的稀土元素总量ΣREE总体较高,在213×10-5~467×10-5之间,LREE/HREE比值范围为0.18~1.66,Eu异常不明显,Eu/Eu*为0.87~0.94,最为富集重稀土;边部(GrtⅠ⁃2)的稀土元素总量ΣREE总体较低,在98.3×10-6~301×10-6之间,LREE/HREE比值范围为0.81~4.53,震荡环带处明显Eu正异常,Eu/Eu*为1.49~8.29;晚期石榴子石(GrtⅡ)稀土元素总量∑REE范围为121×10-6~527×10-6,LREE/HREE比值范围为0.86~12.68,呈现微弱Eu正异常,Eu/Eu*为0.67~1.83.

5.2.1 矽卡岩化的动力学条件

Gaspar(2008)认为热液中高场强元素(Nb、Ta、Zr、Hf)的分布系数随着水/岩比(W/R)的增加而降低,大量研究也表明当W/R比值较高时,成矿系统处于开放、震荡环境,该过程中石榴子石矿物迅速结晶,发育本次样品中常见的震荡环带,且富Fe3+石榴子石也更易在较高的W/R环境中形成,岩浆热液作用也以渗滤交代作用为主;在封闭系统条件下,W/R较低,石榴子结晶速度慢,交代方式以扩散交代作用为主,形成无环带石榴子石. 唐格矿床中核部GrtⅠ⁃1的Hf和Ta平均含量分别为8.84×10-6和0.52×10-6,均大于发育明显震荡环带的边部GrtⅠ⁃2(Hf和Ta平均含量分别为1.60×10-6和0.23×10-6),也大于GrtⅡ(Hf和Ta平均含量分别为1.47×10-6和0.37×10-6),表明GrtⅠ核部结晶于相对较低的W/R条件下,系统处于一个相对封闭的环境中,其边部的环带暗示封闭环境出现了变化,系统由封闭状态转为开放状态. GrtⅡ虽未发育明显环带结构,但也同样指示其相对开放的环境.

根据石榴子石震荡成分分带的宽度,将其分为两种类型,分别为细带状(1~10 μm)和粗带状(10 μm~1 mm). 热液流体成分的快速变化可能导致石榴子石生长带成分的快速变化,细带状的石榴子石化学变化是突变的,表明其在热液体系的快速成长. 唐格矿床样品TG801⁃85的石榴子石的环带宽度为粗带状(>10 μm),样品TG801⁃111的石榴子石环带以细带状(4~8 μm)为主,表明样品TG801⁃85的石榴子石的生长环境中热液流体成分变化较慢,而样品TG801⁃111的石榴子石的形成处于动荡、变化的环境中,表明其成矿环境发生了改变. 震荡环带是热液石榴子石的重要特征,可能是晶体成长过程中动力学因素引起的化学自组织作用控制(Wang et al., 1992)或外部因素(如温度、压力、氧逸度和流体成分等)周期性变化所致(Jamtveit et al., 1995). 考虑到唐格石榴子石具有热液交代成因,且GrtⅠ震荡环带中Ti含量变化较大(1 186×10-6~18 915×10-6),本研究认为GrtⅠ中震荡环带记录了外部因素的周期性变化,这种周期性变化主要来自矽卡岩化阶段热液流体周期性填充到围岩裂隙(高雪等,2014).

含石榴子石矽卡岩中的细脉存在表明(图3图7a),水-岩相互作用和石榴子石的形成有利于脆性裂隙的形成,促进热液流体运移,为后续金属硫化物沉淀提供了充分的容矿空间(高雪等,2014;Shu et al., 2015). 因此,石榴子石化是唐格规模性成矿作用的准备阶段,也是矽卡岩带富集矿石的重要原因.

5.2.2 矽卡岩化的氧化还原条件

唐格矿床石榴子石氧逸度呈现先升高后降低的趋势,主要有以下证据:偏氧化环境利于钙铁榴石的形成,钙铁榴石含量较高时,石榴子石呈现富集轻稀土、亏损重稀土的特征,这与唐格矿床石榴子石的稀土配分曲线一致. 随着铁含量进一步降低,稀土配分曲线变为富集重稀土、亏损轻稀土的模式,说明唐格矿床铁含量总体不高,处于相对还原的状态(王一川和段登飞,2021);同时,由于Eu在自然界中有Eu2+和Eu3+两种价态,当氧化程度较高时,Eu多表现为Eu3+,Eu3+离子半径稍小于Ca2+离子半径,容易发生类质同象作用,替换石榴子石中Ca2+进入矿物晶格,引起Eu正异常. 唐格石榴子石的Eu异常由不明显向明显Eu正异常再到微弱Eu正异常的转变表明氧逸度先升高后降低,石榴子石形成环境由还原到氧化再到还原过渡的条件.

U在还原条件下呈U4+,氧化条件下呈U6+,前者更可能通过替代作用而进入到石榴子石晶格中(欧阳永棚等,2020). GrtⅠ⁃1的U平均含量为1.14×10-6,GrtⅠ⁃2的U平均含量为0.65×10-6,GrtⅡ的U平均含量为2.34×10-6,两个阶段的石榴子石U平均含量先降低后升高,表明氧逸度先升高后降低,与Eu异常的变化相吻合. 唐格矽卡岩型铜多金属矿床成矿过程中,出溶的岩浆热液流体经历了一个氧逸度升高的过程,氧逸度的升高抑制了硫化物(S2-)的形成,进而抑制了Cu、Zn等金属元素的沉淀,有利于成矿元素在流体中的运移.

综上,唐格矿床矽卡岩阶段热液流体的演化过程为:石榴子石结晶早期,伴随着岩浆出溶热液的氧逸度变化,整个热液体系氧逸度增加,石榴子石GrtⅠ⁃1在低水/岩比值下经过扩散交代作用缓慢结晶生成,GrtⅠ生成末期,随着水岩压力的积累与释放,封闭体系被破坏(Park et al., 2017),酸碱度、流体成分等被改变,可能引发热液流体沸腾,变成一个高水/岩比值、高氧逸度的热液系统,GrtⅠ⁃2形成于此时的热液环境下. 随着石榴子石的不断消耗,Fe含量降低,此后伴随大气降水的加入,热液流体氧逸度逐渐降低,在此环境中GrtⅡ石榴子石形成.

5.3 区域成矿作用对比

冈底斯成矿带自晚古生代以来经历了多期岩浆-构造事件,成矿事件主要与岩浆热液作用相关,形成的矿床以斑岩型和矽卡岩型矿床为主,其次为浅成低温热液型、斑岩-矽卡岩型和热液脉型矿床(郑有业等,2021). 近年来,带内矿床成岩成矿时代已经得到广泛研究,带内与岩浆热液相关的矿床成矿年龄与成岩年龄在误差范围内基本保持一致(谢富伟等,2022). 总体来看,冈底斯成矿带内矿床成矿年龄跨度大且分布不集中,可划分为7个成矿期(谢富伟等,2022),其中岩浆活动相对强烈的时期为中新世,集中发育南冈底斯成矿亚带中东段的斑岩-矽卡岩型铜多金属矿床,如甲玛、驱龙、朱诺等,成矿年龄集中在15 Ma前后(Hou et al., 2004;李光明等,2005;Zheng et al.,2007);晚白垩世晚期-古新世早期是仅次于中新世的成矿爆发期,集中发育念青唐古拉成矿亚带中东段的矽卡岩铅锌矿床和矽卡岩铁矿床等,成矿年龄集中在60 Ma前后,以及南冈底斯成矿亚带西段林子宗群火山岩区的铅锌铜多金属矿床,如诺仓矿床、北纳矿床,成矿年龄也都集中在61.0~70.8 Ma(姜军胜等,2018).

冈底斯成矿带晚白垩世-古新世成矿作用非常强烈,主要作用于冈底斯成矿带中亚带,即念青唐古拉成矿亚带,冈底斯西段(82°E~88°E)发现帮布勒矽卡岩型铅锌铜矿床,其石榴子石U⁃Pb年龄75.7±4.8 Ma(Gao et al.,2021),以及查个勒大型矽卡岩型铅锌矿床,其辉钼矿Re⁃Os加权平均计算年龄为61.9±0.4 Ma,白云母40Ar⁃39Ar等时线年龄为62.6±0.7 Ma(Gao et al., 2021),反映了Pb⁃Zn±Ag±Cu矿化的时间. 诺仓南部矽卡岩化火山岩的年龄为70.8±0.5 Ma和72.4±0.4 Ma,推测成矿年龄应略晚于70.8 Ma,北纳矿床花岗斑岩和流纹岩的年龄分别为63.2~63.3 Ma和64.5~65.8 Ma,推测成矿年龄略晚于63.2 Ma;冈底斯东段矽卡岩型Pb⁃Zn矿床成群分布,程巴矽卡岩铜矿辉钼矿Re⁃Os年龄为58.9±0.9 Ma(谢桂青等,2021),哈海港矽卡岩型钨钼矿床辉钼矿Re⁃Os年龄63.2±3.2 Ma(Li et al.,2014),勒青拉辉钼矿Re⁃Os等时线年龄为59.0±1.7 Ma(Zhang et al.,2019),龙马拉矽卡岩铅锌矿床辉钼矿Re⁃Os年龄63.3 Ma,蒙亚啊铅锌矿床辉钼矿Re⁃Os等时线年龄为65.2±0.9 Ma(Wanget al.,2015),Tang(2009)选取了亚贵拉-洞中拉-沙让矿区的7件辉钼矿样品进行Re⁃Os定年,得到等时线年龄为51.0±1.0 Ma,亚贵拉辉钼矿Re⁃Os年龄为58.7±8.5 Ma,洞中拉矿床含矿石英脉40Ar⁃39Ar等时线年龄42.2±1.7 Ma(费光春等,2010).

通过对比冈底斯成矿带同碰撞时期矽卡岩型矿床的成岩成矿年龄,从西向东,年龄分布从59.6~75.7 Ma(唐格、诺仓、帮布勒)到53.3~63.6 Ma(程巴、勒青拉等),呈现由老变新的趋势(图8). 矽卡岩型矿床受不同时代的中酸性侵入岩和古生代-中生代含碳酸盐岩地层控制,集中分布在仲巴县隆格尔-措勤县尼雄,昂仁县如萨乡和谢通门县,以及林周等地区. 林子宗群火山岩岩性从东部拉萨-林周盆地到中部南木林-措勤直至西部狮泉河地区发生变化,火山熔岩逐渐减少,火山碎屑岩逐渐增多,形成时间上,中部地区火山岩形成时间(60~70 Ma)早于东(61~64 Ma)、西(65~60 Ma)两部,西段典中组火山岩浆活动起始时间又相比东段地区最大要早13 Ma左右,火山喷发与构造演化的时间范围更长(姜军胜,2018),以上揭示了其火山活动具有穿时性,矿床的成矿时代在东西方向具有一定差异性,反映了印度-亚洲大陆不均匀碰撞的特征.

通过对比冈底斯成矿带晚白垩世-古新世典型矽卡岩型矿床成矿时代发现,形成矿床的主要原因是特提斯洋俯冲和印度-亚洲大陆碰撞造山作用叠加. 这一系列的矿床都具有相似的成矿动力学背景,具有相似的构造成矿专属性. 新特提斯洋俯冲角度在晚白垩世时由缓变陡,诱发地幔楔的部分熔融,造成了岩浆的底侵集聚,产生了广泛分布的同碰撞花岗岩和大规模林子宗火山岩(侯增谦等,2004;莫宣学等,2006),而唐格岩浆侵位年龄和成矿时代与“底侵”事件时间上的吻合,也印证了从65 Ma左右开始发生的印度-亚洲大陆碰撞对矿床形成的决定性作用. 在晚碰撞阶段,随着印度陆壳的持续低角度俯冲于拉萨地块之下和青藏高原地壳的不断加厚积累,地幔和新生陆壳由于地热影响而发生部分熔融,形成壳幔混合成因的岩浆,并沿着早期通道向上运移侵位,岩浆喷发出地表形成林子宗群火山岩,最终在次火山岩顶部和围岩接触带形成朱诺等斑岩型矿床;在断裂前缘位置,部分沿断裂运移含矿热液与灰岩交代形成矽卡岩型矿床(莫宣学等,2006). 在板块俯冲、碰撞的基础上,认为冈底斯成矿带包括印-亚大陆碰撞的主碰撞阶段(65~41 Ma)、晚碰撞阶段(40~26 Ma)和后碰撞阶段(25~0 Ma)(侯增谦和王二七,2008). 据此,本文认为南冈底斯成矿亚带在印度-亚洲大陆主碰撞时期还伴有58.9~65.5 Ma主成矿期的Cu⁃Pb⁃Zn成矿作用. 唐格与大多数冈底斯主碰撞期典型矿床(如勒青拉、帮布勒)一样,属于冈底斯成矿带碰撞期成矿事件的产物.

6 结论

(1)唐格矽卡岩型铜多金属矿床中石榴子石U⁃Pb年龄为65.5±3.9 Ma,有效限定了成矿时代为晚白垩世-古新世. 唐格石英斑岩锆石LA⁃ICP⁃MS U⁃Pb加权平均年龄为68.1±0.9 Ma,与石榴子石U⁃Pb年龄在误差范围内基本一致.

(2)唐格石榴子石球粒陨石标准化配分模式主要表现为轻稀土富集、重稀土亏损的右倾配分模式,LREE/HREE比值为0.01~12.68,平均值2.07,显示不同的Eu异常特征,两期石榴子石Eu异常由不明显(Eu/Eu*为0.87~0.94)向明显Eu正异常(Eu/Eu*为1.49~8.29)再向微弱Eu正异常(Eu/Eu*为0.67~1.83)变化,U平均含量先降低(GrtⅠ⁃1:1.14×10-6,GrtⅠ⁃2:0.65×10-6)后升高(GrtⅡ:2.34×10-6),指示热液体系的氧逸度先升高后降低.

(3)基于唐格石榴子石镜下特征将唐格矿床石榴子石分为GrtⅠ、GrtⅡ两期. 唐格矿床中核部GrtⅠ⁃1的Hf和Ta平均含量均大于发育明显震荡环带的边部GrtⅠ⁃2和GrtⅡ的平均含量,表明GrtⅠ核部结晶于相对较低的W/R条件下,系统处于一个相对封闭的环境中,其边部的环带暗示封闭环境出现了变化,系统由封闭状态转为开放、震荡的环境. GrtⅡ虽未发育明显环带结构,但也同样指示其相对开放的环境.

(4)通过对比冈底斯成矿带同碰撞时期矽卡岩型矿床的成岩成矿年龄,从西向东年龄分布呈现由老变新的趋势,与林子宗群火山岩活动揭示的东西向穿时性吻合,反映了印度-亚洲大陆不均匀碰撞的特征. 唐格矿床为在南冈底斯带上新发现的同碰撞期矽卡岩型铜多金属矿床,将会为朱诺矿集区及周边乃至整个南冈底斯带找矿提供新方向.

参考文献

[1]

Aysal, N., Guillong, M., Bayanova, T., et al., 2023. A New Natural Secondary Reference Material for Garnet U⁃Pb Dating by TIMS and LA⁃ICP⁃MS. Geostandards and Geoanalytical Research, 47(2): 297-310. https://doi.org/10.1111/ggr.12493

[2]

Chang, Z., Shu, Q., Meinert, L.D., 2019. Skarn Deposits of China. Society of Economic Geologists,Special Publication, 22:189-234.

[3]

Chen, H., Zheng, Y.Y., Yu, Z.Z., et al., 2022. Petrogenesis and Prospecting Significance of Ore⁃Bearing Rocks in Dajiacuo Silver Polymetallic Deposit, Tibet. Earth Science, 47(6): 2199-2218 (in Chinese with English abstract).

[4]

Chung, S., Liu, D. Y., Ji, J., et al., 1998. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust beneath Southern Tibet. Geology, 31: 1021-1024. https://doi.org/10.1130/G19796.1

[5]

Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite⁃Rich Garnet U⁃Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 71. https://doi.org/10.1007/s00410⁃017⁃1389⁃2

[6]

Fan, X. J., Wang, X. D., Lü, X. B., et al., 2019. Garnet Composition as an Indicator of Skarn Formation: LA⁃ICP⁃MS and EPMA Studies on Oscillatory Zoned Garnets from the Haobugao Skarn Deposit, Inner Mongolia, China. Geological Journal, 54(4): 1976-1992. https://doi.org/10.1002/gj.3273

[7]

Fei, G.C., Wen, C.Q., Zhou, X., et al., 2010. Laser Microprobe 40Ar⁃39Ar Geochronology of Quartz from Dongzhongla Lead⁃Zinc Deposit in Tibet and Its Significance. Journal of Mineralogy and Petrology, 30(3): 38-43 (in Chinese with English abstract).

[8]

Fu, W.C., Kang, Z.Q., Pan, H.B., 2014. Geochemistry, Zircon U⁃Pb Age and Implications of the Linzizong Group Volcanic Rocks in Shiquan River Area, Western Gangdise Belt, Tibet. Geological Bulletin of China, 33(6): 850-859 (in Chinese with English abstract).

[9]

Gao, S. B., Chen, X., Zhang, Y. C., et al., 2021. Timing and Genetic Link of Porphyry Mo and Skarn Pb⁃Zn Mineralization in the Chagele Deposit, Western Nyainqentanglha Belt, Tibet. Ore Geology Reviews, 129: 103929. https://doi.org/10.1016/j.oregeorev.2020.103929

[10]

Gao, X., Deng, J., Meng, J.Y., et al., 2014. Characteristics of Garnet in the Hongniu Skarn Copper Deposit Western Yunnan. Acta Petrologica Sinica, 30(9): 2695-2708 (in Chinese with English abstract).

[11]

Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems: a LA⁃ICP⁃MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205. https://doi.org/10.1016/j.gca.2007.09.033

[12]

Hou, Z. Q., Yang, Z. M., Qu, X. M., et al., 2009. The Miocene Gangdese Porphyry Copper Belt Generated during Post⁃Collisional Extension in the Tibetan Orogen. Ore Geology Reviews, 36(1/2/3): 25-51. https://doi.org/10.1016/j.oregeorev.2008.09.006

[13]

Hou, Z.Q., Gao,Y.F., Meng, X.S., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2):239-248 (in Chinese with English abstract).

[14]

Hou, Z.Q., Wang, E.Q., 2008. Metallogenesis of the Indo⁃Asian Collisional Orogen: New Advances. Acta Geoscientica Sinica, 29(3): 275-292 (in Chinese with English abstract).

[15]

Jamtveit, B., Ragnarsdóttir, K., Wood, B.,1995. On the Origin of Zoned Grossular⁃Andradite Garnets in Hydrothermal Systems. European Journal of Mineralogy, 7(6): 1399-1410.https://doi.org/10.1127/ejm/7/6/1399

[16]

Jiang, J.S., 2018. Genesis of Polymetallic Deposits and Prospecting Potential in the Linzizong Group Volcanic Rock Area, Western Gangdise(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).

[17]

Jiang, X. J., Zheng, Y. Y., Gao, S. B., et al., 2021. In⁃Situ U⁃Pb Geochronology of Ti⁃Bearing Andradite as a Practical Tool for Linking Skarn Alteration and Pb⁃Zn Mineralization: a Case Study of the Mengya’a Deposit, Tibet. Ore Geology Reviews, 139: 104565. https://doi.org/10.1016/j.oregeorev.2021.104565

[18]

Kamvong, T., Zaw, K., 2009. The Origin and Evolution of Skarn⁃Forming Fluids from the Phu Lon Deposit, Northern Loei Fold Belt, Thailand: Evidence from Fluid Inclusion and Sulfur Isotope Studies. Journal of Asian Earth Sciences, 34(5): 624-633. https://doi.org/10.1016/j.jseaes.2008.09.004

[19]

Li, G.M., Liu, B., Qu, W.J., et al., 2005. The Porphyry⁃Skarn Ore⁃Forming System in Gangdese Metallogenic Belt, Southern Xizang: Evidence from Molybdenite Re⁃Os Age of Porphyry⁃Type Copper Deposits and Skarn⁃Type Copper Polymetallic Deposits. Geotectonica et Metallogenia, 29(4): 482-490 (in Chinese with English abstract).

[20]

Li, J.Z., Wu, S., Lin, Y.B., et al., 2022. Alteration⁃Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244 (in Chinese with English abstract).

[21]

Li, X. F., Wang, C. Z., Mao, W., et al., 2014. The Fault⁃Controlled Skarn W⁃Mo Polymetallic Mineralization during the Main India⁃Eurasia Collision: Example from Hahaigang Deposit of Gangdese Metallogenic Belt of Tibet. Ore Geology Reviews, 58: 27-40. https://doi.org/10.1016/j.oregeorev.2013.10.006

[22]

Li, Y.Y., Xie, Y.L., Chen, W., et al., 2017. U⁃Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7): 2023-2033 (in Chinese with English abstract).

[23]

Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. https://doi.org/10.1016/j.oregeorev.2022.104823

[24]

Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA⁃ICP⁃MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004

[25]

Liu, Z.C., Wu, F.Y., Guo, C.L., et al., 2011. In Situ U⁃Pb Dating of Xenotime by Laser Ablation (LA)⁃ICP⁃MS. Chinese Science Bulletin, 56(27): 2948-2956

[26]

Massimo, C., Urs, S., Richard, S., et al., 2013. How Accurately Can We Date the Duration of Magmatic⁃Hydrothermal Events in Porphyry Systems? An Invited Paper. Economic Geology, 108(4): 565-584. https://doi.org/10.2113/econgeo.108.4.565

[27]

Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology, 100th Anniversarry Volume, 299-336.

[28]

Mo, X.X., Zhao, Z.D., Depaolo, D., et al., 2006. Three Types of Collisional and Post⁃Collisional Magmatism in the Lhasa Block, Tibet and Implications for India Intra-Continental Subduction and Mineralization: Evidence from Sr⁃Nd Isotopes. Acta Petrologica Sinica, 22(4): 795-803 (in Chinese with English abstract).

[29]

Ouyang, Y.P., Zhou, X.R., Yao, Z.Y., et al., 2020. Study on the Two⁃Stage Garnets and Their Indication of Mineralization in the Zhuxi W(Cu)Deposit, Northeastern Jiangxi Province. Earth Science Frontiers, 27(4): 219-231 (in Chinese with English abstract).

[30]

Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial⁃Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract).

[31]

Park, C., Song, Y., Kang, I. M., et al., 2017. Metasomatic Changes during Periodic Fluid Flux Recorded in Grandite Garnet from the Weondong W⁃Skarn Deposit, South Korea. Chemical Geology, 451: 135-153. https://doi.org/10.1016/j.chemgeo.2017.01.011

[32]

Qin, K.Z., Xia, D.X., Li, G.M., et al., 2014. The Qulong Porphyry⁃Skarn Copper⁃Molybdenum Deposit in Tibet. Science Press, Beijing(in Chinese with English abstract).

[33]

Shu, Q. H., Deng, J., Chang, Z. S., et al.,2024. Skarn Zonation of the Giant Jiama Cu⁃Mo⁃Au Deposit in Southern Tibet, SW China. Economic Geology, 119 (1): 1-22. https://doi.org/10.5382/econgeo.5038

[34]

Shu, Q., Al, E., 2015. Fluid Compositions Reveal Fluid Nature, Metal Deposition Mechanisms, and Mineralization Potential: an Example at the Haobugao Zn⁃Pb Skarn, China. Geology, 49:473-477.https://doi.org/10.1130/G48348.1

[35]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[36]

Sun, X., Hollings, P., Lu, Y. J., 2021. Geology and Origin of the Zhunuo Porphyry Copper Deposit, Gangdese Belt, Southern Tibet. Mineralium Deposita, 56(3): 457-480. https://doi.org/10.1007/s00126⁃020⁃00970⁃0

[37]

Tang, J.X., Chen, Y.C., Duo, J., et al., 2009. Main Deposit Types, Metallogenic Regularities and Prospecting Evaluation in the Eastern Segment of the Gangdise Metallogenic Belt, Tibet. Acta Mineralogica Sinica, 29(S1): 476-478(in Chinese with English abstract).

[38]

Turner, S., Arnaud, N., Liu, J., et al., 1996. Post⁃Collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology,37(1): 45-71.https://doi.org/10.1093/petrology/37.1.45

[39]

Vermeesch, P., 2018. IsoplotR: a Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001

[40]

Wang, L. Q., Tang, J. X., Deng, J., et al., 2015. The Longmala and Mengya’a Skarn Pb⁃Zn Deposits, Gangdese Region, Tibet: Evidence from U⁃Pb and Re⁃Os Geochronology for Formation during Early India⁃Asia Collision. International Geology Review, 57(14): 1825-1842. https://doi.org/10.1080/00206814.2015.1029540

[41]

Wang, Y. F., Merino, E., 1992. Dynamic Model of Oscillatory Zoning of Trace Elements in Calcite: Double Layer, Inhibition, and Self-Organization. Geochimica et Cosmochimica Acta, 56(2): 587-596. https://doi.org/10.1016/0016⁃7037(92)90083⁃U

[42]

Wang, Y.C., Duan, D.F., 2021. REE Distribution Character in Skarn Garnet and Its Geological Implication. Acta Scientiarum Naturalium Universitatis Pekinensis, 57(3): 446-458 (in Chinese with English abstract).

[43]

Wen, G., Li, J. W., Hofstra, A. H., et al., 2020. Textures and Compositions of Clinopyroxene in an Fe Skarn with Implications for Ore⁃Fluid Evolution and Mineral-Fluid REE Partitioning. Geochimica et Cosmochimica Acta, 290: 104-123. https://doi.org/10.1016/j.gca.2020.08.020

[44]

Wu, S., 2016. The Zhunuo Super⁃Large Porphyry Copper Deposit in the Gangdise Region, Tibet: Magmatism and Mineralization(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).

[45]

Xie,F.W., Lang,X.H., Tang,J.X., et al., 2022. Metallogenic regularity of Gangdese Metallogenic Belt,Tibet. Mineral Deposits, 41(5):952-974 (in Chinese with English abstract).

[46]

Xie, G.Q., Chen, X.L., Ma, L.J., et al., 2021. Chengba Copper Polymetallic Skarn Deposit in Linzhou County, Gangdese Metallogenic Belt: Implications for Mineral Exploration of Regional Paleocene Cu Deposits in Southern Tibet. Mineral Deposits, 40(3): 625-630 (in Chinese with English abstract).

[47]

Xu, J., Zheng, Y.Y., Sun, X., et al., 2014. Mineralogical Characteristics of Zhibula Skarn⁃Type Cu Deposit in Tibet and Their Geological Significance. Earth Science, 39(6): 654-670, 768(in Chinese with English abstract).

[48]

Yang, Z.M., Hou, Z.Q., Xia, D.X., et al., 2008. Relationship between Western Porphyry and Mineralization in Qulong Copper Deposit of Tibet and Its Enlightenment to Further Exploration. Mineral Deposits, 27(1): 28-36 (in Chinese with English abstract).

[49]

Yin, A., Harrison, T., 2006. Geologic Evolution of the Himalayan⁃Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211.

[50]

Zhang, A. P., Zheng, Y. C., Xu, B., et al., 2019. Metallogeny of the Lietinggang⁃Leqingla Fe⁃Cu⁃(Mo)⁃Pb⁃Zn Polymetallic Deposit, Evidence from Geochronology, Petrogenesis, and Magmatic Oxidation State, Lhasa Terrane. Ore Geology Reviews, 106: 318-339. https://doi.org/10.1016/j.oregeorev.2019.02.004

[51]

Zhao, Y.M., Lin, W.W., Bi, C.S., 2012.Skarn Ore Deposits in China. Geological Publishing House, Beijing,1-115(in Chinese with English abstract).

[52]

Zhao, Y.Y., Liu, X.F., Yang, C.S., et al., 2022. Recongnition of A⁃Type Granite and Its Implication for Magmatism and Mineralization in Tangge Skarn⁃Type Cu⁃Polymetallic Deposit, Tibet. Geology in China, 49(2): 496-517 (in Chinese with English abstract).

[53]

Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434⁃007⁃0406⁃7

[54]

Zheng, Y.Y., Duoji, Wang, R.J., et al., 2007. New Advances in the Study of the Gigantic Gangdise Porphyry Copper Metallogenic Zone, Tibet. Geology in China, 34(2): 324-334 (in Chinese with English abstract).

[55]

Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239 (in Chinese with English abstract).

[56]

Zheng, Y.Y., Wu, S., Ci, Q., et al., 2021. Cu⁃Mo⁃Au Metallogenesis and Minerogenetic Series during Superimposed. Earth Science, 46(6): 1909-1940 (in Chinese with English abstract).

[57]

Zhou, S., Mo, X.X., Dong, G.C., et al., 2004. The 40Ar/39Ar Chronological Framework of the Linzizong Volcanic Rocks in the Linzhou Basin, Tibet. Chinese Science Bulletin, 49(20): 2095-2103 (in Chinese).

[58]

Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre⁃Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002.

[59]

Zhu, D.C,. Wang, Q., Zhao, Z.D., et al., 2015. Magmatic Record of India-Asia Collision. Sci Rep. 2015 Sep 23;5:14289. https://doi.org/ 10.1038/srep14289.

[60]

Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009. Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution: New Perspective. Earth Science Frontiers, 16(2): 1-20 (in Chinese with English abstract).

基金资助

国家自然科学基金(U22A20572)

国家自然科学基金(42072109)

西藏自治区中央引导地方科技计划项目(XZ202202YD0006C)

紫金矿业科技项目“西藏朱诺斑岩铜钼矿床外围找矿靶区优选与资源潜力评价”

AI Summary AI Mindmap
PDF (6731KB)

114

访问

0

被引

详细

导航
相关文章

AI思维导图

/