贵州望谟下‒中三叠统的牙形石生物地层

梁蕾 ,  吴奎 ,  田力 ,  童金南

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 19 -32.

PDF (3750KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 19 -32. DOI: 10.3799/dqkx.2024.020

贵州望谟下‒中三叠统的牙形石生物地层

作者信息 +

Lower⁃Middle Triassic Conodonts of Ganheqiao Section, Wangmo County, Guizhou Province

Author information +
文章历史 +
PDF (3839K)

摘要

三叠纪初现代型生态系统建立的过程曲折并伴随着频繁的环境波动,研究其模式和驱动机制需要以高分辨率的地层格架为基础建立可靠的时间标尺. 虽然牙形石在古生代和早中生代海相地层对比与划分中往往被作为标准化石,但是由于早‒中三叠世的多个阶和亚阶的国际划分与对比标准一直悬而未决,目前提出的一些候选标准化石还有待进一步的区域与全球对比的检验. 通过对贵州望谟甘河桥剖面的下‒中三叠统底部样品进行了系统的牙形石分类学和地层学研究,共鉴定出15属29种,建立了10个牙形石组合带,由下而上依次为Neospathodus dieneri带、Novispathodus waageni带、Guangxidella bransoni带、Novispathodus pingdingshanensis带、Icriospathodus crassatus带、Triassospthodus homeri带、Triassospthodus triangularis带、Triassospthodus sosioensis带、Chiosella timorensis带和Nicoraella germanica带. 根据本剖面牙形石分布情况以及和其他剖面对比,支持以牙形石Novispathodus waageniNovispathodus pingdingshanensis、Chiosella timorensis分子的首现分别作为印度阶‒奥伦尼克阶、史密斯亚阶‒斯帕斯亚阶以及下‒中三叠统界线的标准. 过去几年,望谟地区的三叠系中陆续报道了多个层位的海洋爬行动物和较为多样的节肢动物化石,标志着海洋生态系统发生了多阶段的演化. 本文建立的高分辨率生物地层框架,为卡定研究区现代型海洋生态系统的建立时间,提供了关键证据.

Abstract

The establishment of modern ecosystem in Early Triassic is challenging and subject to frequent fluctuation of environment, thus a refined time scale is demanded to explore its process and mechanism. Although conodonts are often used as index fossils in the correlation and division of Paleozoic and Early Mesozoic marine strata, the international classification and comparison criteria for multiple stages and substages of the Early-Middle Triassic have been pending. Some candidate index fossils have yet to be further tested by regional and global correlation. The deep-water strata were well developed in the Lower-Middle Triassic at the Ganheqiao Section in Wangmo County of Guizhou. In this paper, a systematic study of conodont taxonomy and stratigraphy was carried out on the samples near the Lower-Middle Triassic boundaries of the section. A total of 29 species in 15 genera were identified and 10 conodont zones were recognized, namely Neospathodus dieneri Zone, Novispathodus waageni Zone, Guangxidella bransoni Zone, Novispathodus pingdingshanensis Zone, Icriospathodus crassatus Zone, Triassospthodus homeri Zone, Triassospthodus triangularis Zone, Triassospthodus sosioensis Zone, Chiosella timorensis Zone, Nicoraella germanica Zone in ascending order. According to the distribution of conodonts in this section and the comparison with other sections, it is supported that the first occurrences of conodonts Novispathodus waageni, Novispathodus pingdingshanensis and Chiosella timorensis are used as the criteria for the Indian-Olenekian, Smithian-Spathian and Lower-Middle Triassic boundaries, respectively. In the past few years, multiple layers of marine reptiles and diverse arthropod fossils have been reported in the Triassic in the Wangmo area, indicating a multi-stage evolution of marine ecosystems. The high-resolution biostratigraphic framework established in this paper provides key evidence to calibrate the build-up time of modern marine ecosystems in study area.

Graphical abstract

关键词

牙形石 / 史密斯‒斯帕斯亚阶界线 / 下‒中三叠统界线 / 地球生物学.

Key words

conodont / Smithian⁃Spathian boundary / Lower⁃Middle Triassic boundary / geobiology

引用本文

引用格式 ▾
梁蕾,吴奎,田力,童金南. 贵州望谟下‒中三叠统的牙形石生物地层[J]. 地球科学, 2025, 50(01): 19-32 DOI:10.3799/dqkx.2024.020

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

二叠纪‒三叠纪之交发生了显生宙最严重的生物灭绝事件,其后生物多样性在中三叠世才得以恢复(Chen and Benton, 2012).近年国内外新发现一些早‒中三叠世特异埋藏化石群,为理解当时特殊的生物与环境演化关系提供了新的思路.例如美国爱达荷州下三叠统中的Paris 生物群中有至少7门20目的后生动物化石(Brayard et al., 2017).在我国也发现了丰富的早三叠世生物群.例如最新报道的贵阳生物群中已经发现有12纲19目的化石,特别是丰富的鱼类和节肢动物(Dai et al., 2023).江苏句容地区和安徽巢湖等地也报道了丰富的鱼类化石,同时产出的还包括一些双壳类和菊石等(Liu et al., 2020).安徽巢湖和湖北南漳远安地区也发现了丰富的海生爬行类化石群,其中巢湖生物群还发现了丰富的其他门类化石如菊石、双壳、鱼类等(Benton et al., 2013).这些生物群为了解大灭绝后现代类型生态系统的建立过程提供了宝贵的化石记录,也表明大灭绝后生态系统重建的过程比以往认为的更早更复杂.

确定这些生物群出现的时间是了解生态系统建立过程的必要条件,而这需要建立在精细完善的生物地层序列的基础上.虽然早三叠世基本的生物地层格架已经建立,但是一些重要的地质界线如印度阶‒奥伦尼克阶界线、史密斯亚阶‒斯帕斯亚阶界线以及下‒中三叠统界线的标准化石尚未确定,这也影响了对早三叠世生态系统建立过程的研究.牙形石和菊石演化快速、分布范围广等特点使其在该时期地层研究中起到了重要作用(吴奎等, 2022).然而菊石作为宏体化石受保存条件的影响较大,因此牙形石在地层对比方面相对菊石更具有优势. 贵州望谟的甘河桥剖面奥伦尼克期地层发育良好,下‒中三叠统界线出露完整.该剖面在早三叠世处于盆地相区,地层沉积连续且稳定,基本没有受沉积环境变化的影响,是建立深水相牙形石地层序列的优选剖面.另外,望谟地区也报道了一个早三叠世的特异埋藏化石库,产出了比较丰富的菊石、鱼类和节肢动物等化石(周长勇等, 2024).该地区的下‒中三叠统界线之下也曾发现过大型海洋爬行动物化石(周长勇等,2017).这些动物群的发现是早三叠世生态系统建立过程的重要化石记录,然而其具体产出年代还存有疑问.本文对贵州望谟甘河桥剖面进行了详细的牙形石生物地层学研究,并通过区域地层对比建立高分辨率的年代地层框架,为卡定望谟地区重要化石产出层位的年代提供关键生物地层证据.

1 地质背景和研究方法

南盘江盆地(也称滇黔桂盆地),在二叠纪和三叠纪是一个位于扬子碳酸盐岩台地南缘的陆表海,从贵州往广西,总体呈现出往南加深的趋势(冯增昭等, 1997).望谟甘河桥剖面位于贵州省黔西南布依族苗族自治州望谟县北部约7 km处(图1),出露有早三叠世的罗楼组、紫云组和中三叠世新苑组.罗楼组以薄层灰岩与泥岩互层为主,紫云组主要为瘤状灰岩和砾屑灰岩夹凝灰岩,新苑组则是以钙质泥岩为主夹少量灰岩(图2).该剖面下‒中三叠统界线附近出露有绿色玻屑凝灰岩(绿豆岩),前人U⁃Pb定年结果为247.2±1.7 Ma (郑连弟等, 2010).姚建新等(2004)对该剖面的牙形石进行过研究,从第纳尔亚阶至中三叠统底部共识别出6个牙形石带,分别为Neospathodus cristagalli间隔带、Neospathodus pakistanensis间隔带、Neospathodus waageni间隔带、Neospathodus homeri⁃Neospathodus triangularis组合带、Chiosella timorensis间隔带、Neogondolella regale延限带.其中对奥伦尼克阶上部的牙形石带建立较少,未能识别史密斯亚阶‒斯帕斯亚阶界线,且仅发现中三叠统底界标准化石牙形石Chiosella timorensis的相似种.因此,本文对贵州望谟地区甘河桥剖面的牙形石生物地层进行了重新研究.

为了建立剖面精细的牙形石序列,对剖面进行了间隔约2 m的初次采样,之后进行了两次补样工作,共计处理75个牙形石样品,每个样品重量约3 kg.牙形石样品在室内经过粗碎至直径约 2 cm.样品使用10%冰醋酸溶液溶解,并在样品充分溶解后,使用20目叠加160目筛子筛选并清洗样品.在样品晾干后,使用密度为2.78 g/mL的无机重液多钨酸锂进行分选.将密度大于2.78 g/mL的样品在体视显微镜下进行挑样,并对获取标本使用中国地质大学(武汉)生物地质与环境地质国家重点实验室扫描电子显微镜SU8010进行拍照.

2 牙形石带

通过对本剖面下三叠统上部和中三叠统底部75件样品的处理,共获得1 850枚牙形石,鉴定出15属29种,包括DiscretellaPachycladinaSweetospathodusSpathicuspusNeogondolellaNeospathodusNovispathodusNicoraellaGladigondolellaGuangxidellaIcriospathodusCornudinaTriassospathodusNeostrachanognathusChiosella.根据牙形石分布情况,牙形石带自下而上可分为:Neospathodus dienrei带、Novispathodus waageni带、Guangxidella bransoni带、Novispathodus pingdingshanensis带、Icriospathodus crassatus带、Triassospthodus homeri带、Tr. triangularis带、Tr. sosioensis带、Chiosella timorensis带和Nicoraella germanica带(图3图4).

2.1  Neospathodus dieneri

该带位于剖面底部第2层至第3层,以Neospathodus dieneri的出现为标志,底界位置未知,以Novispathodus waageni waageni的首现为顶界.该带产出牙形石较少,共生分子仅可见Sweetospathodus kummeli. Neospathodus dieneri在巴基斯坦、印度、马来西亚、美国和中国华南地区(Zhao et al., 2007)都有报道.

2.2  Novispathodus waageni

该带位于剖面第4层下部至12层,以Novispathodus waageni waageni的首现为底界,以Guangxidella bransoni的首现为顶界.共生分子包括Neospathodus dieneriDiscretella discreta等.该建带分子在世界范围内广泛分布,可见于加拿大、巴基斯坦、印度、中国西藏和华南等地区(Ji et al., 2011).

2.3  Guangxidella bransoni

该带位于剖面第13层下部,以Guangxidella bransoni的首现为底界,以Novispathodus pingdingshanensis的首现为顶界.该带产出于黑色页岩中的灰岩透镜体中.化石数量较少.该建带分子在多个地区有报道,如贵州边阳地区(王红梅等, 2005).

2.4  Novispathodus pingdingshanensis

该带位于13层的上部至15层底部,以Novispathodus pingdingshanensis的首现为底界,以Icriospathodus crassatus的首现为顶界.该带的共生分子包括Novispathodus brevissimusSpathicuspus spathi等.在华南,Nv. pingdingshanensis首先报道于盆地相区的安徽巢湖平顶山西剖面,其后也主要发现于深水相区,如贵州甲戎剖面、广西幼平剖面等(Zhao et al., 2007Goudemand et al., 2012Chen et al., 2015).

2.5  Icriospathodus crassatus

该带位于15层下部至16层下部,以Ic. crassatus的首现为底界,以Triassospthodus homeri的首现为顶界.该带的共生分子包括Novispathodus pingdingshanensisNv. abruptus、Nv. brevissimus、Spathicuspus spathi、Gladigondolella laiiIcriospathodus zaksi等.该种在华南广泛分布,分别报道于关刀剖面(王红梅等, 2005)、边阳剖面(Yan et al., 2013)、甲戎剖面(Chen et al., 2015)、平顶山西剖面(梁丹等, 2011)、青山剖面和龙潭剖面(Liu et al., 2020).另外也报道于阿曼的Wadi Bani Khalid剖面(Chen et al., 2021)、日本的W01剖面(Maekawa et al., 2018)等.

2.6  Triassospthodus homeri

该带位于剖面16层顶部至24层底,以Triassospthodus homeri的首现为底界,以Triassospthodus triangularis的首现为顶界,共生分子包括Novispathodus abruptusNv. pingdingshanensisSpathicuspus spathiIcriospathodus zaksi等.本剖面Triassospthodus homeri的主要特征是:齿片侧视呈长矩形,发育有15个左右近相等、中等程度融合的细齿.基缘前部平直,后部下弯.基腔呈不对称椭圆形.该种与Novispathodus abruptus分子在形态上有相似之处,主要的区别在于基腔的形态,本种基腔多为左右不对称的椭圆形,而后者为更加对称的亚圆形. 该建带分子首先在希腊的Chios岛被发现,此后在世界各地广泛被报道,如北美地区(Orchard and Dinaru, 2007).在我国也广泛分布,如可见于贵州斜坡相区的青岩剖面(Ji et al., 2011),盆地相区安徽巢湖马家山剖面(Zhao et al., 2007).

2.7  Triassospthodus triangularis

该带位于第24层至25层下部,以Triassospthodus triangularis的首现为底界,以Triassospthodus sosioensis分子的首现为顶界,共生分子有Triassospathodus symmetricusNeostrachanognathus tahoensisNovispathodus abruptus等.该分子是斯帕斯时期的典型分子,出现层位晚于Triassospathodus homeri,在我国及世界范围内都有报道(Chen et al., 2015).

2.8  Triassospthodus sosioensis

该带位于剖面第25层上部至28层中部,以共生分子Triassospthodus sosioensis的首现为底界,以Chiosella timorensis的首现为顶界,共生分子包括Triassospthodus symmetricusSpathicuspus spathiNovispathodus abruptusIcriospathodus collinsoni等. 本剖面Triassospthodus sosioensis的主要特征为齿片呈近矩形,前部细齿较大且排列稀疏,后部细齿较小且排列更紧密,基腔呈不对称三角形.该种与Triassospthodus symmetricus的主要区别是后者的细齿多无规律性变化,且基腔对称呈亚圆形.Kozur et al. (1997)首先在意大利Sicily报道了该化石带,并将其时代定为奥伦尼克晚期.该建带牙形石分子还可见于罗马尼亚以及我国西藏等地区(Grãdinaru et al.,2006Chen et al.,2021).

2.9  Chiosella timorensis

该带位于剖面第28层上部至31层,以Chiosella timorensis的首现为底界,以Chiosella gondolelloides的末现为顶界,共生的化石包括Chiosella gondolelloidesChiosella sp. A sensu Orchard et al.2007),共生分子主要集中在28至30层的灰岩中.该种首先报道于我国西藏南部(武桂春等, 2007)、广西凤山地区(Chen et al., 2020)、贵州罗甸地区(王红梅等, 2005)和青岩等地区(Ji et al., 2011).

2.10  Nicoraella germanica

该带位于剖面第35层,底界为Nicoraella germanica的首现,顶界暂未定.该带的伴生化石有Triassospathodus brochusNicoraella germanicaNeogondolella regalis.该种报道于德国、土耳其、希腊等地,我国华南地区也有广泛分布,可见于云南罗平、贵州罗甸等地区(王红梅等, 2005;黄金元等, 2011).

3 讨论

3.1 印度阶‒奥伦尼克阶界线

牙形石研究结果指示本剖面的印度阶‒奥伦尼克阶界线应位于第4层下部.2~3层产出有第纳尔亚期的典型分子Neospathodus dieneriSweetospathodus kummeli.在第4层下部,Novispathodus waageni开始出现.Novispathodus waageni在世界范围内广泛分布(图5),如我国华南和西藏等(武桂春等, 2007; Zhao et al., 2007).同时该种在安徽巢湖平顶山西剖面与奥伦尼克阶下部的FlemingitesEuflemingites菊石带的首现层位接近,因此被提议作为印度阶‒奥伦尼克阶界线的标准(Tong et al., 2003).其在全球范围内的广泛分布也使该观点被广泛认可.

研究表明Novispathodus waageni在不同的地区可能存在一定的形态差异.如Zhao et al. (2007)建立的Novispathodus waageni eowaageniNv. w. waageni两个亚种,并将其作为Nv. waageni带内的两个亚带. 本剖面中目前没有发现Nv. waageni eowaageni,从Lyu et al. (2023)总结的Nv.waageniNv. w. eowaageni的分布来看,后者在全球范围内的报道也少于Nv.waageni. 原因可能是Nv. w. eowaageni作为早期分子,其分布的范围相对局限.

3.2 史密斯亚阶‒斯帕斯亚阶界线

Novispathodus pingdingshanensis出现在本剖面13层黑色页岩中部的灰岩透镜体内.其下13层下部产出有史密斯亚阶中晚期的Guangxidella bransoni等.Novispathodus pingdingshanensis最早由Zhao et al. (2007) 在安徽巢湖地区发现.该种在我国湖北峡口地区,广西幼平、金牙和作登摩天岭地区,贵州青岩地区、甲戎地区也有报道(Ji et al., 2011Goudemand et al., 2012Chen et al., 2015Wu et al., 2019).在国外其他地区如越南、阿曼、克什米尔、日本(Maekawa et al., 2018Chen et al., 2021)等地也有报道.因此从分布的广泛性角度,Novispathodus pingdingshanensis是满足作为史密斯‒斯帕斯亚阶界线的标准化石的条件.

Novispathodus pingdingshanensis在巢湖剖面的首现与史密斯亚期菊石带Anasibirites带和斯帕斯时期的菊石带Columbites⁃Tirolites带的界线对应(Zhao et al., 2007).梁丹等(2011)在巢湖地区平顶山西剖面的牙形石和碳同位素的研究中发现,Nv. pingdingshanensis的首现和史密斯亚阶‒斯帕斯亚阶界线附近的碳同位素的快速正漂是同时的,故提出用Nv. pingdingshanensis的首现作为全球史密斯亚阶‒斯帕斯亚阶界线的标志.然而,在一些剖面由于Nv. pingdingshanensis与传统认为是史密斯亚阶晚期的菊石Xenoceltites同时出现,如在越南、阿曼、我国广西(Chen et al., 2021Goudemand et al., 2012)等地.这一现象的出现可能源于不同学者对Nv. pingdingshanensis的化石鉴定标准有所差别,将一些早期的过渡类型鉴定为Nv. pingdingshanensis,使该属种的首现被提前.例如Komatsu et al. (2016)就使用了Nv. ex. gr.pingdingshanensis的概念,可能是该地区Nv. pingdingshanensis与史密斯亚阶菊石共同出现的原因.如果严格地按照Nv. pingdingshanensis模式种的定义来鉴定相关标本,或许可以解决其在部分剖面出现层位较早的问题. 因此本剖面目前仍以Nv. pingdingshanensis的首现作该界线的标志.

3.3 下‒中三叠统界线(奥伦尼克阶‒安尼阶界线)

2002年维斯普雷姆会议时,国际地层委员会三叠纪地层分会多数菊石和牙形石学者达成了以牙形石Chiosella timorensis的首现作为安尼阶底界的共识(Kozur,2003).我国贵州关刀剖面发现Chiosella timorensis并以其首现作为安尼阶底界的标志(王红梅等,2005).Grãdinaru et al. (2006)以及Orchard and Dinaru (2007)对罗马尼亚下‒中三叠统候选全球层型剖面的研究发现,Chiosella timorensis的首现与安尼阶下部的菊石Paracrochordiceras⁃Japonites层的底界层位一致,也支持该观点.然而,Goudemand et al. (2012)在美国内华达地区的研究表明,Chiosella timorensis出现在斯帕斯时期的菊石带Neopopanoceras haugi内,质疑了该种作为下‒中三叠统界线标志的观点.此后,Chen et al. (2020)对华南地区经典下‒中三叠统界线的剖面进行了综合的生物地层、化学地层和磁性地层研究,发现Chiosella timorensis sensu stricto 的首现层位高于菊石带Neopopanoceras haugi,并且其层位与磁性地层的对应关系比较稳定,仍然推荐Chiosella timorensis sensu stricto作为界线的标准化石(Chen et al., 2020).因此本剖面以Chiosella timorensis的首现作为该剖面下‒中三叠统界线的标志.

在本剖面早期的研究中,姚建新等(2004)在剖面新苑组底部火山凝灰岩之下发现了Chiosella cf. timorensis.该剖面火山黏土岩的U⁃Pb年龄为247.2±1.7 Ma (郑连弟等, 2010),接近于下‒中三叠统界线年龄(Chen et al., 2020).广西贵州地区的下‒中三叠界线附近多个剖面发育了火山灰层,U⁃Pb年龄在247.1~247.3 Ma之间(Feng et al., 2021).Yan et al.(2015)发现火山灰层和Chiosella timorensis的首现层位之间没有明确的关系.然而,在关刀剖面Chiosella timorensis的首现层位位于最下部火山灰之上,根据该剖面火山灰年龄测得界线年龄为247.28±0.12 Ma(Lehrmann et al., 2015).Chiosella timorensis sensu stricto在与甘河桥剖面临近的广西湾头和幼平剖面是产出于层位最厚的火山黏土岩之上(Chen et al., 2020).本次研究Chiosella timorensis在甘河桥剖面也是产出于厚层的火山黏土岩之上,表明黏土岩与Chiosella timorensis的首现层位之间可能存在一定规律,且在临近区域上有一定的可对比性.

3.4 对现代型生态系统起源时间的卡定

二叠纪‒三叠纪之交大灭绝后,生态系统类型由以腕足动物为主的古生代类型生态系统转变为以软体动物主的现代类型生态系统(Sepkoski, 1981). Chen and Benton (2012)提出了现代型生态系统的建立过程,认为其至中三叠世才完整建立.而近年在早三叠世报道了一些化石种类丰富、保存完好的生物群,为现代型生态系统的起源过程提供了新的证据(图6).其中牙形石的发现也为确定这些生物群的年代提供了重要的依据.贵阳生物群产出有丰富且保存完好的鱼类、十足目、旋脊蟹、菊石、双壳类、牙形石、有孔虫、介形虫、海绵、放射虫等,且这些生物构成了一个由初级生产者、初级消费者、中级消费者、捕食型无脊椎动物、捕食型鱼类组成的复杂生态系统(Dai et al., 2023).该化石层位产出有第纳尔晚期牙形石Neospathodus cristagalli,化石层位之上产出奥伦尼克期底部牙形石Novispathodus waageni,表明该生物群出现于第纳尔晚期(Dai et al., 2023).

本研究所在的望谟地区也报道了一个新发现生物群,其以菊石和节肢动物为特色,伴有双壳、箭石、腕足、牙形类、鱼类等(周长勇等,2024).虽然目前报道的化石保存的情况不及贵阳生物群,但是种类也非常丰富.该化石群产出于罗楼组一段(对应于本文罗楼组)的中上部,产出有牙形石Neospathodus dieneriNovispathodus waageni,因此该化石群的时代被认为是第纳尔晚期至史密斯早期(周长勇等,2024).根据本剖面的研究,罗楼组一段中上部对应的层位属于史密斯时期,且Neospathodus dieneri可以上延至史密斯亚期,因此该化石群的时代可能是史密斯亚期.

江苏句容地区下青龙组发现了丰富的鱼类化石以及菊石、牙形石、腹足类和介形类化石(Qiu et al., 2019).与该化石群同时产出的牙形石Scythogondolella milleri,该种主要发现于史密斯晚期,但在斯帕斯早期也有少量报道,其他斯帕斯时期的牙形石如Novispathodus pingdingshanensisIcriospathodus crassatus产出于剖面化石层之上约 2 m,故该句容鱼化石群的时代确应属于史密斯晚期(Liu et al., 2020).美国爱达荷州发现的Paris生物群产出有至少7门20目的后生动物化石,其中包括海绵、头足纲鞘形亚纲和菊石亚纲、棘皮动物、节肢动物、鱼类等(Brayard et al., 2017).该化石群虽产出牙形石Neogondolella sp.,但由于种未定无法指示时代,还产出有斯帕斯早期菊石Tirolites sp.,结合碳同位素数据可推测其时代属于斯帕斯早期.

巢湖动物群是产出于安徽巢湖地区南陵湖组中的一个海生爬行动物丰富的化石群,其中产出了巢湖龙以及一些具有陆生爬行动物特征的原始鱼龙类和鱼类、无脊椎动物化石(Motani et al., 2015).该化石群产出的牙形石为Neospathodus anhuinensis,该种分布较为局限,其下产出有牙形石Triassospathodus homeri,结合化石同层位产出的菊石ProcolumbitesSubcolumbites,表明该动物群的年代属于斯帕斯中期(Zhao et al., 2007Motani et al., 2015).南漳‒远安动物群发现于鄂西地区的嘉陵江组中上部,产出有以湖北鳄类‒始鳍龙类‒巢湖龙为特征的海生爬行动物(阎春波等,2021).该动物群产出有牙形石Neostrachanognathus tahoensis,该种多与Triassospathodus homeri等分子共同产出,同时该化石层位之上产出有火山黏土层,其与华南地区下‒中三叠统界线附近的火山黏土岩(绿豆岩)可对比,由此推测其时代为斯帕斯晚期(Wu et al., 2023).周长勇等(2017)在望谟地区也发现了一些保存于罗楼组第二段(对应于本文紫云组)上部的爬行动物化石,包括牙齿、脊椎、肋骨等.与该种同时产出的牙形石有Triassospathodus symmetricus,化石产出层位之上为下‒中三叠统界线附近的火山黏土岩(周长勇等,2017).本文研究结果显示,甘河桥剖面的Chiosella timorensis首现在绿豆岩上覆灰岩的底部,由此可将该海洋爬行动物的产出卡定为斯帕斯最末期.望谟地区的两个不同层位不同类型的早三叠世化石群,分别记录了现代型海洋生态系统建立的初期(即开始建立较为完整的生态系统)和快速发展阶段(即生态系统更加复杂化,如出现更加丰富的脊椎动物类型),对研究现代型生态系统的建立过程有很重要的意义.

4 结论

本文通过对贵州望谟甘河桥剖面早三叠世至中三叠世早期地层的牙形石研究,共建立了10个牙形石带.其中根据Novispathodus w. waageni分子的首现将剖面的印度阶‒奥伦尼克阶界线确定于第4层下部,Novispathodus pingdingshanensis分子的首现可确定剖面史密斯亚阶‒斯帕斯亚阶界线于第13层中部,而剖面下‒中三叠统界线根据Chiosella timorensis的首现确定于第28层中部.通过地层对比,贵州望谟地区下三叠统下部的化石库的时代可能属于史密斯时期,海生爬行类化石与南漳远安动物群时代相似,应属于斯帕斯晚期.根据对华南多个早三叠世重要化石群的牙形石生物地层的回顾与对比,可以发现:具有多门类复杂构成的现代型生态系最早可能在第纳尔晚期既已出现,在史密斯时期进一步发展和扩散,而到了斯帕斯中期更加复杂高级的爬行类重返海洋生态系并在斯帕斯晚期进一步发展并且分布也更加广泛.

参考文献

[1]

Benton, M. J., Zhang, Q. Y., Hu, S. X., et al., 2013. Exceptional Vertebrate Biotas from the Triassic of China, and the Expansion of Marine Ecosystems after the Permo⁃Triassic Mass Extinction. Earth⁃Science Reviews, 125: 199-243. https://doi.org/10.1016/j.earscirev.2013.05.014

[2]

Brayard, A., Krumenacker, L. J., Botting, J. P., et al., 2017. Unexpected Early Triassic Marine Ecosystem and the Rise of the Modern Evolutionary Fauna. Science Advances, 3(2): e1602159. https://doi.org/10.1126/sciadv.1602159

[3]

Chen, Y., Jiang, H. S., Ogg, J. G., et al., 2020. Early⁃Middle Triassic Boundary Interval: Integrated Chemo⁃Bio⁃Magneto⁃Stratigraphy of Potential GSSPS for the Base of the Anisian Stage in South China. Earth and Planetary Science Letters, 530: 115863. https://doi.org/10.1016/j.epsl.2019.115863

[4]

Chen, Y. L., Jiang, H. S., Lai, X. L., et al., 2015. Early Triassic Conodonts of Jiarong, Nanpanjiang Basin, Southern Guizhou Province, South China. Journal of Asian Earth Sciences, 105: 104-121. https://doi.org/10.1016/j.jseaes.2015.03.014

[5]

Chen, Y. L., Joachimski, M. M., Richoz, S., et al., 2021. Smithian and Spathian (Early Triassic) Conodonts from Oman and Croatia and Their Depth Habitat Revealed. Global and Planetary Change, 196: 103362. https://doi.org/10.1016/j.gloplacha.2020.103362

[6]

Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End⁃Permian Mass Extinction. Nature Geoscience, 5: 375-383. https://doi.org/10.1038/ngeo1475

[7]

Dai, X., Davies, J. H., Yuan, Z. W., et al., 2023. A Mesozoic Fossil Lagerstätte from 250.8 Million Years Ago Shows a Modern⁃Type Marine Ecosystem. Science, 379(6632): 567-572. https://doi.org/10.1126/science.adf1622

[8]

Feng, M. S., Meng, W. B., Zhang, C. G., et al., 2021. Geochronology and Geochemistry of the ‘Green⁃Bean Rock’ (GBR, a Potassium⁃Rich Felsic Tuff) in the Western Margin of the Yangtze Platform, SW China: Significance for the Olenekian⁃Anisian Boundary and the Paleo⁃Tethys Tectonics. Lithos, 382: 105922. https://doi.org/10.1016/j.lithos.2020.105922

[9]

Feng, Z. Z., Bao, Z. D., Wu, S. H., et al, 1997. Lithofacies Palaeogeography of the Early and Middle Triassic of South China. Scientia Geologica Sinica, 32(2): 212-220 (in Chinese with English abstract).

[10]

Goudemand, N., Orchard, M. J., Bucher, H., et al., 2012. The Elusive Origin of Chiosella timorensis (Conodont Triassic). Geobios, 45(2): 199-207. https://doi.org/10.1016/j.geobios.2011.06.001

[11]

Grãdinaru, E., Kozur, H., Nicora, A., et al., 2006. The Chiosella timorensis Lineage and Correlation of the Ammonoids and Conodonts around the Base of the Anisian in the GSSP Candidate at Desli Caira (North Dobrogea, Romania). Albertiana, 34: 34-39.

[12]

Huang, J.Y., Zhang, K.X., Zhang, Q.Y., et al., 2011. Advance Research of Conodont Fauna from Shangshikan and Daaozi Sections in Luoping Area,Yunnan Province. Geological Science and Technology Information, 30(3): 1-17 (in Chinese with English abstract).

[13]

Ji, W. T., Tong, J. N., Zhao, L. S., et al., 2011. Lower⁃Middle Triassic Conodont Biostratigraphy of the Qingyan Section, Guizhou Province, Southwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1-2): 213-223. https://doi.org/10.1016/j.palaeo.2010.08.020

[14]

Jiang, D. Y., Motani, R., Huang, J. D., et al., 2016. A Large Aberrant Stem Ichthyosauriform Indicating Early Rise and Demise of Ichthyosauromorphs in the Wake of the End⁃Permian Extinction. Scientific Reports, 6: 26232. https://doi.org/10.1038/srep26232

[15]

Komatsu, T., Takashima, R., Shigeta, Y., et al., 2016. Carbon Isotopic Excursions and Detailed Ammonoid and Conodont Biostratigraphies around Smithian⁃Spathian Boundary in the Bac Thuy Formation, Vietnam. Palaeogeography, Palaeoclimatology, Palaeoecology, 454: 65-74. https://doi.org/10.1016/j.palaeo.2016.04.017

[16]

Kozur, H., 2003. Integrated Ammonoid, Conodont and Radiolarian Zonation of theTriassic and Some Remarks to Stage/Substage Subdivision and the Numeric Age of theTriassic Stages. Albertiana, 28: 57-74.

[17]

Kozur, H., Krainer, K., Mostler, H., 1997. Neospathodus sosioensis n. sp., a New Conodont Species from the Late Olenekian (Uppermost Scythian) of Western Sicily, Italy. News of Osaka Micropaleontologists, 10: 109-113.

[18]

Lehrmann, D. J., Ramezani, J., Bowring, S. A., et al., 2006. Timing of Recovery from the End⁃Permian Extinction: Geochronologic and Biostratigraphic Constraints from South China. Geology, 34(12): 1053-1056. https://doi.org/10.1130/G22827A.1

[19]

Lehrmann, D. J., Stepchinski, L., Altiner, D., et al., 2015. An Integrated Biostratigraphy (Conodonts and Foraminifers) and Chronostratigraphy (Paleomagnetic Reversals, Magnetic Susceptibility, Elemental Chemistry, Carbon Isotopes and Geochronology) for the Permian⁃Upper Triassic Strata of Guandao Section, Nanpanjiang Basin, South China. Journal of Asian Earth Sciences, 108: 117-135. https://doi.org/10.1016/j.jseaes.2015.04.030

[20]

Liang, D., Tong, J. N., Zhao, L. S., 2011. Lower Triassic Smithian⁃Spathian Boundary at West Pingdingshan Section in Chaohu, Anhui Province. Scientia Sinica Terrae, 41(2): 149-157 (in Chinese).

[21]

Liu, S., Sun, Z. Y., Ji, C., et al., 2020. Conodont Biostratigraphy and Age of the Early Triassic Fish⁃Bearing⁃Nodule Levels from Nanjing and Jurong, Jiangsu Province, South China. Journal of Earth Science, 31(1): 9-22. https://doi.org/10.1007/s12583⁃019⁃1232⁃y

[22]

Lyu, Z. Y., Henderson, C. M., Chen, Z. Q., et al., 2023. High⁃Resolution Conodont Unitary Association Zonations (Uazs) across the Induan⁃Olenekian Boundary (Lower Triassic): A Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 627: 111721. https://doi.org/10.1016/j.palaeo.2023.111721

[23]

Maekawa, T., Komatsu, T., Koike, T., 2018. Early Triassic Conodonts from the Tahogawa Member of the Taho Formation, Ehime Prefecture, Southwest Japan. Paleontological Research, 22(s1): 1-62. https://doi.org/10.2517/2018pr001

[24]

Motani, R., Jiang, D. Y., Chen, G. B., et al., 2015. A Basal Ichthyosauriform with a Short Snout from the Lower Triassic of China. Nature, 517(7535): 485-488. https://doi.org/10.1038/nature13866

[25]

Orchard, M. J., Dinaru, E., 2007. A Summary of the Conodont Succession around the Olenekian⁃Anisian Boundary at De Li Caira, Noth Dobrogea, Romania. New Mexico Museum of Natural History and Science Bulletin, 41: 341-346.

[26]

Orchard, M. J., Krystyn, L., 2007. Conodonts from the Induan⁃Olenekian Boundary Interval at Mud, Spiti. Albertiana, 35: 30-34.

[27]

Orchard, M. J., Lehrmann, D. J., Wei, J., et al., 2007. Conodonts from the Olenekian⁃Anisian Boundary Beds, Guandao, Guizhou Province, China. New Mexico Museum of Natural History and Science Bulletin, 41: 347-354.

[28]

Qiu, X. C., Xu, Y. L., Chen, Z. Q., et al., 2019. The Early Triassic Jurong Fish Fauna, South China: Age, Anatomy, Taphonomy, and Global Correlation. Global and Planetary Change, 180: 33-50. https://doi.org/10.1016/j.gloplacha.2019.05.012

[29]

Sepkoski, J. J., 1981. A Factor Analytic Description of the Phanerozoic Marine Fossil Record. Paleobiology, 7(1): 36-53. https://doi.org/10.1017/S0094837300003778

[30]

Tong, J. N., Zakharov, Y. D., Orchard, M. J., et al., 2003. A Candidate of the Induan⁃Olenekian Boundary Stratotype in the Tethyan Region. Science China Earth Sciences, 46(11): 1182-1200. https://doi.org/10.1360/03yd0295

[31]

Wang, H.M., Wang, X.L., Li, R.X., et al., 2005. Triassic Conodont Succession and Stage Subdivision of the Guandao Section, Bianyang, Luodian, Guizhou. Acta Palaeontologica Sinica, 44(4): 611-626 (in Chinese with English abstract).

[32]

Wu, G.C., Yao, J.X., Ji, Z.S., 2007. Triassic Conodont Biostratigraphy in the Coqên Area, Western Gangdise, Tibet, China. Geological Bulletin of China, 26(8): 938-946 (in Chinese with English abstract).

[33]

Wu, K., Tian, L., Liang, L., et al., 2019. Recurrent Biotic Rebounds during the Early Triassic: Biostratigraphy and Temporal Size Variation of Conodonts from the Nanpanjiang Basin, South China. Journal of the Geological Society, 176(6): 1232-1246. https://doi.org/10.1144/jgs2019⁃065

[34]

Wu, K., Tong, J.N., Li, H.J., et al., 2022. Advance in the Study of Global Conodont during the Palaeozoic⁃ Mesozoic Upheavals. Earth Science, 47(3): 1012-1037 (in Chinese with English abstract).

[35]

Wu, K., Zou, Y. R., Li, H. J., et al., 2023. A Unique Early Triassic (Spathian) Conodont Community from the Nanzhang⁃Yuan’an Fauna, Hubei Province, South China. Geological Journal, 58(10): 3879-3898. https://doi.org/10.1002/gj.4815

[36]

Yan, C. B., Jiang, H. S., Lai, X. L., et al., 2015. The Relationship between the “Green⁃Bean Rock” Layers and Conodont Chiosella timorensis and Implications on Defining the Early⁃Middle Triassic Boundary in the Nanpanjiang Basin, South China. Journal of Earth Science, 26(2): 236-245. https://doi.org/10.1007/s12583⁃015⁃0535⁃x

[37]

Yan, C.B., Li, J.L., Cheng, L., et al., 2021. Strata Characteristics of the Early Triassic Nanzhang⁃Yuan’an Fauna in Western Hubei Province. Earth Science, 46(1): 122-135 (in Chinese with English abstract).

[38]

Yan, C. B., Wang, L. N., Jiang, H. S., et al., 2013. Uppermost Permian to Lower Triassic Conodonts at Bianyang Section, Guihzou Province, South China. Palaios, 28(8): 509-522. https://doi.org/10.2110/palo.2012.p12⁃077r

[39]

Yao, J.X., Ji, Z.S., Wang, L.T., et al., 2004. Research on Conodont Biostratigraphy near the Bottom Boundary of the Middle Triassic Qingyan Stage in the Southern Guizhou Province. Acta Geologica Sinica, 78(5): 577-585, 721-722 (in Chinese with English abstract).

[40]

Zhao, L. S., Orchard, M. J., Tong, J. N., et al., 2007. Lower Triassic Conodont Sequence in Chaohu, Anhui Province, China and Its Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1-2): 24-38. https://doi.org/10.1016/j.palaeo.2006.11.032

[41]

Zheng, L.D., Yao, J.X., Tong, Y.B., et al., 2010. Zircon U⁃Pb Dating for the Boundary of Olenekian⁃Anisian at Wangmo, Guizhou Province. Acta Geologica Sinica, 84(8): 1112-1117 (in Chinese with English abstract).

[42]

Zhou, C.Y., Zhang, Q.Y., Huang, J.Y., et al., 2017. The First Discovery of Marine Reptile Fossils from the Early Triassic of the Nanpanjiang Basin. Geological Bulletin of China, 36(1): 168-171 (in Chinese with English abstract).

[43]

Zhou, C.Y., Zhang, Q.Y., Wen, W., et al., 2024. A New Early Triassic Fossil Lagerstätte from Wangmo, Guizhou Province. Sedimentary Geology and Tethyan Geology, 44(1): 1-8 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42030513)

国家自然科学基金项目(42202033)

国家自然科学基金项目(42272361)

国家自然科学基金项目(42102011)

河北省自然科学基金项目(D2020403072)

生物地质与环境地质国家重点实验室开放基金项目(GBL21903)

河北省高等学校科学技术研究项目(BJ2021011)

河北地质大学博士科研启动基金(BQ2018036)

AI Summary AI Mindmap
PDF (3750KB)

89

访问

0

被引

详细

导航
相关文章

AI思维导图

/