菲律宾海板块地壳结构特征:基于地震约束的重力反演
黄子强 , 吴招才 , 方银霞 , 许明炬 , 张家岭
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 234 -245.
菲律宾海板块地壳结构特征:基于地震约束的重力反演
Crustal Structure of Philippine Sea Plate: Insights from Gravity Inversions Constrained by Deep Seismic
,
为了深入理解菲律宾海板块各地质构造单元的深部结构以及九州‒帕劳洋脊地壳特征,利用卫星测高重力异常,结合研究区域水深、沉积层厚度及洋壳年龄数据校正变密度沉积层重力效应和热扰动重力效应,并利用KPR上OBS剖面得到的莫霍面深度作为重力反演莫霍面的约束,计算了菲律宾海板块研究区的莫霍面深度及地壳厚度.结果显示菲律宾海板块整体地壳厚度呈现从西到东、从南到北依次增厚的特征.西菲律宾海盆莫霍面深度在10 km左右,地壳厚度在4 km左右.帕里西维拉海盆地壳厚度平均在7 km左右,大于年老的西菲律宾海盆.九州‒帕劳洋脊地壳厚度最厚为14 km,在18°~19°N处厚度为8 km左右,接近帕里西维拉海盆洋壳厚度,不存在局部显著增厚地壳,KPR地壳为弧后岩浆活动改造的洋壳,而非成熟岛弧地壳.
In order to understand the deep structure of the geological tectonic units of the Philippine Sea plate and the crustal feature of the Kyushu-Palau Ridge, this paper uses satellite gravity anomaly, combined with the bathymetry, sediment thickness and oceanic crust age data in the study area to correct the gravity effects of sediment and thermal disturbance. The Moho depth and crustal thickness of the Philippine Sea plate were calculated by combining Moho depth data from OBS profiles cross the KPR as constraints. The results show that the overall crustal thickness of the Philippine Sea plate is characterized by a gradual increase from west to east and from south to north. The Moho depth of the West Philippine Basin is about 10 km, with a crustal thickness of about 4 km. The average crustal thickness of the Parece Vela Basin is about 7 km, which is larger than that of the older West Philippine Basin.The crustal thickness of the Kyushu-Palau Ridge is 14 km at the maximum. In the 18°-19°N segment of the KPR, the crust is about 8 km, which is similar to the normal oceanic crust thickness in the Parece Vela Basin. There is no significant thickening crust. The crustal properties of the KPR are oceanic crust that has been thickened by back-arc magmatism, rather than mature island arc crust.
西菲律宾海盆 / 九州‒帕劳洋脊 / 帕里西维拉海盆 / 地壳厚度 / 地壳性质 / 海洋地质学.
West Philippine Basin / Kyushu⁃Palau Ridge / Parece Vela Basin / crustal thickness / crustal property / marine geology
| [1] |
Braitenberg, C., Wienecke, S., Wang, Y., 2006. Basement Structures from Satellite⁃Derived Gravity Field: South China Sea Ridge. Journal of Geophysical Research: Solid Earth, 111(B5): B5407. https://doi.org/10.1029/2005JB003938 |
| [2] |
Chappell, A. R., Kusznir, N. J., 2008. Three⁃Dimensional Gravity Inversion for Moho Depth at Rifted Continental Margins Incorporating a Lithosphere Thermal Gravity Anomaly Correction. Geophysical Journal International, 174(1): 1-13. https://doi.org/10.1111/j.1365⁃246X.2008.03803.x |
| [3] |
Ding, W.W., Li, J.B., 2019. Seismic Detection of Deep Structure for Southern Kyueshu⁃Palau Ridge and Its Possible Implications for Subduction Initiation. Marine Geology & Quaternary Geology, 39(5): 98-103 (in Chinese with English abstract). |
| [4] |
Deschamps, A., Lallemand, S., 2002. The West Philippine Basin: An Eocene to Early Oligocene Back Arc Basin Opened between Two Opposed Subduction Zones. Journal of Geophysical Research: Solid Earth, 107(B12): EPM 1⁃1⁃EPM 1⁃24. https://doi.org/10.1029/2001JB001706 |
| [5] |
Ding, H. H., Ding, W. W., Zhao, Y. H., et al., 2022. Spatiotemporal Distribution of Seamount Volume along the Kyushu⁃Palau Ridge: Implications for Rejuvenated Volcanism. Journal of Asian Earth Sciences, 240: 105391. https://doi.org/10.1016/j.jseaes.2022.105391 |
| [6] |
Fang, Y. X., Li, J. B., Li, M. B., et al., 2011. The Formation and Tectonic Evolution of Philippine Sea Plate and KPR. Acta Oceanologica Sinica, 30(4): 75-88. https://doi.org/10.1007/s13131⁃011⁃0135⁃2 |
| [7] |
Fullea, J., Fernàndez, M., Zeyen, H., 2008. FA2BOUG-A Fortran 90 Code to Compute Bouguer Gravity Anomalies from Gridded Free⁃Air Anomalies: Application to the Atlantic⁃Mediterranean Transition Zone. Computers & Geosciences, 34(12): 1665-1681. https://doi.org/10.1016/j.cageo.2008.02.018 |
| [8] |
Gómez⁃Ortiz, D., Agarwal, B. N. P., 2005. 3DINVER.M: A Matlab Program to Invert the Gravity Anomaly over a 3D Horizontal Density Interface by Parker⁃Oldenburg’s Algorithm. Computers & Geosciences, 31(4): 513-520. https://doi.org/10.1016/j.cageo.2004.11.004 |
| [9] |
Hall, R., 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer⁃Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/S1367⁃9120(01)00069⁃4 |
| [10] |
Hall, R., Ali, J. R., Anderson, C. D., et al., 1995. Origin and Motion History of the Philippine Sea Plate. Tectonophysics, 251(1-4): 229-250. https://doi.org/10.1016/0040⁃1951(95)00038⁃0 |
| [11] |
Ishihara, T., Koda, K., 2007. Variation of Crustal Thickness in the Philippine Sea Deduced from Three⁃ Dimensional Gravity Modeling. Island Arc, 16(3): 322-337. https://doi.org/10.1111/j.1440⁃1738.2007.00593.x |
| [12] |
Ishizuka, O., Taylor, R. N., Yuasa, M., et al., 2011. Making and Breaking an Island Arc: A New Perspective from the Oligocene Kyushu⁃Palau Arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005. https://doi.org/10.1029/2010gc003440 |
| [13] |
Li, C.F., Li, G., Li, Z.L., et al., 2019. Study of the Caroline Plate: Initial Subduction, Initial Spreading and Fluid⁃Solid Interaction. Marine Geology & Quaternary Geology, 39(5): 87-97 (in Chinese with English abstract). |
| [14] |
McKenzie, D., 1978. Some Remarks on the Development of Sedimentary Basins. Earth and Planetary Science Letters, 40(1): 25-32. https://doi.org/10.1016/0012⁃821X(78)90071⁃7 |
| [15] |
McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 233(3-4): 337-349. https://doi.org/10.1016/j.epsl.2005.02.005 |
| [16] |
Müller, R. D., Sdrolias, M., Gaina, C., et al., 2008. Age, Spreading Rates, and Spreading Asymmetry of the World’s Ocean Crust. Geochemistry, Geophysics, Geosystems, 9(4): Q04006. https://doi.org/10.1029/2007gc001743 |
| [17] |
Nishizawa, A., Kaneda, K., Katagiri, Y., et al., 2007. Variation in Crustal Structure along the Kyushu⁃Palau Ridge at 15-21°N on the Philippine Sea Plate Based on Seismic Refraction Profiles. Earth, Planets and Space, 59(6): e17-e20. https://doi.org/10.1186/bf03352711 |
| [18] |
Nishizawa, A., Kaneda, K., Oikawa, M., 2016. Crust and Uppermost Mantle Structure of the Kyushu⁃Palau Ridge, Remnant Arc on the Philippine Sea Plate. Earth, Planets and Space, 68(1): 30. https://doi.org/10.1186/s40623⁃016⁃0407⁃3 |
| [19] |
Niu, X. W., Tan, P. C., Ding, W. W., et al., 2022. Oceanic Crustal Structure and Tectonic Origin of the Southern Kyushu⁃Palau Ridge in the Philippine Sea. Acta Oceanologica Sinica, 41(1): 39-49. https://doi.org/10.1007/s13131⁃021⁃1978⁃9 |
| [20] |
Okino, K., Ohara, Y., Kasuga, S., et al., 1999. The Philippine Sea: New Survey Results Reveal the Structure and the History of the Marginal Basins. Geophysical Research Letters, 26(15): 2287-2290. https://doi.org/10.1029/1999gl900537 |
| [21] |
Oldenburg, D. W., 1974. The Inversion and Interpretation of Gravity Anomalies. Geophysics, 39(4): 526-536. https://doi.org/10.1190/1.1440444 |
| [22] |
Parker, R. L., 1973. The Rapid Calculation of Potential Anomalies. Geophysical Journal International, 31(4): 447-455. https://doi.org/10.1111/j.1365⁃246x.1973.tb06513.x |
| [23] |
Peng, X., Li, C.F., Song, T.R., et al., 2022. Deep Structures and Lithospheric Breakup Processes at Northern Continent⁃Ocean Transition Zone of the South China Sea. Earth Science, 47(11): 4245-4255 (in Chinese with English abstract). |
| [24] |
Sandwell, D. T., Mueller, R. D., Smith, W. H. F., et al., 2014. New Global Marine Gravity Model from CryoSat⁃2 and Jason⁃1 Reveals Buried Tectonic Structure. Science, 346(6205): 65-67. https://doi.org/10.1126/science.1258213 |
| [25] |
Sclater, J. G., Christie, P. A. F., 1980. Continental Stretching: An Explanation of the Post⁃Mid⁃Cretaceous Subsidence of the Central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85(B7): 3711-3739. https://doi.org/10.1029/jb085ib07p03711 |
| [26] |
Shi, X.F., Yan, Q.S., 2013. Magmatism of Typical Marginal Basins (or Back⁃Arc Basins) in the West Pacific. Advances in Earth Science, 28(7): 737-750 (in Chinese with English abstract). |
| [27] |
Sdrolias, M., Roest, W. R., Müller, R. D., 2004. An Expression of Philippine Sea Plate Rotation: The Parece Vela and Shikoku Basins. Tectonophysics, 394(1-2): 69-86. https://doi.org/10.1016/j.tecto.2004.07.061 |
| [28] |
Straume, E. O., Gaina, C., Medvedev, S., et al., 2019. GlobSed: Updated Total Sediment Thickness in the World’s Oceans. Geochemistry, Geophysics, Geosystems, 20(4): 1756-1772. https://doi.org/10.1029/2018gc008115 |
| [29] |
Su, D. Q., White, N., McKenzie, D., 1989. Extension and Subsidence of the Pearl River Mouth Basin, Northern South China Sea. Basin Research, 2(4): 205-222. https://doi.org/10.1111/j.1365⁃2117.1989.tb00036.x |
| [30] |
Sun, W., Zhang, L., Li, H., et al., 2020. The Synchronic Cenozoic Subduction Initiations in the West Pacific Induced by the Closure of the Neo⁃Tethys Ocean. Science Bulletin, 65(24): 2068-2071. https://doi.org/10.1016/j.scib.2020.09.001 |
| [31] |
Tang, Y., Li, M. B., Li, J. B., et al., 2011. The Geomorphological Features and Continuity of the Kyushu⁃Palau Ridge (KPR). Acta Oceanologica Sinica, 30(5): 114-124. https://doi.org/10.1007/s13131⁃011⁃0136⁃1 |
| [32] |
Taylor, B., Goodliffe, A. M., 2004. The West Philippine Basin and the Initiation of Subduction, Revisited. Geophysical Research Letters, 31(12): L12602. https://doi.org/10.1029/2004gl020136 |
| [33] |
Wang, G., Jiang, S. H., Li, S. Z., et al., 2017. Basement⁃Involved Faults and Deep Structures in the West Philippine Basin: Constrains from Gravity Field. Marine Geophysical Research, 38(1-2): 149-167. https://doi.org/10.1007/s11001⁃017⁃9310⁃y |
| [34] |
Wei, X. D., Ding, W. W., Ruan, A. G., et al., 2022. Crustal Structure and Variation along the Southern Part of the Kyushu⁃Palau Ridge. Acta Oceanologica Sinica, 41(1): 50-57. https://doi.org/10.1007/s13131⁃021⁃1979⁃8 |
| [35] |
White, R. S., Detrick, R. S., Sinha, M. C., et al., 1984. Anomalous Seismic Crustal Structure of Oceanic Fracture Zones. Geophysical Journal International, 79(3): 779-798. https://doi.org/10.1111/j.1365⁃246x.1984.tb02868.x |
| [36] |
Wu, J., Suppe, J., Lu, R. Q., et al., 2016. Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 121(6): 4670-4741. https://doi.org/10.1002/2016JB012923 |
| [37] |
Wu, S.G., Fan, J.K., Dong, D.D., 2013. Discussion on the Tectonic Division of the Philippine Sea Plate. Chinese Journal of Geology (Scientia Geologica Sinica), 48(3): 677-692 (in Chinese with English abstract). |
| [38] |
Wu, Z.C., Gao, J.Y., Ding, W.W., et al., 2017. Moho Depth of the South China Sea Basin from Three⁃ Dimensional Gravity Inversion with Constraint Points. Chinese Journal of Geophysics, 60(7): 2599-2613 (in Chinese with English abstract). |
| [39] |
Xie, X.N., Zhao, S., Ren, J.Y., et al., 2022. Marginal Sea Closure Process and Genetic Mechanism of South China Sea during Post⁃Spreading Period. Earth Science, 47(10): 3524-3542 (in Chinese with English abstract). |
| [40] |
Yen, H. Y., Lo, Y. T., Yeh, Y. L., et al., 2015. The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data. Terrestrial, Atmospheric and Oceanic Sciences, 26(3): 253-259. https://doi.org/10.3319/tao.2014.11.17.01(t) |
国家重点研发计划项目(2023YFC2808805)
国家自然科学基金项目(42076078)
中国‒莫桑比克联合航次项目(GASI⁃01⁃DLJHJ⁃CM)
/
| 〈 |
|
〉 |