新太古代-古元古代熊耳山地区的岩浆作用与大地构造意义
刘恒 , 刘磊 , 张德贤 , 康诗胜 , 胡天杨
地球科学 ›› 2025, Vol. 50 ›› Issue (02) : 667 -686.
新太古代-古元古代熊耳山地区的岩浆作用与大地构造意义
Magmatic Activity and Tectonic Significance in the Xiong'ershan Area during the Neoarchean to Early Paleoproterozoic
,
,
华北克拉通南缘出露的古老岩石主要为TTG和钾质花岗岩的岩石组合,该组合是研究花岗岩成因和大陆地壳生长演化的一个重要对象.聚焦于熊耳山地区,利用锆石微区Hf⁃O同位素和微量元素分析来示踪岩浆的演化过程,探讨不同阶段花岗岩的地球化学特征、源区性质及其成因机理,厘定了2.5~2.4 Ga,~2.3 Ga两期重要岩浆-构造事件. 研究发现,小南沟地区2.51~2.43 Ga奥长花岗岩含有富钛氧化物,εHf(t)值为-6.9至+5.0,锆石δ18O值平均值分别为6.03‰和5.18‰,可能跟地壳物质的部分熔融和沉积物质的加入有关. 黄沟和穆册地区2.3 Ga钾质花岗岩显示锆石δ18O值平均值分别为3.98‰和3.10‰,εHf(t)值较低,为-5.8至-3.5. 锆石δ18O值的明显降低,可能跟地幔物质上涌引起的高温水岩反应过程有关. 不同时代花岗岩的不同类型锆石微量元素呈现出大陆弧环境的特征,结合较低的εHf(t)和降低的δ18O同位素组分变化,熊耳山地区在岩浆静寂期前夕可能形成于活动大陆边缘弧环境.
The ancient rocks exposed along the southern margin of the North China Craton primarily comprise a suite of rocks known as TTG (Tonalite⁃Trondhjemite⁃Granodiorite) and K⁃rich granites. This suite represents a critical target for the study of granite genesis and the evolution of continental crust. This paper focuses on the Xiong'ershan region and employs zircon microanalysis of Hf⁃O isotopes and trace elements to trace the evolution of magma. It explores the geochemical characteristics of granites at different stages, the nature of their source regions, and the mechanisms behind their formation. This study identifies two significant magmatic⁃tectonic events around 2.5 to 2.4 Ga and ~2.3 Ga. The research reveals that in the Xiaonangou region, trondhjemite from 2.51 to 2.43 Ga contain rich titanium oxides, with low εHf(t) values ranging from -6.9 to +5.0. The zircon oxygen isotope values average 6.03‰ and 5.18‰, suggesting potential associations with partial crustal melting and the incorporation of sedimentary material. In the Huanggou and Muce regions, ~2.3 Ga potassic granites exhibit zircon oxygen isotope values averaging 3.98‰ and 3.10‰, with enriched εHf(t) values ranging from -5.8 to -3.5, respectively. The significant decrease in zircon δ18O values may be linked to high⁃temperature hydrothermal⁃magmatic interactions caused by upwelling mantle material. Zircon trace element compositions of different types in granites from different eras exhibit characteristics of continental arc environments. Combined with continuously low εHf(t) and reducing δ18O isotopic composition, the Xiong'ershan region likely formed in an active continental margin arc environment on the eve of the magmatic quiet period.
锆石Hf⁃O同位素 / 氧逸度 / 华北克拉通南缘 / 2.5~2.3 Ga / 活动大陆边缘 / 构造地质学.
zircon Hf⁃O isotope / oxygen fugacity / the southern margin of the NCC / 2.5~2.3 Ga / Active continental margin / structural geology
| [1] |
Andersen, T., 2002. Correction of Common Lead in U⁃Pb Analyses That Do Not Report 204Pb. Chemical Geology, 192(1): 59-79. https://doi.org/10.1016/S0009⁃2541(2)00195⁃X |
| [2] |
Bell, E.A., Boehnke, P., Harrison, M., 2016. Recovering the Primary Geochemistry of Jack Hills Zircons Through Quantitative Estimates of Chemical Alteration. Geochimica et Cosmochimica Acta, 191: 187-202. https://doi.org/10.1016/j.gca.2016.07.016 |
| [3] |
Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny: Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre⁃Nuna Supercontinent Reconstruction. Precambrian Research, 232: 44-69. https://doi.org/10.1016/j.precamres.2012.10.015 |
| [4] |
Bindeman, I., 2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry, 69(1): 445-478. https://doi.org/10.2138/rmg.2008.69.12 |
| [5] |
Bindeman, I. N., Zakharov, D. O., Palandri, J., et al., 2018. Rapid Emergence of Subaerial Landmasses and Onset of a Modern Hydrologic Cycle 2.5 Billion Years Ago. Nature, 557(7706): 545-548. https://doi.org/10.1038/s41586⁃018⁃0131⁃1 |
| [6] |
Borisov, A. A., Shapkin, A. I., 1990. New Empirical Equation Relating Fe3+/Fe2+ in Magmas to Their Composition, Oxygen Fugacity, and Temperature. Geochemistry International, 27(1): 111-116. |
| [7] |
Carmichael, I., Nicholls, J., 1967. Iron⁃Titanium Oxides and Oxygen Fugacities in Volcanic Rocks. Journal of Geophysical Research Atmospheres, 72(18). https://doi.org/10.1029/JZ072i018p04665. |
| [8] |
Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1-4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033 |
| [9] |
Cui, Z., Xia, X. P., Huang, X. L., et al., 2022. Meso⁃ to Neoarchean Geodynamic Transition of the North China Craton Indicated by H2O⁃in⁃Zircon for TTG Suite. Precambrian Research, 371: 106574. https://doi.org/10.1016/j.precamres.2022.106574 |
| [10] |
Diwu, C. R, 2007. Zircon U⁃Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China. Acta Petrologica Sinica, (2):253-262 (in Chinese with English abstract). |
| [11] |
Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45⁃2.20 Ga) Magmatic Activity During the Period of Global Magmatic Shutdown: Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255: 627-640. https://doi.org/10.1016/j.precamres.2014.08.001 |
| [12] |
Diwu, C. R, 2018.The Composition and Evolution of the Taihua Complex in the Southern North China Craton. Acta Petrologica Sinica, 34(4):999-1018 (in Chinese with English abstract). |
| [13] |
Diwu, C. R, 2021.Crustal Growth and Evolution of Archean Continental Crust in the Southern North China Craton. Acta Petrologica Sinica, 37(2):317-340 (in Chinese with English abstract). |
| [14] |
Dong, M. M., Wang, C. M., Santosh, M., et al., 2020. Geochronology and Petrogenesis of the Neoarchean-Paleoproterozoic Taihua Complex, NE China: Implications for the Evolution of the North China Craton. Precambrian Research, 346: 105792. https://doi.org/10.1016/j.precamres.2020.105792 |
| [15] |
Fedo, C. M., Sircombe, K. N., Rainbird, R. H., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303. https://doi.org/10.2113/0530277 |
| [16] |
Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti⁃in⁃Zircon and Zr⁃in⁃Rutile Thermometers. Contributions to Mineralogy & Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410⁃007⁃0201⁃0 |
| [17] |
French, J. E., Heaman, L. M., 2010. Precise U⁃Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research, 183(3): 416-441. https://doi.org/10.1016/j.precamres. 2010. 05.003 |
| [18] |
Gasquet, D., Barbey, P., Adou, M., et al., 2003. Structure, Sr⁃Nd Isotope Geochemistry and Zircon U⁃Pb Geochronology of the Granitoids of the Dabakala Area (Côte d’Ivoire): Evidence for a 2.3 Ga Crustal Growth Event in the Palaeoproterozoic of West Africa? Precambrian Research, 127(4): 329-354. https://doi.org/10.1016/S0301⁃9268(3)00209⁃2 |
| [19] |
Ge, R. F., Simon, A. Wilde, Zhu, W. B., et al., 2023. Earth’s Early Continental Crust Formed from Wet and Oxidizing Arc Magmas,Nature,623:334-349. https://doi.org/10.1038/s41586⁃023⁃06552⁃0 |
| [20] |
Grimes, C. B., Woode,J. L., Cheadle, M. J et al., 2015. "Fingerprinting" Tectono⁃Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170: 46. https://doi.org/10.1007/s00410⁃015⁃1199⁃3 |
| [21] |
Gong, S., Chen, N., Wang, Q., et al., 2012. Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai⁃Tibet Plateau and Its Tectonic Significance: LA⁃ICPMS U⁃Pb Zircon Geochronology and Geochemistry. Gondwana Research, 21(1): 152-166. https://doi.org/10.1016/j.gr.2011.07.011 |
| [22] |
Hartlaub, R. P., Heaman, L. M., Chacko, T., et al., 2007. Circa 2.3 Ga Magmatism of the Arrowsmith Orogeny, Uranium City Region, Western Churchill Craton, Canada. Journal of Geology, 115(2): 181-195. https://doi.org/10.1086/510641 |
| [23] |
Huang, X. L., Wilde, S. A., Zhong, J. W., 2013. Episodic Crustal Growth in the Southern Segment of the Trans-North China Orogen Across the Archean⁃Proterozoic Boundary. Precambrian Research, 233: 337-357. https://doi.org/10.1016/j.precamres.2013.05.016 |
| [24] |
Huang, X. L., Wilde, S. A., Yang, Q. J., et al., 2012. Geochronology and Petrogenesis of Gray Gneisses from the Taihua Complex at Xiong'er in the Southern Segment of the Trans⁃North China Orogen: Implications for Tectonic Transformation in the Early Paleoproterozoic. Lithos, 134-135: 236-252. https://doi.org/10.1016/j.lithos. 2012.01.004 |
| [25] |
Ishihara, S., 1977. The Magnetite⁃Series and Ilmenite⁃Series Granitic Rocks.Mining Geology, 27(145): 293-305. https://doi.org/10.11456/shigenchishitsu1951.27.293 |
| [26] |
Jagoutz, O.,Klein, B., 2018. On the Importance of Crystallization⁃Differentiation for the Generation of SiO2⁃Rich Melts and the Compositional Build⁃Up of Arc (and Continental) Crust. American Journal of Science, 318(1): 29-63. https://doi.org/10.2475/01.2018.03 |
| [27] |
Jia, X. L, 2016. Research on the Taihua Complex in Xiaoqinling and Lushan Areas: Implications for the Evolution of the Crystalline Basement in the Southern North China Craton (Dissertation). Northwest University, Xian (in Chinese with English abstract). |
| [28] |
Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2019. Late Neoarchean to Early Paleoproterozoic Tectonic Evolution of the Southern North China Craton: Evidence from Geochemistry, Zircon Geochronology, and Hf Isotopes of Felsic Gneisses from the Taihua Complex. Precambrian Research, 326: 222-239. https://doi.org/10.1016/j.precamres.2017.11.013 |
| [29] |
Jia, X. L., Zhai, M. G., Xiao, W. J., et al., 2020. Mesoarchean to Paleoproterozoic Crustal Evolution of the Taihua Complex in the Southern North China Craton. Precambrian Research, 337: 105451.https://doi.org/10.1016/j.precamres.2019.105451 |
| [30] |
Kang, S. S., Liu, H., Hu, T. Y., et al., 2023. Petrogenesis and Geotectonic Significance of TTG Gneiss in Late Neoarchean Dengfeng Complex. Earth Science, 48(9): 3342-3359 (in Chinese with English abstract). |
| [31] |
Lan, C., Zhou, Y., Wang, C., et al., 2017. Depositional Age and Protoliths of the Paleoproterozoic Upper Taihua Group in the Wuyang Area in the Southern Margin of the North China Craton: New Insights into Stratigraphic Subdivision and Tectonic Setting. Precambrian Research, 297: 77-100. https://doi.org/10.1016/j.precamres.2017.05.014 |
| [32] |
Laurent, O., Martin, H., Moyen, J. F., et al., 2014. The Diversity and Evolution of Late⁃Archean Granitoids: Evidence for the Onset of "Modern⁃Style" Plate Tectonics Between 3.0 and 2.5 Ga. Lithos, 205: 208-235. https://doi.org/10.1016/j.lithos.2014.06.012 |
| [33] |
Lee, C. T., 2016. Two⁃Step Rise of Atmospheric Oxygen Linked to the Growth of Continents. Nature Geoscience. 9:417-424. https://doi.org/10.1038/NGEO2707 |
| [34] |
Li, W.Y., Teng, F.Z., Ke, S., et al., 2010. Heterogeneous Magnesium Isotopic Composition of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 74(23): 6867-6884. https://doi.org/10.1016/j.gca.2010.08.030 |
| [35] |
Li, W., Huberty, J. M., Beard, B. L., et al., 2013. Contrasting Behavior of Oxygen and Iron Isotopes in Banded Iron Formations Revealed by In Situ Isotopic Analysis. Earth and Planetary Science Letters, 384(): 132-143. https:// doi.org/10.1016/j.epsl.2013.10.014 |
| [36] |
Li, Z. S, 2021. Late Precambrian Chronostratigraphic Framework and Tectonic Evolution of the Xiong'er Basin in Southern North China Craton. Acta Geologica Sinica, 95(11):3234-3255 (in Chinese with English abstract). |
| [37] |
Liu, H., Wang, W., Cawood, P. A., et al., 2020. Synchronous Late Neoarchean Na⁃ and K⁃Rich Granitoid Magmatism at an Active Continental Margin in the Eastern Liaoning Province of North China Craton. Lithos, 376/377(1). |
| [38] |
Lu, G. M., Spencer, C. J., Tian, Y., et al., 2021. Significant Increase of Continental Freeboard During the Early Paleoproterozoic: Insights from Metasediment⁃Derived Granites. Geophysical Research Letters, 48(22). https://doi.org/10.1029/2021gl096049 |
| [39] |
Lu, G.M., Wang, W., Tian, Y., et al.,2021. Siderian Mafic⁃Intermediate Magmatism in the SW Yangtze Block, South China: Implications for Global 'Tectono⁃Magmatic Lull' During the Early Paleoproterozoic. Lithos, 398-399:106306. https://doi:10.1016/j.lithos.2021.106306 |
| [40] |
Lu, S., Zhao, G., Wang, H., et al., 2008. Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review. Precambrian Research, 160(1-2): 77-93. https://doi.org/10.1016/j.precamres.2007.04.017 |
| [41] |
McCammon, C., 2005. The Paradox of Mantle Redox. Science, 308(5723): 807-808. https://doi.org/ 10.1126/science. 1110532 |
| [42] |
Miles, A. J., Graham, C. M., Hawkesworth, C. J., et al., 2014. Apatite: A New Redox Proxy for Silicic Magmas? Geochimica et Cosmochimica Acta, 132: 101-119. https://doi.org/10.1016/j.gca.2014.01.040 |
| [43] |
Palin, R. M., Santosh, M., Cao, W. T., et al., 2020. Secular Change and the Onset of Plate Tectonics on Earth. Earth⁃Science Reviews, 207: 103172. https://doi.org/10.1016/j.earscirev.2020.103172 |
| [44] |
Payne, J. L., Hand, M., Pearson, N. J., et al., 2015. Crustal Thickening and Clay: Controls on Oxygen Isotope Variation in Global Magmatism and Siliciclastic Sedimentary Rocks. Earth and Planetary Science Letters, 412: 70-76. https://doi.org/10.1016/j.epsl.2014.12.037 |
| [45] |
Qiu, J. T., Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545-556. https://doi.org/10.1007/s00126⁃013⁃0456⁃5 |
| [46] |
Rey, P. F., Coltice, N., 2008. Neoarchean Lithospheric Strengthening and the Coupling of Earth's Geochemical Reservoirs. Geology, 36(8): 635-638. https://doi.org/10.1130/g25031a.1 |
| [47] |
Silver, P. G., Behn, M. D., 2008. Intermittent Plate Tectonics? Science, 319(5859): 85-88. https://doi.org/10.1126/science.1148397 |
| [48] |
Sun, G., Liu, S., Cawood, P. A., et al., 2021. Thermal State and Evolving Geodynamic Regimes of the Meso⁃ to Neoarchean North China Craton. Nature Communication, 12(1): 3888. https://doi.org/10.1038/s41467⁃021⁃24139⁃z |
| [49] |
Sun, Q., Zhou, Y., Wang, W., et al., 2017. Formation and Evolution of the Paleoproterozoic Meta⁃Mafic and Associated Supracrustal Rocks from the Lushan Taihua Complex, Southern North China Craton: Insights from Zircon U⁃Pb Geochronology and Whole⁃Rock Geochemistry. Precambrian Research, 303: 428-444. https://doi.org/10.1016/j.precamres.2017.05.018 |
| [50] |
Sun, W. D, 2020. Oxygen Fugacity of Earth. Geochimica, 49(1):1-20 (in Chinese with English abstract). |
| [51] |
Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London. Special Publications, 42(1): 313-345.https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [52] |
Tang, M., Chu, X., Hao, J., et al., 2021. Orogenic Quiescence in Earth’s Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876 |
| [53] |
Trail, D., Watson, E. B., Tailby, N. D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375): 79-82. https://doi.org/10.1038/nature10655 |
| [54] |
Trail, D., Bruce Watson, E., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97: 70-87. https://doi.org/10.1016/j.gca.2012.08.032 |
| [55] |
Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005. 4.4 Billion Years of Crustal Maturation: Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6): 561-580. https://doi.org/10.1007/s00410⁃005⁃0025⁃8 |
| [56] |
Van Kranendonk, M. J., Hugh Smithies, R., Hickman, A. H., et al., 2007. Review: Secular Tectonic Evolution of Archean Continental Crust: Interplay Between Horizontal and Vertical Processes in the Formation of the Pilbara Craton, Australia. Terra Nova, 19(1): 1-38. https://doi.org/10.1111/j.1365⁃3121.2006.00723.x |
| [57] |
Wan, Y. S., Dong, C. Y., Xie, H. Q., 2015. Some Progress in the Study of Archean Basement of the North China Craton. Acta Geoscientica Sinica, 36(6): 685-700 (in Chinese with English abstract). |
| [58] |
Wang, J. Y., Long, X. P., Zhai, M. G., 2021. Early Paleoproterozoic magmatism and tectonic evolution in the southern section of North ChinaCraton. Journal of Northwest University(Philosophy and Social Sciences Edition), 51(6):985-1006 (in Chinese with English abstract). |
| [59] |
Wang, P., Mao, J., Ye, H., et al., 2022. Zircon Xenocryst Hf⁃O Isotopic Compositions in the Qiyugou Au Orefield: A Record of Paleoproterozoic Oceanic Slab Subduction in the Trans⁃North China Orogen. Precambrian Research, 368: 106499. https://doi.org/10.1016/j.precamres.2021 |
| [60] |
Wang, W., Cawood, P. A., Zhou, M. F., et al. 2017. Low⁃δ18O Rhyolites from the Malani Igneous Suite: A Positive Test for South China and NW India Linkage in Rodinia. Geophysical Research Letters, 44(20), 10,298-210,305. https://doi.org/10.1002/2017GL074717 |
| [61] |
Wang, X., Huang, X. L., Yang, F., 2021. Geochronology and Geochemistry of the Xiaoqinling Taihua Complex in the Southern Trans⁃North China Orogen: Implications for Magmatism During the Early Paleoproterozoic Global Tectono⁃Magmatic Shutdown. Lithos, 402-403. https://doi.org/10.1016/j.lithos.2021.106248 |
| [62] |
Windley, B. F., Kusky, T., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980 |
| [63] |
Wu, F. Y., Li, X. H.,Zheng, Y. F., et al., 2007. Lu⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, (2): 185-220 (in Chinese with English abstract). |
| [64] |
Xu, D. L., Peng, L. H., Deng, X., et al., 2013. Identification of Mesoarchean to Paleoproterozoic Magmatic Tectono⁃Thermal Events from Wengmen Complex in Southern Dabie Orogen and Its Geological Significance. Earth Science, 48(11): 4072-4087 (in Chinese with English abstract). |
| [65] |
Yang, C. H, Du, L. L., Song, H. X., et al., 2018. Stratigraphic Division and Correlation of the Paleoproterozoic Strata in the North China Craton: A Review. Acta Petrologica Sinica, 34(4):1019-1057 (in Chinese with English abstract). |
| [66] |
Yang, X., Gaillard, F., Scaillet, B., 2014. A Relatively Reduced Hadean Continental Crust and Implications for the Early Atmosphere and Crustal Rheology. Earth and Planetary Science Letters, 393: 210-219. https://doi.org/10.1016/j.epsl.2014.02.056 |
| [67] |
Zeh, A., Gerdes, A., Barton, J.M., 2009. Archean Accretion and Crustal Evolution of the Kalahari Craton: The Zircon Age and Hf Isotope Record of Granitic Rocks from Barberton/Swaziland to the Francistown Arc. Journal of Petrology. 50, 933-966. https://doi.org/10.1093/petrology/egp027 |
| [68] |
Zhang, S. B., Zheng, Y. F., 2013. Time and Space of Neoproterozoic Low δ18O Magmatic Rocks in South China.Science China Bullet, 58(23): 2344-2350 (in Chinese with English abstract). |
| [69] |
Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 |
| [70] |
Zhai, M. G, 2013. Secular Changes of Metallogenic Systems Linked with Continental Evolution of the North China Craton. Acta Petrologica Sinica, 29(5): 1759-1773 (in Chinese with English abstract). |
| [71] |
Zhai, M. G, 2020.Review and Overview for the Frontier Hotspot: Early Continents and the Start of Plate Tectonics. Acta Petrologica Sinica, 36(8):2249-2275 (in Chinese with English abstract). |
| [72] |
Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural, and P⁃T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1): 45-73. https://doi.org/10.1016/S0301⁃9268(0)00154⁃6 |
| [73] |
Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 136(2): 177-202. https://doi.org/10.1016/j.precamres. 2004.10.002 |
| [74] |
Zhao, G. C., Zhang, G. W., 2021. Origin of Continents. Acta Geologica Sinica, 95(1):1-19 (in Chinese with English abstract). |
| [75] |
Zhang R. Y., Zhang C. L., Diwu C. R., et al., 2012.Zircon U⁃Pb Geochronology, Geochemistry, and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain, Shanxi Province. Acta Petrologica Sinica, 28(11): 3559-3573 (in Chinese with English abstract). |
| [76] |
Zheng, Y. F., Zhao, G., 2020. Two Styles of Plate Tectonics in Earth’s History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029 |
| [77] |
Zheng, Y. F., 2021. Convergent Plate Boundaries and Accretionary Wedges.In: Encyclopedia of Geology(2nd Edition). Alderton, D., Elias, S.A., eds., Academic Press, United Kingdom, 3: 770-787. https://doi.org/10.1016/B978⁃0⁃08⁃102908⁃4.00042⁃4 |
| [78] |
Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402-403: 106232. https://doi.org/10.1016/j.lithos.2021.106232 |
| [79] |
Zheng, Y. L., Zhou, Y. Y., Zhai, M. G., et al., 2022. Ca. 2.1 Ga Low⁃δ18O Gabbro⁃Diorite Association in Southern North China Craton: Implications for an Intraplate Rifting. Lithos, 430-431: 106858. https://doi.org/10.1016/j.lithos.2022.106858 |
| [80] |
Zhou, Y., Zhao, T., Zhai, M., et al., 2014. Petrogenesis of the Archean Tonalite⁃Trondhjemite⁃Granodiorite (TTG) and Granites in the Lushan Area, Southern Margin of the North China Craton: Implications for Crustal Accretion and Transformation. Precambrian Research, 255: 514-537. https://doi.org/10.1016/j.precamres.2014.06.023 |
| [81] |
Zhou, Y. Y., Sun, Q. Y., Zhao, T. P., et al., 2021. Petrogenesis of the Early Paleoproterozoic Low⁃δ18O Potassic Granites in the Southern NCC and Its Possible Implications for No Confluence of Glaciations and Magmatic Shutdown at ca. 2.3 Ga. Precambrian Research, 361. https://doi.org/36110.1016/j.precamres.2021.106258 |
| [82] |
Zhou, Y. Y., Zhai, M. G., 2022. Mantle Plume⁃Triggered Rifting Closely Following Neoarchean Cratonization Revealed by 2.50⁃2.20 Ga Magmatism Across North China Craton. Earth⁃Science Reviews, 23010. https://doi.org/1016/j.earscirev.2022.104060 |
国家自然科学基金资助项目(41972198)
湖南省自然科学基金资助项目(2022JJ30702)
中南大学研究生自主探索创新项目(2023ZZTS0439)
国家留学基金资助(CSC202306370128)
/
| 〈 |
|
〉 |