磷循环及磷组分在古海洋环境重建中的应用

李婷婷 ,  朱光有 ,  张义杰 ,  陈志勇

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 246 -268.

PDF (2626KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 246 -268. DOI: 10.3799/dqkx.2023.202

磷循环及磷组分在古海洋环境重建中的应用

作者信息 +

Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo⁃Marine Environment

Author information +
文章历史 +
PDF (2688K)

摘要

磷作为地球生命DNA和RNA的核心组成部分,是地质历史时期海洋表层初级生产力的主要限制性营养元素,对全球大气‒海洋氧化还原状态及气候变化具有重要调节作用.总结了海洋中磷的源及汇,阐述了磷组分的构成及其在研究磷的埋藏、转化与循环中的应用,分析了古老地层中磷的沉积特征与生物‒环境演化的关系,明确了不同地质时期磷循环特征、机制及其与大气‒海洋‒生态之间的反馈作用,这对于认识生命与地球环境的关系具有深远意义.

Abstract

Phosphorus (P), as a central component of DNA and RNA of life on earth, is the major limiting nutrient for marine productivity on geological time scales, and plays an important role in regulating the global atmosphere-ocean redox state and Earth’s climate. This paper summarizes the source and sink of P in the ocean, and expounds the composition of P speciation and its application in the study of P burial, diagenetic transformations and marine P cycle, and analyzes the sedimentary P characteristics in the ancient strata and their links with life-environment evolution, which helps clarify features and mechanism of P cycling in different geological periods and its feedback on atmosphere-ocean-ecology system. This is of far-reaching significance for understanding the relationship between life and Earth’s environment.

Graphical abstract

关键词

磷储库 / 磷块岩 / 初级生产力 / 碳埋藏 / 氧化还原环境 / 生物演化 / 地球化学.

Key words

phosphorous reservoir / phosphorite / primary productivity / organic carbon burial / redox conditions / biological evolution / geochemistry

引用本文

引用格式 ▾
李婷婷,朱光有,张义杰,陈志勇. 磷循环及磷组分在古海洋环境重建中的应用[J]. 地球科学, 2025, 50(01): 246-268 DOI:10.3799/dqkx.2023.202

登录浏览全文

4963

注册一个新账户 忘记密码

磷是地球上生命所需的关键营养元素(Föllmi,1996Tyrrell,1999Kraal et al.,2017),是DNA(Deoxyribonucleic Acid,脱氧核糖核酸)和RNA(Ribonucleic Acid,核糖核酸)的核心构成部分,在通过ATP(Adenosine Triphosphate,三磷酸腺苷)参与能量传递以促进细胞新陈代谢方面起着至关重要的作用(Tyrrell,1999Allen and Gillooly,2009Laakso and Schrag,2018Thompson et al.,2019).全球海洋中磷的源‒汇平衡控制了地质历史时期初级生产力水平(Froelich et al.,1982Krom et al.,1991Tyrrell,1999Elser et al.,2007Mather et al., 2008),是海洋中决定性限制营养元素(Tyrrell,1999),直接控制了光合作用产生O2的速率,并通过影响有机碳埋藏(Ingall et al.,1993)以及大气O2与CO2的分压(Berner and Canfield,1989Van Cappellen and Ingall,1996Lenton and Watson,2000Boyle et al.,2014Papadomanolaki et al.,2022),从而间接影响了碳与氧循环、大气‒海洋氧化还原状态(Van Cappellen and Ingall,1996Lenton and Watson 2000Bjerrum and Canfield,2002Holland,2006Algeo and Ingall,2007Konhauser et al.,2007Planavsky et al.,2010Rego et al.,2023)、古气候(Filippelli and Delaney,1992Shen et al.,2018)以及生物进化的速度(Elser et al.,1996Karl,2000Shi et al.,2021).海洋中的磷通过与有机质和(或)铁(氢)氧化物结合的方式被移除水体并在沉积物中发生埋藏,随后在沉积物中经过磷汇转换转化为含磷矿物如碳氟磷灰石(CFA),并最终形成含磷沉积岩如磷块岩(P2O5>15 wt%,wt%表示质量百分数)(Froelich et al.,1982Föllmi,1996).作为重要的矿产资源,这类沉积在现代工业中通常被用作农用化学肥料中最主要的磷来源(Glenn et al.,1994Amundson et al.,2015),其全球需求量仍在持续增加(Cordell et al.,2009Filippelli,2011).另外含磷沉积岩中保存下来的特殊化石如硬体(Lamboy,1993Thomas et al.,2000Porter,2004Muscente et al.,2023)及软体生物化石(Allison,1988Xiao and Knoll,1999Xiao,2004Schopf and Kudryavtsev,2010Zhang et al.,2015)提供了认识生物演化历史的直接窗口(Xiao and Knoll,2000Butterfield,2003Ye et al.,2023).
因此,追踪沉积岩中磷在地质历史时期的变化对于解释地质历史过程中生物生产力的变化(Mort et al.,2007Diaz et al.,2008Shen et al.,2015Müller et al.,2022),认识磷、碳、氧循环及其之间的耦合关系(Ingall et al.,1993Cox et al.,2018Hermans et al.,2019Ozaki et al.,2019Rico and Sheldon,2019Guilbaud et al.,2020Alcott et al.,2022Kipp,2022Ge et al.,2023),重建气候、环境与生态之间的长期反馈机制(Filippelli and Delaney,1992Föllmi,1996Bjerrum and Canfield,2002Planavsky et al.,2010Reinhard et al.,2017;殷鸿福等,2018;Li et al.,2020Longman et al.,2021Mills et al.,2021Song et al.,2023)具有重要作用.近年来,随着顺序提取法(Sequential extraction method,SEDEX)的提出(Ruttenberg,1992)与改进(Thompson et al.,2019),使得对沉积岩中不同磷组分构成进行识别和定量成为可能.目前,该方法已被广泛用于研究现代沉积物及古代沉积岩,以约束地层记录中磷的分布,认识沉积物中磷的埋藏特征与成岩转化过程以及重建海洋磷循环作用(Slomp et al.,2004Mort et al.,2007Kraal et al.,2010Creveling et al.,2014Egger et al.,2015Dijkstra et al.,2018Thompson et al.,2019Bowyer et al.,2020Hao et al.,2020Schobben et al.,2020Müller et al.,2022Qiu et al.,2022Bowyer et al.,2023Ge et al.,2023).本文系统总结了海洋中磷的生物地球化学循环过程及其在沉积物中的埋藏与转化,概括了磷组分的构成及其在古海洋环境中的应用,阐述了磷及磷循环对海洋初级生产力的控制作用及其与碳、氧循环之间的耦合关系,明确了地质历史时期磷的分布特征及其与环境‒生态之间的反馈作用,以实现对磷循环特征、机制及其作用的深入认识.

1 磷的海洋生物地球化学循环

海洋磷储库中磷的来源有陆源输入、热液活动、火山作用及被沉积物释放回到水体中的磷(再循环的磷)(图1).其中,由含磷沉积岩及火成岩的大陆风化作用产生的陆源输入磷是海洋磷储库最为重要的磷来源(Föllmi,1996Hao et al.,2020).有研究表明,在埃迪卡拉纪早期,有大量磷被注入到海洋中,这些磷被认为是来自剧烈的冰川风化及大火成岩省的风化作用(Konhauser et al.,2007;Planavsky et al.,2010;Horton,2015Reinhard et al.,2017).再循环的磷也是海洋磷储库较为重要的磷来源(Hao et al.,2020).这部分磷是沉积物中埋藏的磷首先被释放到孔隙水中,再经扩散作用进入上覆海洋磷储库中,主要通过以下两种释放方式产生:一种是沉积物中与铁(氢)氧化物结合的磷(PFe)经过还原溶解作用被释放到孔隙水中(Lucotte et al.,1994März et al.,2008);另一种是被光合作用生物利用与有机质结合在一起沉降到沉积物中的有机磷(Porg)伴随有机质发生矿化作用,被释放到孔隙水中(Föllmi,1996März et al.,2008).火山作用及热液活动也可以向海洋磷储库供给磷,但是在整个地质历史时期,相比前两种磷来源,这两种方式的贡献可能是微不足道的(Föllmi,1996).

图1,进入海洋中的大多数磷是由河流搬运而来,一小部分通过大气搬运(Mahowald et al.,2008Okin et al.,2011).由河流输送的磷包含溶解磷和颗粒磷两种形式(Canfield et al.,2020)(图2),其中颗粒磷约占95%(Föllmi,1996).溶解磷由溶解无机磷和溶解有机磷组成(Meybeck,1982).颗粒磷由颗粒有机磷(约占40%)和颗粒无机磷组成,后者又包含碎屑磷(Pdetri)、自生成因磷(Pauth,如CFA)、铁(氢)氧化物结合磷(PFe)以及吸附在黏土矿物或碳酸钙颗粒表面的磷(Pads)(Froelich,1988).碎屑磷(Pdetri)主要赋存于火成岩成因或变质岩成因的磷灰石中,它是不能被海洋生物利用的(Rasmussen,1996).由河流输送的磷在进入海洋时会转化为溶解磷(Canfield et al.,2020),在表层水体中被生物体利用,并促进海洋初级生产力的提高.

海洋磷储库中非碎屑磷的移除方式主要有两种:一种是通过与铁(氢)氧化物结合(PFe),沉降进入沉积物中;一种是在表层水体中被生物利用形成有机磷(Porg)并沉降进入沉积物中(Föllmi,1996).第一种情况在氧化环境中比较常见,还有部分发生于有热液活动的区域,这是因为热液活动过程释放的Fe2+经氧化作用会形成铁氧化物颗粒(Froelich et al.,1982Wheat et al.,1996Feely et al.,1998Baturin,2007).

2 海洋沉积物中磷的埋藏及转化

海洋磷储库中的磷一般通过碎屑磷、有机质及含铁矿物三种载体的搬运,穿过水柱进入沉积物中(图3).海洋沉积物中磷的埋藏及其从沉积物回到水柱中发生再循环的程度高度依赖于水柱及沉积物孔隙水的氧化还原状态(Poulton,2017).如图3a,在氧化底水条件下,沉积物中埋藏的大部分有机质(高达90%)可能被矿化并释放出溶解磷进入孔隙水中(Krom and Berner,1981Ruttenberg and Berner,1993Ingall and Jahnke,1994,1997Van Cappellen and Ingall,1994Anderson et al.,2001).由于氧化还原过渡带位于沉积物中,沉积物上部氧化带一方面阻止了铁(氢)氧化物的还原溶解及其伴生磷的释放,另一方面位于其中的铁(氢)氧化物可以对缺氧带孔隙水中扩散出来的磷进行吸附并保留在该处沉积物中(Slomp et al.,1996Algeo and Ingall,2007).如图3b,在缺氧铁化底水条件下,沉积物中埋藏的磷会在厌氧成岩过程中,通过有机质降解和含铁矿物的还原溶解,被释放回孔隙水及上覆水柱中(Lovley and Phillips,1988Ruttenberg and Berner,1993Guilbaud et al.,2020).如图3c,在缺氧硫化底水条件下,沉积物中埋藏的有机质在硫酸盐还原反应过程中会将磷释放进入孔隙水并向上覆水体扩散.在水体中存在硫化氢的情况下,铁(氢)氧化物结合的磷也会因快速还原反应被释放出来回到水柱中(Canfield et al.,1992),而产生的Fe2+会在沉积物中以铁硫化物形式沉淀(Kraal et al.,2017).在以上所有氧化还原状况下,被释放进入孔隙水中的磷可能会形成自生成因磷(主要为碳氟磷灰石(CFA))在沉积物较深部位发生沉淀(Van Cappellen and Berner,1988Ruttenberg and Berner,1993Anderson et al.,2001Hsu et al.,2014);也有部分在铁化底水条件下由于Fe2+和HPO42-的富集以含铁矿物如蓝铁矿(Fe3(PO42·8H2O)的形式沉淀(Egger et al.,2015Dijkstra et al.,2016Xiong et al.,2019),这显著提高了磷的埋藏效率;还可能会被铁(氢)氧化物重新吸附(Slomp et al.,1996),取决于具体的环境条件.

3 磷组分的组成及其在古海洋环境中的应用

沉积物中埋藏的磷(即总磷,Ptotal)由铁(氢)氧化物结合的磷(PFe)、有机磷(Porg)、黏土矿物或碳酸钙颗粒表面吸附的磷(Pads)、自生成因磷(Pauth,主要为碳氟磷灰石(CFA))及不能被海洋生物利用的碎屑磷(Pdetri,主要为火成岩或变质岩成因的碎屑磷灰石)组成(Ruttenberg,1992).PFe、Porg及Pauth之和构成了活性磷(Preact)(Ruttenberg,1992Föllmi,1996Mort et al.,2007Guilbaud et al.,2020).这些磷组分能够得以量化归功于SEDEX的建立.该方法最早是由Ruttenberg(1992)提出的,其优势在于可以对光学及X射线衍射方法无法检测出来的细粒的、磷含量低的海洋沉积物中的不同磷组分进行分离和测量,并且可以将火成岩或变质岩成因的碎屑磷灰石与自生成因的磷灰石区分开.然而,对于古代沉积岩中通常发育的结晶程度较高的矿物如赤铁矿和磁铁矿,该方法可能因无法对这些矿物充分溶解而不能进行量化,因此Thompson et al.(2019)对其进行了改进以便将与这些矿物伴生的磷提取出来.目前,SEDEX及在其基础上有所改进的方法已被广泛应用于现代海洋沉积物(Ruttenberg and Berner,1993Lucotte et al.,1994Eijsink et al.,2000Schenau and De Lange,2001Slomp et al.,2004Egger et al.,2015Kraal et al.,2015Dijkstra et al.,2018)及古代沉积岩(Ruttenberg and Berner,1993;Lucotte et al.,1994;Eijsink et al.,2000;Schenau and De Lange,2001;Slomp et al.,2004;Egger et al.,2015;Kraal et al.,2015;Dijkstra et al.,2018)中磷组分的定量研究.

对海洋沉积物中不同形式的磷进行识别和量化,对于认识沉积物中磷的埋藏特征及成岩转化过程、探究海洋磷循环作用及其对大气‒海洋生物地球化学循环的影响具有重要意义(Ruttenberg and Berner, 1993Lucotte et al., 1994Eijsink et al.,2000Schenau and De Lange, 2001Slomp et al.,2004;Egger et al.,2015;Kraal et al.,2015;Dijkstra et al.,2018).沉积物中磷组分(PFe、Porg、Pauth、Pdetri)的含量及各组分之间的关系,如Ptotal与Ptotal/Al,以及Corg/Porg与Corg/Preact表1)被广泛用于约束磷的埋藏、转化及磷的再循环作用(Krom and Berner,1981Ingall et al.,1993Ruttenberg and Berner,1993;Anderson et al.,2001;März et al.,2008Kraal et al.,2010;Creveling et al.,2014;Bowyer et al.,2020Guilbaud et al.,2020Schobben et al., 2020Qiu et al.,2022).沉积物中的Porg与PFe在埋藏成岩作用过程中被释放的程度及通过磷汇转换形成Pauth被最终固定在沉积物或再循环回到上覆水柱的程度,取决于孔隙水及水柱的氧化还原条件(Ruttenberg and Berner,1993).缺氧铁化底水条件下,Porg及PFe相对于Pauth减少可能揭示沉积物中发生了大量的磷汇转换作用(Guilbaud et al.,2020).Ptotal与Ptotal/Al的变化与海洋中磷的可得性或者沉积物中磷是否发生再循环有关(Bowyer et al.,2020Guilbaud et al.,2020).比如,华北淮南盆地新元古代早期沉积的缺氧铁化沉积物的Ptotal含量低被认为反映了该时期海洋磷储库小,并因此限制了初级生产力的提高,而中元古代沉积的缺氧硫化沉积物的Ptotal含量低被认为是在广泛硫化环境下沉积物中的磷发生了强烈的再循环回到上覆水柱中,并促进了初级生产力的提高及碳埋藏(Guilbaud et al.,2020).Ptotal/Al高于海相页岩平均值(0.009),指示了海洋水体中磷含量降低(Turekianand Wedepohl,1961Schobben et al.,2020).通过Corg/Porg和Corg/Preact相对于Redfield比的情况(Xiong et al.,2019),可以判断沉积物中被释放的磷发生再循环回到水柱中的程度以及磷循环的控制因素(Ruttenberg and Berner,1993).海洋浮游植物的Corg/Porg摩尔比值(即Redfield比)约为106∶1(Redfield,1958).由于有机质降解过程中,磷的再生速度要比碳的快,导致磷会被优先释放,从而使得沉积物中的Corg/Porg高于Redfield比(Krom and Berner,1981;Ingall and Van Cappellan,1990;Ingall et al.,1993Ingall and Jahnke,1997Anderson et al.,2001Algeo and Ingall,2007Kraal et al.,2012).海洋贫营养条件下或沉积物中有机质矿化不完全时,沉积物中Corg/Porg会显著升高(Ingall et al.,1993Van Cappellen and Ingall,1994Ingall and Jahnke,1997Slomp et al.,2004Reinhard et al.,2017).然而,对于Porg含量极低的沉积物(如中白垩统沉积物),很可能是在漫长的成岩过程中Porg向更加稳定的矿物相如Pauth发生了磷汇转换,这种情况下的Corg/Porg不能用于指示有机质中磷相对于碳的优先释放(Ruttenberg and Berner,1993;Anderson et al.,2001;Algeo and Ingall,2007).在Corg/Porg高于Redfield比基础上,若Corg/Preact高于Redfield比则被认为是沉积物中Porg和PFe释放的溶解磷发生了再循环回到水柱中(Ingall et al.,1993Dale et al.,2016Xiong et al.,2019),而Corg/Preact低于Corg/Porg可能是被释放的磷有部分通过磷汇转换作用形成了Pauth被固定在沉积物中(Qiu et al.,2022).前一种情况通常发生于缺氧水体环境中特别是硫化水体中,在该环境下成岩过程中释放出来的磷更有可能逃离沉积物而不太可能以Preact形式沉淀,从而有利于沉积物中的磷发生再循环回到上覆水体中并对促进海洋初级生产力提高起到正反馈作用(Ingall et al.,1993Ingall and Jahnke,1994Van Cappellen and Ingall,1996Anderson et al.,2001Schenau and De Lange,2001Algeo and Ingall,2007Kraal et al.,2017).Algeo and Ingall(2007)对显生宙形成于缺氧环境中的富有机质沉积岩的Corg/Ptotal数据进行了梳理,发现古生代(541~252 Ma,Ma表示106 a)沉积的地层中的Corg/Ptotal均值远高于Redfield比,因此Corg/Preact也始终高于Redfield比,表明该时期的磷循环可能在调节O2含量中发挥了重要控制作用.考虑到古代沉积岩中的Pauth在成岩作用或变质作用过程中,可能会向结晶程度更高的磷灰石形式转化,使测得的Pauth偏低而Pdetri偏高,从而导致 Preact偏低(Kraal et al.,2010;Creveling et al.,2014;Thompson et al.,2019Guilbaud et al.,2020).因此,在使用Corg/Preact比值前,需要判断Pauth是否在沉积后向Pdetri转化.比如,有研究通过建立碎屑来源为主的Al含量与Preact及Pdetri的相关关系,结合测试样品与现代大陆边缘沉积物及现代贫营养环境的Pdetri含量对比结果来判断Pauth是否向Pdetri发生转化(Bowyer et al.,2020;Guilbaud et al.,2020).

虽然SEDEX及在其基础上有所改进的方法提供了更多关于磷循环的信息,但是这些方法在提取流程及效率方面也存在一些不足.比如,Ruttenberg(1992)建立的SEDEX方法大体分为5个提取步骤,耗时约48 h,而Thompson et al.(2019)为了解决该方案对结晶程度更高的含铁矿物提取效率低的问题,增加了针对磁铁矿与赤铁矿的提取步骤,从而使提取时间增加了约12 h.尽管如此,这一提取方法在分离铁(氢)氧化物结合磷与其他含铁矿物(如蓝铁矿)结合磷上仍存在困难,导致这些矿物对铁结合磷的贡献还不太清楚(Egger et al.,2015).另外,在埋藏成岩过程中,由于重结晶作用的影响,Pauth(如碳氟磷灰石)在提取过程中可能不太容易被醋酸钠溶解,这部分Pauth可能会被当作Pdetri的一部分被提取出来(Creveling et al.,2014).由此看来,单纯依靠磷组分方法研究磷的埋藏、转化与循环还是不够的,而将磷组分分析与微观岩石学观察及成岩研究相结合的跨学科方法将会改善对沉积环境中磷的不同存在形式的判别,从而提高对磷的生物地球化学循环的认识.

4 磷及磷循环对生物‒环境演化的重要作用

如前所述,磷及磷循环在控制全球海洋初级生产力,碳、氧循环,大气‒海洋氧化还原状态,古气候以及生物进化方面发挥了重要作用.气候、海洋与沉积物氧化还原条件等因素的变化反过来又会强烈地影响磷的供应及磷循环(März et al.,2008),因此这些因素之间形成了正/负反馈作用(图4).

4.1 磷对海洋初级生产力的控制作用

在地质历史时期,磷通常被认为是海洋初级生产力的主要限制营养元素(Redfield,1958Krom et al.,1991Van Cappellen and Ingall,1996Tyrrell,1999Bjerrum and Canfield,2002Mather et al.,2008Horton,2015Reinhard et al.,2017).同样地,氮也是限制海洋光合作用生物量的主要营养元素(Canfield et al.,2020).然而,二者的供给方式不同,决定了磷在调节海洋初级生产力中发挥了决定性控制作用(Redfield,1958Ingall et al.,1993Van Cappellen and Ingall,1996Tyrrell,1999).海洋中生物可利用氮的主要来源为海洋生物对大气N2的固氮作用(Tyrrell,1999),而磷的主要来源为陆源输入(Föllmi,1996Hao et al.,2020).由于光合作用生物体通常会将氮和磷按一定的比例利用起来(Redfield,1958Tyrrell,1999),若海洋中磷含量发生了变化,海洋中的氮含量会通过固氮作用及以反硝化与厌氧氨氧化为主的氮的移除作用之间的平衡来调整,以满足生物体的需求(Tyrrell,1999Fennel et al.,2005).因此,一旦海洋中磷元素缺乏,海洋初级生产力将受到限制.

4.2 磷对大气‒海洋体系中碳、氧循环的影响

磷不仅对海洋初级生产力起着关键控制作用,而且可以进一步影响有机碳的生成与埋藏,从而影响大气CO2及大气与海洋中O2含量,最终会对大气‒海洋氧化还原状态及气候的变化起到重要调节作用(图4)(Berner and Canfield,1989Föllmi,1996Van Cappellen and Ingall,1996Colman et al., 1997Tyrrell,1999Berner et al.,2003Bergman et al.,2004Algeo and Ingall,2007Reinhard et al.,2017).前人的研究(Van Cappellen and Ingall,1996;Lenton and Watson,2000;Wallmann,2003Mort et al.,2007)表明,在相对较短的地质时间内(<103 a),缺氧环境有利于增强沉积物向上覆水柱中磷的再循环,从而促进了海洋初级生产力的提高.基于此,有机质的沉降通量增大,进而增加了水柱中呼吸作用对O2的需求量(Van Cappellen and Ingall,1996),因此有利于缺氧水体环境的保持与扩张,这形成了一个正反馈作用(图4,循环1).例如,二叠纪‒三叠纪之交全球海洋广泛缺氧被认为是由于海洋磷储库变化驱动了对海洋中O2的消耗(Hotinski et al.,2001Meyer et al.,2008).现代Baltic Sea及许多近岸海域水体中的O2浓度下降,贫氧程度及范围的增加被认为是海洋中磷的注入量增加引起的,并因此对底栖生物的生存造成了不利影响(Carstensen et al.,2014).然而,在较长的地质时间内(>106 a),由生物可利用磷驱动的初级生产力的提高,会使有机碳埋藏通量增加,一方面极大地降低了水柱中O2被用于呼吸作用的机会,最终导致大气O2浓度的增加,从而形成了一个负反馈作用(图4,循环2).在这种情况下,一旦大气O2浓度达到一个临界阈值,就会驱动海洋进入氧化状态(Handoh and Lenton,2003),比如新元古代大氧化事件(NOE)的发生(Planavsky et al.,2010;Och and Shields⁃Zhou,2012)及白垩纪中期海洋缺氧事件(OAEs)的结束(Handoh and Lenton,2003Tsandev and Slomp,2009)被认为与海洋中磷可得性的增加有关.另一方面,沉积物中有机碳的富集会造成大气pCO2及全球温度显著下降(Arthur et al.,1988Kuypers et al.,1999Barclay et al.,2010Longman et al.,2021).Qiu et al.(2022)对华南地区上奥陶统‒下志留统岩石样品的生物地球化学模型分析结果表明,伴随着磷循环速率增加,全球有机碳埋藏速率增加一倍以上,大气CO2浓度从900 ppm(ppm表示10-6)降至约500 ppm,这导致赫南特期相比凯迪期主冰期,全球温度下降了4 ℃.

4.3 太古宙‒寒武纪地层中磷的沉积特征及其与生物‒环境演化的关系

对地球历史上海洋沉积物中的磷含量进行估算,对于了解生物圈增长及主要的生物地球化学循环的演变至关重要(Kipp and Stüeken,2017).如图5,现有的数据显示,显生宙及新元古代地层沉积中的总磷含量明显要比中元古代、古元古代及太古宙地层沉积中的总磷含量高.在新元古代之前的地质时间里特别是中元古代及太古宙,富磷地层沉积比较有限,但在之后的地质时间里富磷地层沉积十分常见,这与早期报道的磷块岩大量产出的地质时期如显生宙新近纪、晚白垩世‒始新世、侏罗纪、二叠纪、中奥陶世、寒武纪以及新元古代成冰纪(720~635 Ma)与埃迪卡拉纪(635~ 541 Ma)相一致(Cook and Shergold,1984Filippelli and Delaney,1992Holland,2005Fan et al.,2016Reinhard et al.,2017).这些含磷沉积岩通常与富有机质岩相如黑色页岩(Cook and Shergold,1984Föllmi,1996)及碳酸盐岩如以叠层石为主的微生物岩相伴生(陈孟莪等,1999;Creveling et al.,2014).尽管古元古代也有一些磷块岩沉积(Sisodia, 2009),但是其沉积规模要比新元古代之后沉积的小得多,因此其作为矿产资源的经济可行性可能比较低(Papineau et al.,2009).

4.3.1 太古宙

目前没有研究报道过太古宙地层中发育磷块岩沉积(Holland,2005).已开展的研究表明,该时期沉积的铁层及页岩中的磷含量较低(Bjerrum and Canfield,2002;Planavsky et al.,2010;Reinhard et al.,2017),这可能与该时期大气与水体的氧化还原状态有关.在地球历史的大部分时间里,缺氧铁化的海洋环境占据主导地位(Planavsky et al.,2011Poulton and Canfield,2011Sperling et al.,2015),在这种条件下从水柱中沉降的磷多数与含铁矿物及有机质结合(Bjerrum and Canfield,2002Zegeye et al.,2012Derry,2015Jones et al.,2015Kipp and Stüeken,2017Reinhard et al.,2017).然而,由于大气O2含量极低,向水柱中输送的氧化剂(如O2、SO42-等)有限(Fennel et al.,2005Laakso and Schrag,2018),制约了再矿化作用的发生及结合磷的释放与再循环(Kipp and Stüeken,2017).据Rego et al.(2023)对太古代 (~2.74 Ga)海水磷浓度的最新估算结果,该时期海水溶解磷平均浓度为0.063±0.05 μM(μM表示微摩尔),远低于现代海水平均值(~2.3 μM),指示了地球历史早期海水磷浓度普遍低,这与模拟实验得出的大陆风化带来的磷源供应量低、有机质再矿化造成的磷再循环少及含铁矿物吸附作用引起大量磷发生埋藏的结果一致(Bjerrum and Canfield,2002Kipp and Stüeken,2017Hao et al.,2020).例如,Hao et al.(2020)认为大陆风化作用可能是太古宙海洋中磷的主要来源,但是受该时期地表山区抬升有限(Flament et al.,2008,2013)、植被缺乏(Drever,1994Hao et al.,2020)、早期形成的火成岩中磷含量低(Cox et al.,2018)以及大气pCO2降低(Hao et al.,2020)的影响,很大程度上制约了磷向海洋的供应,从而限制了生产力的提高并延迟了大气O2含量的增加(Kipp and Stüeken,2017).据Reinhard et al.(2009)Poulton(2017),在晚太古代(约2.7 Ga)之后,大陆边缘缺氧海洋中的富硫化氢水体增加,其分布于铁化的深部水体之上,可能增加了沉积物中磷向水柱中的再循环.在缺氧环境下,特别是有溶解硫化物的情况下,磷的再循环增强,这造成铁(氢)氧化物矿物发生还原溶解并释放出固持的磷,并且细菌硫酸盐还原过程中有机质中的磷优先被释放(Ingall et al.,1993).太古宙地层中磷含量低可能解释了发生于 ~3.0 Ga的最早的有氧光合作用及GOE(大氧化事件,2.4~2.0 Ga)期间大气O2富集之间的时间延迟(Bekker et al.,2004Lyons et al.,2014Planavsky et al.,2014Fournier et al.,2021).

4.3.2 古元古代

有研究推测古元古代磷块岩的沉积可能与地球表层O2水平的短暂上升有关(Holland,2005Partin et al.,2013).很多氧化还原敏感元素及非传统金属同位素的研究结果表明,在GOE发生前的古元古代初期就已经存在氧化风化作用及有氧光合作用(Anbar et al.,2007Bosak et al.,2013Planavsky et al.,2014Koehler et al.,2018Ostrander et al.,2019).随着地表氧化作用的开始,向海洋环境中输送的硫酸盐增多,这为形成溶解态硫化物创造了条件,并进一步推动海洋和沉积物氧化还原状态发生改变.这一转变会使早期被含铁矿物吸附的磷发生释放,导致水柱或孔隙水中生物可利用磷增加(Canfield et al.,1992),像太古宙那种磷受限的状态结束(Stüeken et al.,2012Poulton,2017), 由此提高了海洋表层初级生产力及碳埋藏,最终造成产氧量增加(Van Cappellen and Ingall,1994),并在GOE达到高峰(Kipp and Stüeken,2017).GOE是古元古代记录的地球历史上发生的第一次大气O2的显著增加和富集(Kirschvink et al.,2000Barley et al.,2005Holland,2006).Canfield(1998)提出在GOE之后,海洋深部仍然是缺氧的,并且随着海水中硫酸盐浓度升高,硫化水体扩张,形成了广泛的氧化还原分层(Planavsky et al.,2011;Poulton and Canfield,2011;Lyons et al.,2014),同时条带状铁层(BIFs)沉积时期结束(~1.8 Ga)(Och and Shields⁃Zhou,2012).在这种水体环境下,由含铁矿物还原及有机质硫酸盐还原反应释放的溶解磷的再循环作用增强(Ingall et al.,1993Poulton,2017),返回水柱中的生物可利用磷逐渐增加(Poulton,2017),从而对该时期初级生产力产生正反馈作用(Guilbaud et al.,2020),并可能导致沉积物中Corg/Porg比值升高.Alcott et al.(2022)就在对来自南非2.65~ 2.43 Ga的钻孔岩石样品的研究中发现,形成于硫化环境条件下的样品的C/P比值高于Redfield比值,认为是由于氧化风化增加了溶解硫酸盐的输入、溶解态硫化物的生成以及沉积磷组分的再循环,从而形成了对初级生产力的正反馈作用,并通过生物地球化学模拟揭示了该时期磷循环的演化可能是驱动地球大气发生氧化的关键一步.

4.3.3 中元古代

与整个地质历史时期其他时代相比,中元古代(1.6~1.0 Ga)最显著的特征就是环境相对稳定(如图5):(1)大气O2含量始终处于较低水平(<0.1%~10% PAL, present atmospheric level),尽管具体多低仍存在争论(Lyons et al.,2014;Planavsky et al.,2014;Cole et al.,2016Zhang et al.,2016Hardisty et al.,2017Planavsky et al.,2018Hodgskiss et al.,2019);(2)海洋深部处于普遍缺氧状态(Canfield,1998Kendall et al.,2011Planavsky et al.,2011;Poulton and Canfield,2011;Partin et al.,2013Reinhard et al.,2013Lyons et al.,2014Sperling et al.,2015Gilleaudeau et al.,2019),局部发育硫化条件如在高产的陆棚区及陆表海环境(Kump et al.,2005Gilleaudeau et al.,2019Guilbaud et al.,2020);(3)生物生产力水平低(Derry,2015),如黑色页岩匮乏及有机碳含量普遍低(Och and Shields⁃Zhou,2012)所示;(4)地球碳循环相对稳定,如有机碳及无机碳同位素数据无显著变化(Buick et al.,1995Brasier and Lindsay,1998Bartley and Kah,2004)所示;(5)相对温暖稳定的气候条件(Condie et al.,2001Holland,2006Kasting and Ono,2006);(6)生物演化处于近乎停滞的状态(Brasier and Lindsay,1998Anbar and Knoll,2002Tang et al.,2021).Ozaki et al.(2019)基于地质记录建立了中元古代C⁃N⁃P⁃O⁃S的生物地球化学模型,结果显示生物产氧速率约为现今值的25%,这可能很大程度上与该时期海洋磷匮乏有关.中元古代地层中磷含量低且磷块岩产出有限,这被认为是由于注入海洋的磷通量低引起的(Canfield et al.,2020;黄天正等,2022),可能与该时期构造运动不活跃有关(Brasier and Lindsay,1998Guilbaud et al.,2020Tang et al.,2021;黄天正等,2022).Song et al.(2023)近期对华北克拉通中元古界下马岭组 (~1.4 Ga)的研究表明,下马岭组沉积时期轨道尺度气候变化对中元古代海洋氧化还原时空异质性具有影响,并进一步讨论了由其引起的氧化还原状态变化与磷循环的关系.除此之外,中元古代铁化为主的普遍缺氧的海洋环境导致沉积物与水柱之间的磷循环效率较低(Reinhard et al.,2017Laakso and Schrag,2018Ozaki et al.,2019),进一步限制了海洋中生物可利用磷的供应,从而制约了海洋初级生产力的提高.由此引起的沉积物中有机碳埋藏量低可能是造成中元古代大气O2始终处于较低水平的重要原因(Derry,2015Canfield et al.,2020;张水昌等,2022).

4.3.4 新元古代‒寒武纪

新元古代‒寒武纪是地质历史上第一次重要的成磷时期(Cook and Shergold,1984Papineau,2010),全球范围内沉积了大量磷块岩及富磷的碳酸盐岩及页岩(Cook and Shergold,1984Shimura et al.,2014Reinhard et al.,2017),如中国华南(She et al.,2013Fan et al.,2016;李凯月和佘振兵,2017)及塔里木盆地周缘(黄剑云等,2007)、哈萨克斯坦(Cook and Shergold,1984;黄剑云等,2007)、澳大利亚(Cook and Shergold,1984Cook,1992)、蒙古(Cook and Shergold, 1984;黄剑云等,2007)、伊朗及西伯利亚(Cook,1992Kamaye and Romanovitch,2005)等.如图5a~5f,在850 Ma之后,浅海相页岩中磷含量及磷块岩丰度发生了显著变化,磷循环的这一根本性转变大致与之前推断的大气‒海洋氧化还原状态的转变(Shields⁃Zhou and Och,2011)、地球气候系统的严重扰动(Hoffman and Schrag,2002)以及动物的出现(Xiao et al.,2000Love et al.,2009Erwin et al.,2011)相吻合.在此期间,沉积物碳同位素呈现极端性波动,这被认为是对大气‒海洋氧化还原状态、气候、构造及生物发生重大变化的响应(Derry et al.,1992Des Marais et al.,1992Kaufman and Knoll,1995Shields and Veizer,2002Halverson et al.,2005Melezhik et al.,2009;李杨凡和李飞,2022;黄少英等,2023).随着新元古代冰期 (~720 Ma和~650 Ma)(Hoffman and Schrag,2002Macdonald et al.,2010)的结束,气候转暖条件下硅酸盐风化作用增强(Planavsky et al.,2010Horton,2015),向海洋输送的营养供应增加,如有研究表明在埃迪卡拉纪早期,有大量磷注入到海洋中(Konhauser et al.,2007;Planavsky et al.,2010;Reinhard et al.,2017),这会促进初级生产力的提高,从而增加有机碳埋藏(Froelich et al.,1982Kirschvink et al.,2000),正如该时期有机碳含量持续较高所证实(图5b).这些作用最终推动大气和海洋向更加氧化的方向转变,即新元古代大氧化事件(NOE),这是地球历史上发生的第二次重要的氧化事件(Berner et al.,2003Planavsky et al.,2010;Shields⁃Zhou and Och,2011;Och and Shields⁃Zhou,2012Lyons et al.,2014),为埃迪卡拉纪后生动物的出现及多样化和寒武纪生命大爆发创造了重要条件(赵相宽等,2018).与这些动物相关的生物扰动加上微生物磷合成作用,会进一步增强沉积物中磷的埋藏(Boyle et al.,2014Dale et al.,2016).

4.4 磷循环在寒武纪以来生物‒环境演化研究中的应用

除了以上地质时期,磷循环在研究地质历史上重大事件如奥陶纪‒志留纪之交、晚泥盆世弗拉阶‒法门阶之交及二叠纪‒三叠纪之交生物大灭绝、白垩纪海洋缺氧事件(OAEs)的发生机制方面也有广泛应用.Shen et al.(2018)研究认为大陆风化作用增强诱发的海洋磷储库扩大引起的真核藻类产量增加可能引起了碳循环发生变化,从而促进了晚奥陶世冰川事件和生物灭绝的发生.Longman et al.(2021)通过建立生物可利用磷供应量及全球生物地球化学模型,重建了晚奥陶世磷输送对海洋系统的影响,进一步揭示了晚奥陶世全球变冷、冰川作用和严重的生物大灭绝可能是由于磷向海洋输送增加及与之相关的海洋生产力的增加所驱动的.Qiu et al.(2022)的研究表明磷的再循环将使有机碳的长期埋藏率增加一倍,导致全球降温 ~4 ℃,由其引起的海洋缺氧水体扩张和全球变冷是造成晚奥陶世生命灾难性损失的关键因素.

Rimmer et al.(2004)通过高碳磷比揭示了晚泥盆世生产力‒缺氧反馈机制.Goddéris and Joachimski(2004)利用气候和全球生物地球化学循环模式确定弗拉阶‒法门阶之交碳同位素偏移的机制,认为海平面控制下的陆地植物分布面积及磷供应量变化是影响有机碳埋藏、CO2分压及全球气候的主要因素.Percival et al.(2020)认为来自陆地和/或深水上涌的营养物质流入及沉积物中磷的再循环对造成晚泥盆世海洋缺氧做出了重大贡献,是弗拉阶‒法门阶之交生物大灭绝的原因.

Shen et al.(2015)评估了二叠纪‒三叠纪之交海洋初级生产力的水平,认为化学风化作用和物理风化作用加剧分别使得营养物质和颗粒沉积物输入通量增加.Zhang et al.(2020)通过建立碳、磷、铀循环的全球模型,证实了二叠纪‒三叠纪之交海洋缺氧水体扩张.Schobben et al.(2020)研究了该时期海洋大面积进入缺氧状态的机制,认为大灭绝之前火山作用导致的风化作用增强增加了磷的流入,从而提高了近陆架环境中海洋初级生产力和氧气的消耗,同时陆地生态系统的崩溃改变了铁和硫酸盐的相对风化流入量,导致磷的再循环作用增强,从而使得缺氧水体在大陆架的大部分区域扩张.Li et al.(2020)的碳磷循环模型和Hülse et al.(2021)的研究分别强调了大火成岩省(LIP,Large Igneous Province)和碳循环变化之间的关系,以及二叠纪末气候极端变暖引发的微生物代谢活动的变化、海洋氧化还原状态和碳循环之间的关系.Ge et al.(2023)对二叠纪‒三叠纪之交的铁、硫、磷、氮相关数据进行了综合评价,发现二叠纪末大灭绝期间全球多个地区的浅海均经历了缺氧,认为氧化还原状态的转变与海洋硫、氮、磷循环的空间梯度变化密切相关.

Bjerrum et al.(2006)量化了白垩纪海平面上升幅度对磷循环和有机碳埋藏的影响.Kraal et al.(2010)研究了白垩纪塞诺曼阶‒土伦阶之交OAE2期间海洋磷埋藏情况.Ruvalcaba Baroni et al.(2014)的研究表明来自原北大西洋磷供应增加在驱动OAE2的发生上发挥了关键作用.Mort et al.(2007)März et al.(2008)Poulton et al.(2015)研究了康尼亚克阶‒圣通阶OAE3期间铁、硫、磷循环与氧化还原变化的关系.

5 总结

海洋中的磷主要来源于大陆风化作用为主的陆源供给及沉积物中埋藏的磷向上覆水柱的再循环,并通常以Porg及PFe的形式从水体中移除进入沉积物,最终是否能保留在沉积物中取决于底水‒沉积物氧化还原状态.保留下来的磷大部分会向CFA为主的Pauth转化,成为海洋中磷最主要的汇.

磷组分是约束磷的埋藏与转化、磷的再循环作用的重要指标.Ptotal与Ptotal/Al的变化被用于判断海洋中磷的可得性或者沉积物中磷是否发生再循环.Corg/Porg摩尔比值高于Redfield比值(~106)指示沉积物中的磷相对于碳发生了优先释放.在此基础上Corg/Preact若大于Redfield比则认为沉积物中由Porg和PFe释放的溶解磷发生再循环回到水柱中.

海洋中磷的源‒汇关系决定了生物可利用磷储库的大小,控制了表层初级生产力水平,从而影响着有机碳的生成与埋藏,最终对全球大气‒海洋氧化还原状态及气候的变化起到重要调节作用.太古宇、元古界及寒武系含磷沉积岩及寒武纪以来重大关键期磷的相关研究提供了了解不同地质时期磷循环特征、机制及其与大气‒海洋‒生态之间的反馈作用的实例,这对于认识生命与地球环境的关系具有深远意义.

参考文献

[1]

Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth’s Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15(3): 210-215. https://doi.org/10.1038/s41561⁃022⁃00906⁃5

[2]

Algeo, T. J., Ingall, E., 2007. Sedimentary Corg: P Ratios, Paleocean Ventilation, and Phanerozoic Atmospheric PO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 130-155. https://doi.org/10.1016/j.palaeo.2007.02.029

[3]

Allen, A. P., Gillooly, J. F., 2009. Towards an Integration of Ecological Stoichiometry and the Metabolic Theory of Ecology to Better Understand Nutrient Cycling. Ecology Letters, 12(5): 369-384.10.1111/ j.1461⁃0248.2009.01302.x

[4]

Allison, P. A., 1988. Phosphatized Soft⁃Bodied Squids from the Jurassic Oxford Clay. Lethaia, 21(4): 403-410. https://doi.org/10.1111/j.1502⁃3931.1988.tb01769.x

[5]

Amundson, R., Berhe, A. A., Hopmans, J. W., et al., 2015. Soil and Human Security in the 21st Century. Science, 348(6235): e1261071. https://doi.org/10.1126/science.1261071

[6]

Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A Whiff of Oxygen before the Great Oxidation Event? Science, 317(5846): 1903-1906. https://doi.org/10.1126/science.1140325

[7]

Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651

[8]

Anderson, L. D., Delaney, M. L., Faul, K. L., 2001. Carbon to Phosphorus Ratios in Sediments: Implications for Nutrient Cycling. Global Biogeochemical Cycles, 15(1): 65-79. https://doi.org/10.1029/2000GB001270

[9]

Arthur, M. A., Dean, W. E., Pratt, L. M., 1988. Geochemical and Climatic Effects of Increased Marine Organic Carbon Burial at the Cenomanian/Turonian Boundary. Nature, 335: 714-717. https://doi.org/10.1038/335714a0

[10]

Barclay, R. S., McElwain, J. C., Sageman, B. B., 2010. Carbon Sequestration Activated by a Volcanic CO2 Pulse during Ocean Anoxic Event 2. Nature Geoscience, 3: 205-208. https://doi.org/10.1038/ngeo757

[11]

Barley, M. E., Bekker, A., Krapež, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1-2): 156-171. https://doi.org/10.1016/j.epsl.2005.06.062

[12]

Bartley, J. K., Kah, L. C., 2004. Marine Carbon Reservoir, Corg⁃Ccarb Coupling, and the Evolution of the Proterozoic Carbon Cycle. Geology, 32(2): 129-132. https://doi.org/10.1130/g19939.1

[13]

Baturin, G. N., 2007. Issue of the Relationship between Primary Productivity of Organic Carbon in Ocean and Phosphate Accumulation (Holocene⁃Late Jurassic). Lithology and Mineral Resources, 42(4): 318-348. https://doi.org/10.1134/S0024490207040025

[14]

Bekker, A., Holland, H. D., Wang, P. L., et al., 2004. Dating the Rise of Atmospheric Oxygen. Nature, 427: 117-120. https://doi.org/10.1038/nature02260

[15]

Bergman, N. M., Lenton, T. M., Watson, A. J., 2004. COPSE: A New Model of Biogeochemical Cycling over Phanerozoic Time. American Journal of Science, 304(5): 397-437. https://doi.org/10.2475/ajs.304.5.397

[16]

Berner, R. A., Beerling, D. J., Dudley, R., et al., 2003. Phanerozoic Atmospheric Oxygen. Annual Review of Earth and Planetary Sciences, 31: 105-134. https://doi.org/10.1146/annurev.earth.31.100901.141329

[17]

Berner, R. A., Canfield, D. E., 1989. A New Model for Atmospheric Oxygen over Phanerozoic Time. American Journal of Science, 289(4): 333-361. https://doi.org/10.2475/ajs.289.4.333

[18]

Bjerrum, C. J., Bendtsen, J., Legarth, J. J. F., 2006. Modeling Organic Carbon Burial during Sea Level Rise with Reference to the Cretaceous. Geochemistry, Geophysics, Geosystems, 7(5): 1-24. https://doi.org/10.1029/2005gc001032

[19]

Bjerrum, C. J., Canfield, D. E., 2002. Ocean Productivity before about 1.9 Gyr Ago Limited by Phosphorus Adsorption onto Iron Oxides. Nature, 417(6885): 159-162. https://doi.org/10.1038/417159a

[20]

Bosak, T., Knoll, A. H., Petroff, A., 2013. The Meanings of Stromatolites. Annual Review of Earth and Planetary Sciences, 41(1): 21-44. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105327

[21]

Bowyer, F. T., Krause, A. J., Song, Y.F., et al., 2023. Biological Diversification Linked to Environmental Stabilization Following the Sturtian Snowball Glaciation. Science Advances, 9(34): eadf9999. https://doi.org/10.1126/sciadv.adf9999

[22]

Bowyer, F. T., Shore, A. J., Wood, R. A., et al., 2020. Regional Nutrient Decrease Drove Redox Stabilisation and Metazoan Diversification in the Late Ediacaran Nama Group, Namibia. Scientific Reports, 10: 1-11. https://doi.org/10.1038/s41598⁃020⁃59335⁃2

[23]

Boyle, R. A., Dahl, T. W., Dale, A. W., et al., 2014. Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation. Nature Geoscience, 7: 671-676. https://doi.org/10.1038/ngeo2213

[24]

Böning, P., Brumsack, H. J., Böttcher, M. E., et al., 2004. Geochemistry of Peruvian Near⁃Surface Sediments. Geochimica et Cosmochimica Acta, 68(21): 4429-4451. https://doi.org/10.1016/j.gca.2004.04.027

[25]

Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26(6): 555-558. https://doi.org/10.1130/0091⁃7613(1998)026<0555: abyoes>2.3.co;2

[26]

Buick, R., Des Marais, D. J., Knoll, A. H., 1995. Stable Isotopic Compositions of Carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chemical Geology, 123(1-4): 153-171. https://doi.org/10.1016/0009⁃2541(95)00049⁃r

[27]

Butterfield, N. J., 2003. Exceptional Fossil Preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43(1): 166-177. https://doi.org/10.1093/icb/43.1.166

[28]

Calvert, S. E., Pedersen, T. F., Karlin, R. E., 2001. Geochemical and Isotopic Evidence for Post⁃Glacial Palaeoceanographic Changes in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 287-305. https://doi.org/10.1016/S0025⁃3227(00)00156⁃0

[29]

Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453. https://doi.org/10.1038/24839

[30]

Canfield, D. E., Bjerrum, C. J., Zhang, S. C., et al., 2020. The Modern Phosphorus Cycle Informs Interpretations of Mesoproterozoic Era Phosphorus Dynamics. Earth⁃Science Reviews, 208: 103267. https://doi.org/10.1016/j.earscirev.2020.103267

[31]

Canfield, D. E., Raiswell, R., Bottrell, S. H., 1992. The Reactivity of Sedimentary Iron Minerals toward Sulfide. American Journal of Science, 292(9): 659-683. https://doi.org/10.2475/ajs.292.9.659

[32]

Canfield, D. E., Zhang, S. C., Wang, H. J., et al., 2018. A Mesoproterozoic Iron Formation. Proceedings of the National Academy of Sciences of the United States of America, 115(17): E3895-E3904. https://doi.org/10.1073/pnas.1720529115

[33]

Carstensen, J., Andersen, J. H., Gustafsson, B. G., et al., 2014. Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences of the United States of America, 111(15): 5628-5633. https://doi.org/10.1073/pnas.1323156111

[34]

Chen, M.E., Li, J.Y., Chen, Q.Y., 1999. The Late Sinian Microbiolite and Its Phosphorus Enrichment in Central Guizhou Province. Acta Petrologica Sinica, 15(3): 446-451 (in Chinese with English abstract).

[35]

Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale⁃Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1

[36]

Colman, A. S., Mackenzie, F. T., Holland, H. D., et al., 1997. Redox Stabilization of the Atmosphere and Oceans and Marine Productivity. Science, 275(5298): 406-408. https://doi.org/10.1126/science.275.5298.406

[37]

Condie, K. C., Des Marais, D. J., Abbott, D., 2001. Precambrian Superplumes and Supercontinents: A Record in Black Shales, Carbon Isotopes, and Paleoclimates? Precambrian Research, 106(3-4): 239-260. https://doi.org/10.1016/S0301⁃9268(00)00097⁃8

[38]

Cook, P. J., 1992. Phosphogenesis around the Proterozoic⁃Phanerozoic Transition. Journal of the Geological Society, 149(4): 615-620. https://doi.org/10.1144/gsjgs.149.4.0615

[39]

Cook, P. J., Shergold, J. H., 1984. Phosphorus, Phosphorites and Skeletal Evolution at the Precambrian⁃Cambrian Boundary. Nature, 308: 231-236. https://doi.org/10.1038/308231a0

[40]

Cordell, D., Drangert, J. O., White, S., 2009. The Story of Phosphorus: Global Food Security and Food for Thought. Global Environmental Change, 19(2): 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009

[41]

Cox, G. M., Lyons, T. W., Mitchell, R. N., et al., 2018. Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory. Earth and Planetary Science Letters, 489: 28-36. https://doi.org/10.1016/j.epsl.2018.02.016

[42]

Creveling, J. R., Johnston, D. T., Poulton, S. W., et al., 2014. Phosphorus Sources for Phosphatic Cambrian Carbonates. Geological Society of America Bulletin, 126(1-2): 145-163. https://doi.org/10.1130/b30819.1

[43]

Dale, A. W., Boyle, R. A., Lenton, T. M., et al., 2016. A Model for Microbial Phosphorus Cycling in Bioturbated Marine Sediments: Significance for Phosphorus Burial in the Early Paleozoic. Geochimica et Cosmochimica Acta, 189: 251-268. https://doi.org/10.1016/j.gca.2016.05.046

[44]

Derry, L. A., 2015. Causes and Consequences of Mid⁃Proterozoic Anoxia. Geophysical Research Letters, 42(20): 8538-8546. https://doi.org/10.1002/2015gl065333

[45]

Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016⁃7037(92)90064⁃P

[46]

Des Marais, D. J., Strauss, H., Summons, R. E., et al., 1992. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 359(6396): 605-609. https://doi.org/10.1038/359605a0

[47]

Diaz, J., Ingall, E., Benitez⁃Nelson, C., et al., 2008. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration. Science, 320(5876): 652-655. https://doi.org/10.1126/science.1151751

[48]

Dijkstra, N., Kraal, P., Séguret, M. J. M., et al., 2018. Phosphorus Dynamics in and below the Redoxcline in the Black Sea and Implications for Phosphorus Burial. Geochimica et Cosmochimica Acta, 222: 685-703. https://doi.org/10.1016/j.gca.2017.11.016

[49]

Dijkstra, N., Slomp, C. P., Behrends, T., 2016. Vivianite is a Key Sink for Phosphorus in Sediments of the Landsort Deep, an Intermittently Anoxic Deep Basin in the Baltic Sea. Chemical Geology, 438: 58-72. https://doi.org/10.1016/j.chemgeo.2016.05.025

[50]

Drever, J. I., 1994. The Effect of Land Plants on Weathering Rates of Silicate Minerals. Geochimica et Cosmochimica Acta, 58(10): 2325-2332. https://doi.org/10.1016/0016⁃7037(94)90013⁃2

[51]

Egger, M., Jilbert, T., Behrends, T., et al., 2015. Vivianite is a Major Sink for Phosphorus in Methanogenic Coastal Surface Sediments. Geochimica et Cosmochimica Acta, 169: 217-235. https://doi.org/10.1016/j.gca.2015.09.012

[52]

Eijsink, L. M., Krom, M. D., Herut, B., 2000. Speciation and Burial Flux of Phosphorus in the Surface Sediments of the Eastern Mediterranean. American Journal of Science, 300(6): 483-503. https://doi.org/10.2475/ajs.300.6.483

[53]

Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al., 2007. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecology Letters, 10(12): 1135-1142. https://doi.org/10.1111/j.1461⁃0248.2007.01113.x

[54]

Elser, J. J., Dobberfuhl, D. R., MacKay, N. A., et al., 1996. Organism Size, Life History, and N: P Stoichiometry: Toward a Unified View of Cellular and Ecosystem Processes. BioScience, 46(9): 674-684. https://doi.org/10.2307/1312897

[55]

Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375

[56]

Fan, H. F., Wen, H. J., Zhu, X. K., 2016. Marine Redox Conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian Phosphorite Deposits, South China. Journal of Earth Science, 27(2): 282-296. https://doi.org/10.1007/s12583⁃016⁃0687⁃3

[57]

Feely, R. A., Trefry, J. H., Lebon, G. T., et al., 1998. The Relationship between P/Fe and V/Fe Ratios in Hydrothermal Precipitates and Dissolved Phosphate in Seawater. Geophysical Research Letters, 25(13): 2253-2256. https://doi.org/10.1029/98gl01546

[58]

Fennel, K., Follows, M., Falkowski, P. G., 2005. The Co⁃Evolution of the Nitrogen, Carbon and Oxygen Cycles in the Proterozoic Ocean. American Journal of Science, 305(6-8): 526-545. https://doi.org/10.2475/ajs.305.6⁃8.526

[59]

Filippelli, G. M., 2011. Phosphate Rock Formation and Marine Phosphorus Geochemistry: The Deep Time Perspective. Chemosphere, 84(6): 759-766. https://doi.org/10.1016/j.chemosphere.2011.02.019

[60]

Filippelli, G. M., Delaney, M. L., 1992. Similar Phosphorus Fluxes in Ancient Phosphorite Deposits and a Modern Phosphogenic Environment. Geology, 20(8): 709-712. https://doi.org/10.1130/0091⁃7613(1992)020<0709: spfiap>2.3.co;2

[61]

Flament, N., Coltice, N., Rey, P. F., 2008. A Case for Late⁃Archaean Continental Emergence from Thermal Evolution Models and Hypsometry. Earth and Planetary Science Letters, 275(3-4): 326-336. https://doi.org/10.1016/j.epsl.2008.08.029

[62]

Flament, N., Coltice, N., Rey, P. F., 2013. The Evolution of the 87Sr/86Sr of Marine Carbonates does not Constrain Continental Growth. Precambrian Research, 229: 177-188. https://doi.org/10.1016/j.precamres.2011.10.009

[63]

Föllmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate⁃Rich Deposits. Earth⁃Science Reviews, 40(1-2): 55-124. https://doi.org/10.1016/0012⁃8252(95)00049⁃6

[64]

Fournier, G. P., Moore, K. R., Rangel, L. T., et al., 2021. The Archean Origin of Oxygenic Photosynthesis and Extant Cyanobacterial Lineages. Proceedings of the Royal Society B: Biological Sciences, 288(1959): 1-10. https://doi.org/10.1098/rspb.2021.0675

[65]

Froelich, P. N., 1988. Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on the Phosphate Buffer Mechanism. Limnology and Oceanography, 33: 649-668. https://doi.org/10.4319/lo.1988.33.4_part_2.0649

[66]

Froelich, P. N., Bender, M. L., Luedtke, N. A., et al., 1982. The Marine Phosphorus Cycle. American Journal of Science, 282(4): 474-511. https://doi.org/10.2475/ajs.282.4.474

[67]

Ge, Y. Z., Algeo, T. J., Wen, H. G., et al., 2023. Dynamics of Tethyan Marine De⁃Oxygenation and Relationship to S⁃N⁃P Cycles during the Permian⁃Triassic Boundary Crisis. Earth⁃Science Reviews, 246: 104576. https://doi.org/10.1016/j.earscirev.2023.104576

[68]

Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid⁃Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012

[69]

Glenn, C. R., Föllmi, K. B., Riggs, S. R., et al., 1994. Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 87: 747-788. https://doi.org/10.1111/j.1365⁃3091.1994.tb01397.x

[70]

Goddéris, Y., Joachimski, M. M., 2004. Global Change in the Late Devonian: Modelling the Frasnian⁃ Famennian Short⁃Term Carbon Isotope Excursions. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(3-4): 309-329. https://doi.org/10.1016/S0031⁃0182(03)00641⁃2

[71]

Guilbaud, R., Poulton, S. W., Thompson, J., et al., 2020. Phosphorus⁃Limited Conditions in the Early Neoproterozoic Ocean Maintained Low Levels of Atmospheric Oxygen. Nature Geoscience, 13: 296-301. https://doi.org/10.1038/s41561⁃020⁃0548⁃7

[72]

Halverson, G. P., Hoffman, P. F., Schrag, D. P., et al., 2005. Toward a Neoproterozoic Composite Carbon⁃ Isotope Record. Geological Society of America Bulletin, 117(9): 1181-1207. https://doi.org/10.1130/b25630.1

[73]

Handoh, I. C., Lenton, T. M., 2003. Periodic Mid⁃ Cretaceous Oceanic Anoxic Events Linked by Oscillations of the Phosphorus and Oxygen Biogeochemical Cycles. Global Biogeochemical Cycles, 17(4): 1-11. https://doi.org/10.1029/2003gb002039

[74]

Hao, J. H., Knoll, A. H., Huang, F., et al., 2020. Cycling Phosphorus on the Archean Earth: Part I. Continental Weathering and Riverine Transport of Phosphorus. Geochimica et Cosmochimica Acta, 273: 70-84. https://doi.org/10.1016/j.gca.2020.01.027

[75]

Hardisty, D. S., Lu, Z. L., Bekker, A., et al., 2017. Perspectives on Proterozoic Surface Ocean Redox from Iodine Contents in Ancient and Recent Carbonate. Earth and Planetary Science Letters, 463: 159-170. https://doi.org/10.1016/j.epsl.2017.01.032

[76]

Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., et al., 2019. Impact of Natural Re⁃Oxygenation on the Sediment Dynamics of Manganese, Iron and Phosphorus in a Euxinic Baltic Sea Basin. Geochimica et Cosmochimica Acta, 246: 174-196. https://doi.org/10.1016/j.gca.2018.11.033

[77]

Holland, H. D., 2005. Sedimentary Mineral Deposits and the Evolution of Earth’s near⁃Surface Environments. Economic Geology, 100(8): 1489-1509. https://doi.org/10.2113/gsecongeo.100.8.1489

[78]

Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838

[79]

Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., et al., 2019. A Productivity Collapse to End Earth’s Great Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17207-17212. https://doi.org/10.1073/pnas.1900325116

[80]

Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155. https://doi.org/10.1046/j.1365⁃3121.2002.00408.x

[81]

Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1002/2015gc005792

[82]

Hotinski, R. M., Bice, K. L., Kump, L. R., et al., 2001. Ocean Stagnation and End⁃Permian Anoxia. Geology, 29(1): 7-10. https://doi.org/10.1130/0091⁃7613(2001)029<0007: osaepa>2.0.co;2

[83]

Hsu, T. W., Jiang, W. T., Wang, Y., 2014. Authigenesis of Vivianite as Influenced by Methane⁃Induced Sulfidization in Cold⁃Seep Sediments off Southwestern Taiwan. Journal of Asian Earth Sciences, 89: 88-97. https://doi.org/10.1016/j.jseaes.2014.03.027

[84]

Huang, J.Y., Gu, X.W., Lu, L.Y., et al., 2007. Comparison of Phosphorite Resources between Xingiang, Kazakhstan and Mongolia. Xinjiang Geology, 25(1): 75-76 (in Chinese with English abstract).

[85]

Huang, S. Y., Xie, H. W., Hou, G. T., et al., 2023. Key Transition of Chinese Plate Configuration at the End of Early Paleozoic. Earth Science, 48(4): 1321-1329 (in Chinese with English abstract).

[86]

Huang, T.Z., Wang, R.M., Shen, B., 2022. The Phosphorus Cycle and Biological Pump in Earth’s Middle Age: Reappraisal of the “Boring Billion”. Chinese Science Bulletin, 67(15): 1614-1623 (in Chinese).

[87]

Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End⁃Permian Marine Extinction Due to Temperature⁃Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561⁃021⁃00829⁃7

[88]

Ingall, E. D., Bustin, R. M., Van Cappellen, P., 1993. Influence of Water Column Anoxia on the Burial and Preservation of Carbon and Phosphorus in Marine Shales. Geochimica et Cosmochimica Acta, 57(2): 303-316. https://doi.org/10.1016/0016⁃7037(93)90433⁃W

[89]

Ingall, E., Jahnke, R., 1994. Evidence for Enhanced Phosphorus Regeneration from Marine Sediments Overlain by Oxygen Depleted Waters. Geochimica et Cosmochimica Acta, 58(11): 2571-2575. https://doi.org/10.1016/0016⁃7037(94)90033⁃7

[90]

Ingall, E., Jahnke, R., 1997. Influence of Water⁃Column Anoxia on the Elemental Fractionation of Carbon and Phosphorus during Sediment Diagenesis. Marine Geology, 139(1-4): 219-229. https://doi.org/10.1016/S0025⁃3227(96)00112⁃0

[91]

Ingall, E. D., Van Cappellen, P., 1990. Relation between Sedimentation Rate and Burial of Organic Phosphorus and Organic Carbon in Marine Sediments. Geochimica et Cosmochimica Acta, 54(2): 373-386. https://doi.org/10.1016/0016⁃7037(90)90326⁃G

[92]

Jones, C., Nomosatryo, S., Crowe, S. A., et al., 2015. Iron Oxides, Divalent Cations, Silica, and the Early Earth Phosphorus Crisis. Geology, 43(2): 135-138. https://doi.org/10.1130/g36044.1

[93]

Kamaye, T., Romanovitch, P., 2005. Origin of Phosphorite Nodules of Lebedinsky Iron Deposit in Kursk Magnetic Anomaly (KMA) of the Russian Platform. Journal of Earth Science, 16(2): 170-177, 182.

[94]

Karl, D. M., 2000. Aquatic Ecology: Phosphorus, the Staff of Life. Nature, 406(6791): 31-33. https://doi.org/10.1038/35017683

[95]

Kasting, J. F., Ono, S., 2006. Palaeoclimates: The First Two Billion Years. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 917-929. https://doi.org/10.1098/rstb.2006.1839

[96]

Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C⁃Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1-4): 27-49. https://doi.org/10.1016/0301⁃9268(94)00070⁃8

[97]

Kendall, B., Gordon, G. W., Poulton, S. W., et al., 2011. Molybdenum Isotope Constraints on the Extent of Late Paleoproterozoic Ocean Euxinia. Earth and Planetary Science Letters, 307(3-4): 450-460. https://doi.org/10.1016/j.epsl.2011.05.019

[98]

Kipp, M. A., 2022. A Double⁃Edged Sword: The Role of Sulfate in Anoxic Marine Phosphorus Cycling through Earth History. Geophysical Research Letters, 49(20):1-11. https://doi.org/10.1029/2022gl099817

[99]

Kipp, M. A., Stüeken, E. E., 2017. Biomass Recycling and Earth’s Early Phosphorus Cycle. Science Advances, 3(11): eaao4795. https://doi.org/10.1126/sciadv.aao4795

[100]

Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., et al., 2000. Paleoproterozoic Snowball Earth: Extreme Climatic and Geochemical Global Change and Its Biological Consequences. Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1400-1405. https://doi.org/10.1073/pnas.97.4.1400

[101]

Koehler, M. C., Buick, R., Kipp, M. A., et al., 2018. Transient Surface Ocean Oxygenation Recorded in the ∼2.66 Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences of the United States of America, 115(30): 7711-7716. https://doi.org/10.1073/pnas.1720820115

[102]

Konhauser, K. O., Lalonde, S. V., Amskold, L., et al., 2007. Was There Really an Archean Phosphate Crisis? Science, 315(5816): 1234. https://doi.org/10.1126/science.1136328

[103]

Kraal, P., Bostick, B. C., Behrends, T., et al., 2015. Characterization of Phosphorus Species in Sediments from the Arabian Sea Oxygen Minimum Zone: Combining Sequential Extractions and X⁃Ray Spectroscopy. Marine Chemistry, 168: 1-8. https://doi.org/10.1016/j.marchem.2014.10.009

[104]

Kraal, P., Dijkstra, N., Behrends, T., et al., 2017. Phosphorus Burial in Sediments of the Sulfidic Deep Black Sea: Key Roles for Adsorption by Calcium Carbonate and Apatite Authigenesis. Geochimica et Cosmochimica Acta, 204: 140-158. https://doi.org/10.1016/j.gca.2017.01.042

[105]

Kraal, P., Slomp, C. P., Forster, A., et al., 2010. Phosphorus Cycling from the Margin to Abyssal Depths in the Proto⁃Atlantic during Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1-2): 42-54. https://doi.org/10.1016/j.palaeo.2010.05.014

[106]

Kraal, P., Slomp, C. P., Reed, D. C., et al., 2012. Sedimentary Phosphorus and Iron Cycling in and below the Oxygen Minimum Zone of the Northern Arabian Sea. Biogeosciences, 9(7): 2603-2624. https://doi.org/10.5194/bg⁃9⁃2603⁃2012

[107]

Krom, M. D., Berner, R. A., 1981. The Diagenesis of Phosphorus in a Nearshore Marine Sediment. Geochimica et Cosmochimica Acta, 45(2): 207-216. https://doi.org/10.1016/0016⁃7037(81)90164⁃2

[108]

Krom, M. D., Kress, N., Brenner, S., et al., 1991. Phosphorus Limitation of Primary Productivity in the Eastern Mediterranean Sea. Limnology and Oceanography, 36(3): 424-432. https://doi.org/10.4319/lo.1991.36.3.0424

[109]

Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397-400. https://doi.org/10.1130/g21295.1

[110]

Kuypers, M. M. M., Pancost, R. D., Damsté, J. S. S., 1999. A Large and Abrupt Fall in Atmospheric CO2 Concentration during Cretaceous Times. Nature, 399: 342-345. https://doi.org/10.1038/20659

[111]

Laakso, T. A., Schrag, D. P., 2018. Limitations on Limitation. Global Biogeochemical Cycles, 32: 486-496. https://doi.org/ 10.1002/2017GB005832

[112]

Lamboy, M., 1993. Phosphatization of Calcium Carbonate in Phosphorites: Microstructure and Importance. Sedimentology, 40(1): 53-62. https://doi.org/10.1111/j.1365⁃3091.1993.tb01090.x

[113]

Lenton, T. M., Watson, A. J., 2000. Redfield Revisited: 2. What Regulates the Oxygen Content of the Atmosphere? Global Biogeochemical Cycles, 14: 249-268. https://doi.org/10.1029/1999GB900076

[114]

Li, K.Y., She, Z.B., 2017. Discovery and Possible Genesis of Micron⁃Sized Euhedral Albites in the Ediacaran Doushantuo Phosphorites, South China. Earth Science Frontiers, 24(1): 308-320 (in Chinese with English abstract).

[115]

Li, Y. F., Li, F., 2022. How did Reefs Evolve during the Precambrian⁃Cambrian Transition? Earth Science, 47(10): 3853-3855 (in Chinese with English abstract).

[116]

Li, Z. H., Chen, Z. Q., Zhang, F. F., et al., 2020. Global Carbon Cycle Perturbations Triggered by Volatile Volcanism and Ecosystem Responses during the Carnian Pluvial Episode (Late Triassic). Earth⁃Science Reviews, 211: 103404. https://doi.org/10.1016/j.earscirev.2020.103404

[117]

Lomnitz, U., Sommer, S., Dale, A. W., et al., 2016. Benthic Phosphorus Cycling in the Peruvian Oxygen Minimum Zone. Biogeosciences, 13(5): 1367-1386. https://doi.org/10.5194/bg⁃13⁃1367⁃2016

[118]

Longman, J., Mills, B. J. W., Manners, H. R., et al., 2021. Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply. Nature Geoscience, 14(12): 924-929. https://doi.org/10.1038/s41561⁃021⁃00855⁃5

[119]

Love, G. D., Grosjean, E., Stalvies, C., et al., 2009. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718-721. https://doi.org/10.1038/nature07673

[120]

Lovley, D. R., Phillips, E. J., 1988. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Applied and Environmental Microbiology, 54(6): 1472-1480. https://doi.org/10.1128/aem.54.6.1472⁃1480.1988

[121]

Lucotte, M., Mucci, A., Hillaire⁃Marcel, C., et al., 1994. Early Diagenetic Processes in Deep Labrador Sea Sediments: Reactive and Nonreactive Iron and Phosphorus. Canadian Journal of Earth Sciences, 31(1): 14-27. https://doi.org/10.1139/e94⁃003

[122]

Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068

[123]

Macdonald, F. A., Schmitz, M. D., Crowley, J. L., et al., 2010. Calibrating the Cryogenian. Science, 327(5970): 1241-1243. https://doi.org/10.1126/science.1183325

[124]

Mahowald, N., Jickells, T. D., Baker, A. R., et al., 2008. Global Distribution of Atmospheric Phosphorus Sources, Concentrations and Deposition Rates, and Anthropogenic Impacts. Global Biogeochemical Cycles, 22(4): 1-19. https://doi.org/10.1029/2008gb003240

[125]

Mather, R. L., Reynolds, S. E., Wolff, G. A., et al., 2008. Phosphorus Cycling in the North and South Atlantic Ocean Subtropical Gyres. Nature Geoscience, 1: 439-443. https://doi.org/10.1038/ngeo232

[126]

März, C., Poulton, S. W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, Non⁃ Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72(15): 3703-3717. https://doi.org/10.1016/j.gca.2008.04.025

[127]

Melezhik, V. A., Pokrovsky, B. G., Fallick, A. E., et al., 2009. Constraints on 87Sr/86Sr of Late Ediacaran Seawater: Insight from Siberian High⁃Sr Limestones. Journal of the Geological Society, 166(1): 183-191. https://doi.org/10.1144/0016⁃76492007⁃171

[128]

Meybeck, M., 1982. Carbon, Nitrogen, and Phosphorus Transport by World Rivers. American Journal of Science, 282(4): 401-450. https://doi.org/10.2475/ajs.282.4.401

[129]

Meyer, K. M., Kump, L. R., Ridgwell, A., 2008. Biogeochemical Controls on Photic⁃Zone Euxinia during the End⁃Permian Mass Extinction. Geology, 36(9): 747-750. https://doi.org/10.1130/G24618A.1

[130]

Mills, B. J. W., Donnadieu, Y., Goddéris, Y., 2021. Spatial Continuous Integration of Phanerozoic Global Biogeochemistry and Climate. Gondwana Research, 100: 73-86. https://doi.org/10.1016/j.gr.2021.02.011

[131]

Mort, H. P., Adatte, T., Föllmi, K. B., et al., 2007. Phosphorus and the Roles of Productivity and Nutrient Recycling during Oceanic Anoxic Event 2. Geology, 35(6): 483-486. https://doi.org/10.1130/g23475a.1

[132]

Mort, H. P., Slomp, C. P., Gustafsson, B. G., et al., 2010. Phosphorus Recycling and Burial in Baltic Sea Sediments with Contrasting Redox Conditions. Geochimica et Cosmochimica Acta, 74(4): 1350-1362. https://doi.org/10.1016/j.gca.2009.11.016

[133]

Muscente, A. D., Vinnes, O., Sinha, S., et al., 2023. What Role does Anoxia Play in Exceptional Fossil Preservation? Lessons from the Taphonomy of the Posidonia Shale (Germany). Earth⁃Science Reviews, 238: 104323. https://doi.org/10.1016/j.earscirev.2023.104323

[134]

Müller, J., Sun, Y. D., Yang, F., et al., 2022. Phosphorus Cycle and Primary Productivity Changes in the Tethys Ocean during the Permian⁃Triassic Transition: Starving Marine Ecosystems. Frontiers in Earth Science, 10: 832308. https://doi.org/10.3389/feart.2022.832308

[135]

Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004

[136]

Okin, G. S., Baker, A. R., Tegen, I., et al., 2011. Impacts of Atmospheric Nutrient Deposition on Marine Productivity: Roles of Nitrogen, Phosphorus, and Iron. Global Biogeochemical Cycles, 25(2): 1-10. https://doi.org/10.1029/2010gb003858

[137]

Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al., 2019. Fully Oxygenated Water Columns over Continental Shelves before the Great Oxidation Event. Nature Geoscience, 12(4): 186-191. https://doi.org/10.1038/s41561⁃019⁃0309⁃7

[138]

Ozaki, K., Reinhard, C. T., Tajika, E., 2019. A Sluggish Mid⁃Proterozoic Biosphere and Its Effect on Earth’s Redox Balance. Geobiology, 17(1): 3-11. https://doi.org/10.1111/gbi.12317

[139]

Papadomanolaki, N. M., Lenstra, W. K., Wolthers, M., et al., 2022. Enhanced Phosphorus Recycling during Past Oceanic Anoxia Amplified by Low Rates of Apatite Authigenesis. Science Advances, 8(26): eabn2370. https://doi.org/10.1126/sciadv.abn2370

[140]

Papineau, D., 2010. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10(2): 165-181. https://doi.org/10.1089/ast.2009.0360

[141]

Papineau, D., Purohit, R., Goldberg, T., et al., 2009. High Primary Productivity and Nitrogen Cycling after the Paleoproterozoic Phosphogenic Event in the Aravalli Supergroup, India. Precambrian Research, 171(1-4): 37-56. https://doi.org/10.1016/j.precamres.2009.03.005

[142]

Partin, C. A., Bekker, A., Planavsky, N. J., et al., 2013. Large⁃Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letters, 369-370: 284-293. https://doi.org/10.1016/j.epsl.2013.03.031

[143]

Percival, L. M. E., Bond, D. P. G., Rakociński, B.M., et al., 2020. Phosphorus⁃Cycle Disturbances during the Late Devonian Anoxic Events. Global and Planetary Change, 184: 103070. https://doi.org/10.1016/j.gloplacha.2019.103070

[144]

Planavsky, N. J., Asael, D., Hofmann, A., et al., 2014. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7(4): 283-286. https://doi.org/10.1038/ngeo2122

[145]

Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron⁃Rich Conditions in the Mid⁃ Proterozoic Ocean. Nature, 477: 448-451. https://doi.org/10.1038/nature10327

[146]

Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485

[147]

Planavsky, N. J., Slack, J. F., Cannon, W. F., et al., 2018. Evidence for Episodic Oxygenation in a Weakly Redox⁃Buffered Deep Mid⁃Proterozoic Ocean. Chemical Geology, 483: 581-594. https://doi.org/10.1016/j.chemgeo.2018.03.028

[148]

Porter, S. M., 2004. Closing the Phosphatization Window: Testing for the Influence of Taphonomic Megabias on the Pattern of Small Shelly Fossil Decline. Palaios, 19(2): 178-183. https://doi.org/10.1669/0883⁃1351(2004)019<0178: ctpwtf>2.0.co;2

[149]

Poulton, S. W., 2017. Early Phosphorus Redigested. Nature Geoscience, 10(2): 75-76. https://doi.org/10.1038/ngeo2884

[150]

Poulton, S. W., Canfield, D. E., 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements, 7(2): 107-112. https://doi.org/10.2113/gselements.7.2.107

[151]

Poulton, S. W., Henkel, S., März, C., et al., 2015. A Continental⁃Weathering Control on Orbitally Driven Redox⁃Nutrient Cycling during Cretaceous Oceanic Anoxic Event 2. Geology, 43(11): 963-966. https://doi.org/10.1130/G36837.1

[152]

Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 1-9. https://doi.org/10.1038/s43247⁃022⁃00412⁃x

[153]

Rasmussen, B., 1996. Early⁃Diagenetic REE⁃Phosphate Minerals (Florencite, Gorceixite, Crandallite, and Xenotime) in Marine Sandstones: A Major Sink for Oceanic Phosphorus. American Journal of Science, 296(6): 601-632. https://doi.org/10.2475/ajs.296.6.601

[154]

Redfield, A. C., 1958. The Biological Control of Chemical Factors in the Environment. American Scientist, 46(3): 205-221. https://doi.org/10.2307/27827150

[155]

Rego, E. S., Busigny, V., Lalonde, S. V., et al., 2023. Low⁃Phosphorus Concentrations and Important Ferric Hydroxide Scavenging in Archean Seawater. PNAS Nexus, 2(3):1-17. https://doi.org/10.1093/pnasnexus/pgad025

[156]

Reinhard, C. T., Planavsky, N. J., Gill, B. C., et al., 2017. Evolution of the Global Phosphorus Cycle. Nature, 541(7637): 386-389. https://doi.org/10.1038/nature20772

[157]

Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al., 2013. Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences of the United States of America, 110(14): 5357-5362. https://doi.org/10.1073/pnas.1208622110

[158]

Reinhard, C. T., Raiswell, R., Scott, C., et al., 2009. A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents. Science, 326(5953): 713-716.10.1126/science.1176711

[159]

Rico, K. I., Sheldon, N. D., 2019. Nutrient and Iron Cycling in a Modern Analogue for the Redoxcline of a Proterozoic Ocean Shelf. Chemical Geology, 511: 42-50. https://doi.org/10.1016/j.chemgeo.2019.02.032

[160]

Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian⁃Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001

[161]

Ruttenberg, K. C., 1992. Development of a Sequential Extraction Method for Different Forms of Phosphorus in Marine Sediments. Limnology and Oceanography, 37(7): 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460

[162]

Ruttenberg, K. C., Berner, R. A., 1993. Authigenic Apatite Formation and Burial in Sediments from Non⁃ Upwelling, Continental Margin Environments. Geochimica et Cosmochimica Acta, 57(5): 991-1007. https://doi.org/10.1016/0016⁃7037(93)90035⁃U

[163]

Ruvalcaba Baroni, I., Tsandev, I., Slomp, C. P., 2014. Enhanced N2⁃Fixation and NH4 + Recycling during Oceanic Anoxic Event 2 in the Proto⁃North Atlantic. Geochemistry, Geophysics, Geosystems, 15(10): 4064-4078. https://doi.org/10.1002/2014gc005453

[164]

Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445

[165]

Schenau, S. J., De Lange, G. J., 2001. Phosphorus Regeneration vs. Burial in Sediments of the Arabian Sea. Marine Chemistry, 75(3): 201-217. https://doi.org/10.1016/S0304⁃4203(01)00037⁃8

[166]

Schopf, J. W., Kudryavtsev, A. B., 2010. A Renaissance in Studies of Ancient Life. Geology Today, 26(4): 140-145. https://doi.org/10.1111/j.1365⁃2451.2010.00760.x

[167]

Schobben, M., Foster, W. J., Sleveland, A. R. N., et al., 2020. A Nutrient Control on Marine Anoxia during the End⁃Permian Mass Extinction. Nature Geoscience, 13(9): 640-646. https://doi.org/10.1038/s41561⁃020⁃0622⁃1

[168]

She, Z. B., Strother, P., McMahon, G., et al., 2013. Terminal Proterozoic Cyanobacterial Blooms and Phosphogenesis Documented by the Doushantuo Granular Phosphorites I: In Situ Micro⁃Analysis of Textures and Composition. Precambrian Research, 235: 20-35. https://doi.org/10.1016/j.precamres.2013.05.011

[169]

Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End⁃Permian Crisis and Early Triassic Recovery. Earth⁃Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002

[170]

Shen, J. H., Pearson, A., Henkes, G. A., et al., 2018. Improved Efficiency of the Biological Pump as a Trigger for the Late Ordovician Glaciation. Nature Geoscience, 11(7): 510-514. https://doi.org/10.1038/s41561⁃018⁃0141⁃5

[171]

Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio⁃Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050

[172]

Shields, G.A., Veizer, J., 2002. Precambrian Marine Carbonate Isotope Database: Version 1.1. Geochemistry, Geophysics, Geosystems, 3(6): 1-12. https://doi.org/10.1029/2001gc000266

[173]

Shields⁃Zhou, G., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4-11. https://doi.org/10.1130/gsatg102a.1

[174]

Shimura, T., Kon, Y., Sawaki, Y., et al., 2014. In⁃Situ Analyses of Phosphorus Contents of Carbonate Minerals: Reconstruction of Phosphorus Contents of Seawater from the Ediacaran to Early Cambrian. Gondwana Research, 25(3): 1090-1107. https://doi.org/10.1016/j.gr.2013.08.001

[175]

Sisodia, M. S., 2009. Impact during the Proterozoic Era Possibly Inundated the Earth with Phosphorus. International Journal of Astrobiology, 8(3): 187-191. https://doi.org/10.1017/s1473550409004480

[176]

Slomp, C. P., Thomson, J., De Lange, G. J., 2004. Controls on Phosphorus Regeneration and Burial during Formation of Eastern Mediterranean Sapropels. Marine Geology, 203(1-2): 141-159. https://doi.org/10.1016/S0025⁃3227(03)00335⁃9

[177]

Slomp, C. P., Van der Gaast, S. J., Van Raaphorst, W., 1996. Phosphorus Binding by Poorly Crystalline Iron Oxides in North Sea Sediments. Marine Chemistry, 52(1): 55-73. https://doi.org/10.1016/0304⁃4203(95)00078⁃X

[178]

Song, Y. F., Bowyer, F. T., Mills, B. J. W., et al., 2023. Dynamic Redox and Nutrient Cycling Response to Climate Forcing in the Mesoproterozoic Ocean. Nature Communications, 14(1): 1-10. https://doi.org/10.1038/s41467⁃023⁃41901⁃7

[179]

Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523: 451-454. https://doi.org/10.1038/nature14589

[180]

Stüeken, E. E., Catling, D. C., Buick, R., 2012. Contributions to Late Archaean Sulphur Cycling by Life on Land. Nature Geoscience, 5: 722-725. https://doi.org/10.1038/ngeo1585

[181]

Tang, M., Chu, X., Hao, J.H., et al., 2021. Orogenic Quiescence in Earth’s Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876

[182]

Thomas, R. D., Shearman, R. M., Stewart, G. W., 2000. Evolutionary Exploitation of Design Options by the First Animals with Hard Skeletons. Science, 288(5469): 1239-1242. https://doi.org/10.1126/science.288.5469.1239

[183]

Thompson, J., Poulton, S. W., Guilbaud, R., et al., 2019. Development of a Modified SEDEX Phosphorus Speciation Method for Ancient Rocks and Modern Iron⁃Rich Sediments. Chemical Geology, 524: 383-393. https://doi.org/10.1016/j.chemgeo.2019.07.003

[184]

Tsandev, I., Slomp, C. P., 2009. Modeling Phosphorus Cycling and Carbon Burial during Cretaceous Oceanic Anoxic Events. Earth and Planetary Science Letters, 286(1-2): 71-79. https://doi.org/10.1016/j.epsl.2009.06.016

[185]

Tyrrell, T., 1999. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 400: 525-531. https://doi.org/10.1038/22941

[186]

Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(2): 175-192. https://doi.org/10.1130/0016⁃7606(1961)72[175: doteis]2.0.co;2

[187]

Van Cappellen, P., Berner, R. A., 1988. A Mathematical Model for the Early Diagenesis of Phosphorus and Fluorine in Marine Sediments: Apatite Precipitation. American Journal of Science, 288(4): 289-333. https://doi.org/10.2475/ajs.288.4.289

[188]

Van Cappellen, P., Ingall, E. D., 1994. Benthic Phosphorus Regeneration, Net Primary Production, and Ocean Anoxia: A Model of the Coupled Marine Biogeochemical Cycles of Carbon and Phosphorus. Paleoceanography, 9(5): 677-692. https://doi.org/10.1029/94pa01455

[189]

Van Cappellen, P., Ingall, E. D., 1996. Redox Stabilization of the Atmosphere and Oceans by Phosphorus⁃Limited Marine Productivity. Science, 271(5248): 493-496. https://doi.org/10.1126/science.271.5248.493

[190]

Wang, D. S., Liu, Y., Zhang, J. C., et al., 2022. Controls on Marine Primary Productivity Variation and Organic Matter Accumulation during the Late Ordovician⁃Early Silurian Transition. Marine and Petroleum Geology, 142: 105742. https://doi.org/10.1016/j.marpetgeo.2022.105742

[191]

Wang, X. M., Zhang, S. C., Wang, H. J., et al., 2017. Oxygen, Climate and the Chemical Evolution of a 1 400 Million Year Old Tropical Marine Setting. American Journal of Science, 317(8): 861-900. https://doi.org/10.2475/08.2017.01

[192]

Wallmann, K., 2003. Feedbacks between Oceanic Redox States and Marine Productivity: A Model Perspective Focused on Benthic Phosphorus Cycling. Global Biogeochemical Cycles, 17(3): 1-18. https://doi.org/10.1029/2002gb001968

[193]

Wheat, C.G., Feely, R. A., Mottl, M. J., 1996. Phosphate Removal by Oceanic Hydrothermal Processes: An Update of the Phosphorus Budget in the Oceans. Geochimica et Cosmochimica Acta, 60(19): 3593-3608. https://doi.org/10.1016/0016⁃7037(96)00189⁃5

[194]

Xiao, S. H., 2004. New Multicellular Algal Fossils and Acritarchs in Doushantuo Chert Nodules (Neoproterozoic; Yangtze Gorges, South China). Journal of Paleontology, 78(2): 393-401. https://doi.org/10.1666/0022⁃3360(2004)078<0393: nmafaa>2.0.co;2

[195]

Xiao, S. H., Knoll, A. H., 1999. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerstätte, South China. Lethaia, 32(3): 219-240. https://doi.org/10.1111/j.1502⁃3931.1999.tb00541.x

[196]

Xiao, S. H., Knoll, A. H., 2000. Phosphatized Animal Embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China. Journal of Paleontology, 74(5): 767-788. https://doi.org/10.1017/s002233600003300x

[197]

Xiao, S. H., Yuan, X. L., Knoll, A. H., 2000. Eumetazoan Fossils in Terminal Proterozoic Phosphorites? Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13684-13689. https://doi.org/10.1073/pnas.250491697

[198]

Xiong, Y. J., Guilbaud, R., Peacock, C. L., et al., 2019. Phosphorus Cycling in Lake Cadagno, Switzerland: A Low Sulfate Euxinic Ocean Analogue. Geochimica et Cosmochimica Acta, 251: 116-135. https://doi.org/10.1016/j.gca.2019.02.011

[199]

Ye, Q., An, Z. H., Yu, Y., et al., 2023. Phosphatized Microfossils from the Miaohe Member of South China and Their Implications for the Terminal Ediacaran Biodiversity Decline. Precambrian Research, 388: 107001. https://doi.org/10.1016/j.precamres.2023.107001

[200]

Yin, H.F., Yu, J.X., Luo, G.M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822 (in Chinese with English abstract).

[201]

Zegeye, A., Bonneville, S., Benning, L.G., et al., 2012. Green Rust Formation Controls Nutrient Availability in a Ferruginous Water Column. Geology, 40: 599-602. https://doi.org/10.1130/G32959.1

[202]

Zhang, F. F., Shen, S. Z., Cui, Y., et al., 2020. Two Distinct Episodes of Marine Anoxia during the Permian⁃Triassic Crisis Evidenced by Uranium Isotopes in Marine Dolostones. Geochimica et Cosmochimica Acta, 287: 165-179. https://doi.org/10.1016/j.gca.2020.01.032

[203]

Zhang, H. Q., Xiao, S. H., Liu, Y. H., et al., 2015. Armored Kinorhynch⁃like Scalidophoran Animals from the Early Cambrian. Scientific Reports, 5: 16521. https://doi.org/10.1038/srep16521

[204]

Zhang, S.C., Wang, H.J., Wang, X.M., et al., 2022. Mesoproterozoic Marine Biological Carbon Pump: Source, Degradation, and Enrichment of Organic Matter. Chinese Science Bulletin, 67(15): 1624-1643 (in Chinese).

[205]

Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016. Sufficient Oxygen for Animal Respiration 1 400 Million Years ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113

[206]

Zhao, X.K., Shi, X.Y., Wang, X.Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890 (in Chinese with English abstract).

基金资助

中国石油天然气股份有限公司科学研究与技术开发项目(2021DJ05)

国家自然科学基金项目(42230812)

AI Summary AI Mindmap
PDF (2626KB)

93

访问

0

被引

详细

导航
相关文章

AI思维导图

/