南海海盆海山形态特征的定量化和无监督聚类分析
邓达振 , 赵阳慧 , Riel Bryan , 高金耀 , 方银霞
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 217 -233.
南海海盆海山形态特征的定量化和无监督聚类分析
Quantification and Unsupervised Clustering Analysis of Morphological Characteristics of Seamounts in South China Sea Basin
不同的火山喷发模式形成的海底火山在形态上存在差别,但由于缺乏有效方法,两者之间的关系仍不清晰.创新性地运用机器学习聚类分析法,基于高分辨率多波束水深数据,对南海海盆中的海山地形开展多维的形态参数量化分析,并对其结果进行无监督式聚类研究.结果表明,南海海盆中共发育三类海山:类型I,体积大、坡度陡、底盘圆的大型孤立海山;类型II,体积大、坡度缓、底盘长的大型线状海山;以及类型III,体积小、坡度缓、底盘椭圆的小型海山.类型I和II位于东部次海盆洋中脊区,类型I高耸的海山形态代表了活跃且快速的喷发模式,类型II的平缓形态代表了缓慢且喷发物质流动性更强的火山活动,类型III沿着转换断层及远离东部次海盆的洋中脊区,代表了缓慢且不强烈的火山活动.本文定量证实了不同构造背景下形成的海山形态具有普遍规律;针对海山形态学建立的聚类分析新方法,可为获得大量岩石学信息之前研究火山喷发模式提供新思路.
Morphological differences are evident among submarine volcanoes formed by varying eruption patterns. However, their interrelationship remains elusive due to methodological constraints. This study innovatively employs machine learning clustering analysis on high-resolution multibeam bathymetry data to quantitatively evaluate the morphological parameters of seamounts in the South China Sea Basin. The analysis discerns three distinct seamount types. Type I: large, isolated seamounts characterized by significant volume, steep slopes, and rounded bases. Type II: large, linear seamounts with substantial volume, gentle slopes, and elongated bases. Type III: smaller seamounts with limited volume, gentle slopes, and elliptical bases. Type I and II seamounts are primarily found in the mid-ocean ridge zone of the eastern sub-basin. The pronounced morphology of Type I suggests an active and rapid eruption regime, whereas Type II’s subdued form indicates slower volcanic activity with more fluidic lava flows. Conversely, Type III, situated along the transform faults and distant from the mid-ocean ridge of the eastern sub-basin, signifies less intense volcanic activities. This research establishes a foundational understanding that seamount formations under distinct tectonic backgrounds follow general morphological patterns. The novel clustering approach proposed here offers fresh perspectives for probing volcanic eruption patterns, especially when extensive petrological data is not available.
海山形态 / 火山喷发模式 / 南海海盆 / 聚类分析 / 机器学习 / 海洋地质学.
seamount morphology / volcanic eruption pattern / South China Sea Basin / cluster analysis / machine learning / marine geology
| [1] |
Arabie, P., Hubert, L. J.,1996. An Overview of Combinatorial Data Analysis. In: Arabie, P., Hubert, L. J., De Soete, G., eds., Clusering and Classificaion. Word Scientific, Singapore, 5-63. https://doi.org/10.1142/9789812832153_0002 |
| [2] |
Barckhausen, U., Engels, M., Franke, D., et al., 2014. Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 58: 599-611. https://doi.org/10.1016/j.marpetgeo.2014.02.022 |
| [3] |
Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280 |
| [4] |
Castruccio, A., Diez, M., Gho, R., 2017. The Influence of Plumbing System Structure on Volcano Dimensions and Topography. Journal of Geophysical Research: Solid Earth, 122(11): 8839-8859. https://doi.org/10.1002/2017JB014855 |
| [5] |
Chen, J., Zhu, B.D., Wen, N., et al., 2012. Gravity⁃ Magnetic Response of the Islands and Seamounts of South China Sea. Chinese Journal of Geophysics, 55(9): 3152-3162 (in Chinese with English abstract). |
| [6] |
Chen, L.,Wang, X., Liang, X.F., et al., 2020. Subduction Tectonics vs. Plume Tectonics—Discussion on Driving Forces for Plate Motion. Scientia Sinica Terrae, 50(4): 501-514 (in Chinese). |
| [7] |
Ding, W. W., Sun, Z., Dadd, K., et al., 2018. Structures within the Oceanic Crust of the Central South China Sea Basin and Their Implications for Oceanic Accretionary Processes. Earth and Planetary Science Letters, 488: 115-125. https://doi.org/10.1016/j.epsl.2018.02.011 |
| [8] |
Dingwell, D. B., 1996. Volcanic Dilemma—Flow or Blow? Science, 273(5278): 1054-1055. https://doi.org/10.1126/science.273.5278.1054 |
| [9] |
Francis, P., 1993.Volcanoes: A Planetary Perspective. Clarendon Press,New York. |
| [10] |
Kim, S. S., Wessel, P., 2011. New Global Seamount Census from Altimetry⁃Derived Gravity Data. Geophysical Journal International, 186(2): 615-631. https://doi.org/10.1111/j.1365⁃246X.2011.05076.x |
| [11] |
Kim, S. S., Wessel, P., 2015. Finding Seamounts with Altimetry⁃Derived Gravity Data. OCEANS 2015⁃MTS/IEEE. IEEE, Washington, D.C.. https://doi.org/10.23919/oceans.2015.7401883 |
| [12] |
Koppers, A. A. P., Watts, A. B., 2010. Intraplate Seamounts as a Window into Deep Earth Processes. Oceanography, 23(1): 42-57. https://doi.org/10.5670/oceanog.2010.61 |
| [13] |
Li, C. F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12): 4958-4983. https://doi.org/10.1002/2014gc005567 |
| [14] |
Li, G., Zhang, L.L., Zhu, L., 2011. Research on the Tectonic Features and Gravity⁃Magnetic Characteristics of Continental Margins in the South China Sea. Progress in Geophysics, 26(3): 858-875 (in Chinese with English abstract). |
| [15] |
Li, J.B., Ding, W.W., Gao, J.Y., et al., 2011. Cenozoic Evolution Model of the Sea⁃Floor Spreading in South China Sea: New Constraints from High Resolution Geophysical Data. Chinese Journal of Geophysics, 54(12): 3004-3015 (in Chinese with English abstract). |
| [16] |
Li, S.Z., Zhao, S.J., Liu, X., et al., 2014. Ocean⁃Continent Transition and Coupling Processes. Periodical of Ocean University of China, 44(10): 113-133 (in Chinese with English abstract). |
| [17] |
Li, X. H., Li, J. B., Yu, X., et al., 2015. 40Ar/39Ar Ages of Seamount Trachytes from the South China Sea and Implications for the Evolution of the Northwestern Sub⁃ Basin. Geoscience Frontiers, 6(4): 571-577. https://doi.org/10.1016/j.gsf.2014.08.003 |
| [18] |
MacQueen, J., 1967. Some Methods for Classification and Analysis of Multivariate Observations. In: The Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, 281-297. |
| [19] |
Maire, E., Lelièvre, E., Brau, D., et al., 2000. Development of an Ultralow⁃Light⁃Level Luminescence Image Analysis System for Dynamic Measurements of Transcriptional Activity in Living and Migrating Cells. Analytical Biochemistry, 280(1): 118-127. https://doi.org/10.1006/abio.2000.4503 |
| [20] |
Meyer, F., 1979. Iterative Image Transformations for an Automatic Screening of Cervical Smears. Arthropod Structure & Development, 27(1): 128-135. https://doi.org/10.1177/27.1.438499 |
| [21] |
Morgan, W. J., 1971. Convection Plumes in the Lower Mantle. Nature, 230(5288): 42-43. https://doi.org/10.1038/230042a0 |
| [22] |
Papale, P., 1999. Strain⁃Induced Magma Fragmentation in Explosive Eruptions. Nature, 397(6718): 425-428. https://doi.org/10.1038/17109 |
| [23] |
Peng, X., Li, C.F., Song, T.R., et al., 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent⁃Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255 (in Chinese with English abstract). |
| [24] |
Ren, J.Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract). |
| [25] |
Robinson, J. E., Eakins, B. W., 2006. Calculated Volumes of Individual Shield Volcanoes at the Young End of the Hawaiian Ridge. Journal of Volcanology and Geothermal Research, 151(1-3): 309-317. https://doi.org/10.1016/j.jvolgeores.2005.07.033 |
| [26] |
Sandwell, D. T., Müller, R. D., Smith, W. H. F., et al., 2014. New Global Marine Gravity Model from CryoSat⁃2 and Jason⁃1 Reveals Buried Tectonic Structure. Science, 346(6205): 65-67. https://doi.org/10.1126/science.1258213 |
| [27] |
Sandwell, D. T., Goff, J. A., Gevorgian, J., et al., 2022. Improved Bathymetric Prediction Using Geological Information: Synbath. Earth and Space Science, 9(2): e02069. https://doi.org/10.1029/2021ea002069 |
| [28] |
Sibuet, J. C., Yeh, Y. C., Lee, C. S., 2016. Geodynamics of the South China Sea. Tectonophysics, 692: 98-119. https://doi.org/10.1016/j.tecto.2016.02.022 |
| [29] |
Smith, D. K., 1988. Shape Analysis of Pacific Seamounts. Earth and Planetary Science Letters, 90(4): 457-466. https://doi.org/10.1016/0012⁃821X(88)90143⁃4 |
| [30] |
Song, X., Li, C., Yao, Y., et al. 2017.Magmatism in the Evolution of the South China Sea: Geophysical Characterization. Marine Geology, 394(1):4-15. https://doi.org/10.1016/j.margeo.2017.07.021 |
| [31] |
Sparks, R. S. J., 2003. Dynamics of Magma Degassing. Geological Society, London, Special Publications, 213(1): 5-22. https://doi.org/10.1144/gsl.sp.2003.213.01.02 |
| [32] |
Sun, Z., Ding, W. W., Zhao, X. X., et al., 2019. The Latest Spreading Periods of the South China Sea: New Constraints from Macrostructure Analysis of IODP Expedition 349 Cores and Geophysical Data. Journal of Geophysical Research: Solid Earth, 124(10): 9980-9998. https://doi.org/10.1029/2019jb017584 |
| [33] |
Tibaldi, A., 1995. Morphology of Pyroclastic Cones and Tectonics. Journal of Geophysical Research: Solid Earth, 100(B12): 24521-24535. https://doi.org/10.1029/95jb02250 |
| [34] |
Tozer, B., Sandwell, D. T., Smith, W. H. F., et al., 2019. Global Bathymetry and Topography at 15 ArcSec: SRTM15+. Earth and Space Science, 6(10): 1847-1864. https://doi.org/10.1029/2019ea000658 |
| [35] |
Unger Moreno, K. A., Thal, J., Bach, W., et al., 2021. Volcanic Structures and Magmatic Evolution of the Vesteris Seamount, Greenland Basin. Frontiers in Earth Science, 9: 1-14. https://doi.org/10.3389/feart.2021.711910 |
| [36] |
Wu, Z.Y.,Wen, Z.H., 2021. Marine Geology of China Sea. Science Press, Beijing (in Chinese). |
| [37] |
Xu, H.H., Ma, H., Song, H.B., et al., 2011. Numerical Simulation of Eastern South China Sea Basin Expansion. Chinese Journal of Geophysics, 54(12): 3070-3078 (in Chinese with English abstract). |
| [38] |
Xu, Y.G., Wei, J.X., Qiu, H.N., et al., 2012. Opening and Evolution of the South China Sea Constrained by Studies on Volcanic Rocks: Preliminary Results and a Research Design. Chinese Science Bulletin, 57(20): 1863-1878 (in Chinese). |
| [39] |
Xu, Z.Y., Wang, J., Yao, Y.J., et al., 2021. The Temporal⁃Spatial Distribution and Deep Structure of the Zhongnan⁃Liyue Fault Zone in the North of the South China Sea Basin. Earth Science, 46(3): 942-955 (in Chinese with English abstract). |
| [40] |
Yan, P., Wang, Y. L., Liu, H. L., 2008a. Post⁃Spreading Transpressive Faults in the South China Sea Basin. Tectonophysics, 450(1-4): 70-78. https://doi.org/10.1016/j.tecto.2008.01.015 |
| [41] |
Yan, Q. S., Shi, X. F., Yang, Y. M., et al., 2008b. Potassium⁃Argon/Argon⁃40⁃Argon⁃39 Geochronology of Cenozoic Alkali Basalts from the South China Sea. Acta Oceanologica Sinica, 27(6): 115-123. |
| [42] |
Yan, Q. S., Castillo, P., Shi, X. F., et al., 2015. Geochemistry and Petrogenesis of Volcanic Rocks from Daimao Seamount (South China Sea) and Their Tectonic Implications. Lithos, 218: 117-126. https://doi.org/10.1016/j.lithos.2014.12.023 |
| [43] |
Yan, Q.S., Shi, X.F., 2007. Hainan Mantle Plume and the Formation and Evolution of the South China Sea. Geological Journal of China Universities, 13(2): 311-322 (in Chinese with English abstract). |
| [44] |
Yan, Q. S., Shi, X. F., Castillo, P. R., 2014. The Late Mesozoic⁃Cenozoic Tectonic Evolution of the South China Sea: A Petrologic Perspective. Journal of Asian Earth Sciences, 85: 178-201. https://doi.org/10.1016/j.jseaes.2014.02.005 |
| [45] |
Yan, Q. S., Shi, X. F., Metcalfe, I., et al., 2018. Hainan Mantle Plume Produced Late Cenozoic Basaltic Rocks in Thailand, Southeast Asia. Scientific Reports, 8(1): 2640. https://doi.org/10.1038/s41598⁃018⁃20712⁃7 |
| [46] |
Yang, S.X., Qiu, Y., Zhu, B.D., et al., 2015. Geologic and Geophysical Atlas of the South China Sea. China Navigation Charts Press, Tianjin (in Chinese). |
| [47] |
Yang, S.Y., Fang, N.Q., Yang, S.X., et al., 2011. A Further Discussion on Formation Background and Tectonic Constraints of Igneous Rocks in Central Sub⁃Basin of the South China Sea. Earth Science, 36(3): 455-470 (in Chinese with English abstract). |
| [48] |
Yao, B.C., 1995. Characteristics and Tectonic Significance of the Zhongnan⁃Liyue Fault. Research of Geological South China Sea, 1-14 (in Chinese). |
| [49] |
Zhang, C.M., Sun, Z., Zhao, M.H., et al., 2022. Crustal Structure and Tectono⁃Magmatic Evolution of Northern South China Sea. Earth Science, 47(7): 2337-2353 (in Chinese with English abstract). |
| [50] |
Zhang, G. L., Luo, Q., Zhao, J., et al., 2018. Geochemical Nature of Sub⁃Ridge Mantle and Opening Dynamics of the South China Sea. Earth and Planetary Science Letters, 489: 145-155. https://doi.org/10.1016/j.epsl.2018.02.040 |
| [51] |
Zhao, D. P., 2007. Seismic Images under 60 Hotspots: Search for Mantle Plumes. Gondwana Research, 12(4): 335-355. https://doi.org/10.1016/j.gr.2007.03.001 |
| [52] |
Zhao, M. H., He, E. Y., Sibuet, J. C., et al., 2018. Postseafloor Spreading Volcanism in the Central East South China Sea and Its Formation through an Extremely Thin Oceanic Crust. Geochemistry, Geophysics, Geosystems, 19(3): 621-641. https://doi.org/10.1002/2017gc007034 |
| [53] |
Zhao, M.H., Qiu, X.L., Xu, H.L., et al., 2011. Deep Seismic Surveys in the Southern South China Sea and Contrast on Its Conjugate Margins. Earth Science, 36(5): 823-830 (in Chinese with English abstract). |
| [54] |
Zhao, Y. H., Ding, W. W., Yin, S. R., et al., 2020. Asymmetric Post⁃Spreading Magmatism in the South China Sea: Based on the Quantification of the Volume and Its Spatiotemporal Distribution of the Seamounts. International Geology Review, 62(7/8): 955-969. https://doi.org/10.1080/00206814.2019.1577189 |
国家重点研发计划项目(2023YFC2808805)
中央级公益性科研院所基本科研业务费专项资金项目(QNYC2301)
国家自然科学基金项目(42276082)
/
| 〈 |
|
〉 |