磷循环及磷组分在古海洋环境重建中的应用
Phosphorus Cycling and Phosphorus Speciation Application in Reconstruction of Paleo⁃Marine Environment
,
磷作为地球生命DNA和RNA的核心组成部分,是地质历史时期海洋表层初级生产力的主要限制性营养元素,对全球大气‒海洋氧化还原状态及气候变化具有重要调节作用.总结了海洋中磷的源及汇,阐述了磷组分的构成及其在研究磷的埋藏、转化与循环中的应用,分析了古老地层中磷的沉积特征与生物‒环境演化的关系,明确了不同地质时期磷循环特征、机制及其与大气‒海洋‒生态之间的反馈作用,这对于认识生命与地球环境的关系具有深远意义.
Phosphorus (P), as a central component of DNA and RNA of life on earth, is the major limiting nutrient for marine productivity on geological time scales, and plays an important role in regulating the global atmosphere-ocean redox state and Earth’s climate. This paper summarizes the source and sink of P in the ocean, and expounds the composition of P speciation and its application in the study of P burial, diagenetic transformations and marine P cycle, and analyzes the sedimentary P characteristics in the ancient strata and their links with life-environment evolution, which helps clarify features and mechanism of P cycling in different geological periods and its feedback on atmosphere-ocean-ecology system. This is of far-reaching significance for understanding the relationship between life and Earth’s environment.
磷储库 / 磷块岩 / 初级生产力 / 碳埋藏 / 氧化还原环境 / 生物演化 / 地球化学.
phosphorous reservoir / phosphorite / primary productivity / organic carbon burial / redox conditions / biological evolution / geochemistry
| [1] |
Alcott, L. J., Mills, B. J. W., Bekker, A., et al., 2022. Earth’s Great Oxidation Event Facilitated by the Rise of Sedimentary Phosphorus Recycling. Nature Geoscience, 15(3): 210-215. https://doi.org/10.1038/s41561⁃022⁃00906⁃5 |
| [2] |
Algeo, T. J., Ingall, E., 2007. Sedimentary Corg: P Ratios, Paleocean Ventilation, and Phanerozoic Atmospheric PO2. Palaeogeography, Palaeoclimatology, Palaeoecology, 256(3-4): 130-155. https://doi.org/10.1016/j.palaeo.2007.02.029 |
| [3] |
Allen, A. P., Gillooly, J. F., 2009. Towards an Integration of Ecological Stoichiometry and the Metabolic Theory of Ecology to Better Understand Nutrient Cycling. Ecology Letters, 12(5): 369-384.10.1111/ j.1461⁃0248.2009.01302.x |
| [4] |
Allison, P. A., 1988. Phosphatized Soft⁃Bodied Squids from the Jurassic Oxford Clay. Lethaia, 21(4): 403-410. https://doi.org/10.1111/j.1502⁃3931.1988.tb01769.x |
| [5] |
Amundson, R., Berhe, A. A., Hopmans, J. W., et al., 2015. Soil and Human Security in the 21st Century. Science, 348(6235): e1261071. https://doi.org/10.1126/science.1261071 |
| [6] |
Anbar, A. D., Duan, Y., Lyons, T. W., et al., 2007. A Whiff of Oxygen before the Great Oxidation Event? Science, 317(5846): 1903-1906. https://doi.org/10.1126/science.1140325 |
| [7] |
Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? Science, 297(5584): 1137-1142. https://doi.org/10.1126/science.1069651 |
| [8] |
Anderson, L. D., Delaney, M. L., Faul, K. L., 2001. Carbon to Phosphorus Ratios in Sediments: Implications for Nutrient Cycling. Global Biogeochemical Cycles, 15(1): 65-79. https://doi.org/10.1029/2000GB001270 |
| [9] |
Arthur, M. A., Dean, W. E., Pratt, L. M., 1988. Geochemical and Climatic Effects of Increased Marine Organic Carbon Burial at the Cenomanian/Turonian Boundary. Nature, 335: 714-717. https://doi.org/10.1038/335714a0 |
| [10] |
Barclay, R. S., McElwain, J. C., Sageman, B. B., 2010. Carbon Sequestration Activated by a Volcanic CO2 Pulse during Ocean Anoxic Event 2. Nature Geoscience, 3: 205-208. https://doi.org/10.1038/ngeo757 |
| [11] |
Barley, M. E., Bekker, A., Krapež, B., 2005. Late Archean to Early Paleoproterozoic Global Tectonics, Environmental Change and the Rise of Atmospheric Oxygen. Earth and Planetary Science Letters, 238(1-2): 156-171. https://doi.org/10.1016/j.epsl.2005.06.062 |
| [12] |
Bartley, J. K., Kah, L. C., 2004. Marine Carbon Reservoir, Corg⁃Ccarb Coupling, and the Evolution of the Proterozoic Carbon Cycle. Geology, 32(2): 129-132. https://doi.org/10.1130/g19939.1 |
| [13] |
Baturin, G. N., 2007. Issue of the Relationship between Primary Productivity of Organic Carbon in Ocean and Phosphate Accumulation (Holocene⁃Late Jurassic). Lithology and Mineral Resources, 42(4): 318-348. https://doi.org/10.1134/S0024490207040025 |
| [14] |
Bekker, A., Holland, H. D., Wang, P. L., et al., 2004. Dating the Rise of Atmospheric Oxygen. Nature, 427: 117-120. https://doi.org/10.1038/nature02260 |
| [15] |
Bergman, N. M., Lenton, T. M., Watson, A. J., 2004. COPSE: A New Model of Biogeochemical Cycling over Phanerozoic Time. American Journal of Science, 304(5): 397-437. https://doi.org/10.2475/ajs.304.5.397 |
| [16] |
Berner, R. A., Beerling, D. J., Dudley, R., et al., 2003. Phanerozoic Atmospheric Oxygen. Annual Review of Earth and Planetary Sciences, 31: 105-134. https://doi.org/10.1146/annurev.earth.31.100901.141329 |
| [17] |
Berner, R. A., Canfield, D. E., 1989. A New Model for Atmospheric Oxygen over Phanerozoic Time. American Journal of Science, 289(4): 333-361. https://doi.org/10.2475/ajs.289.4.333 |
| [18] |
Bjerrum, C. J., Bendtsen, J., Legarth, J. J. F., 2006. Modeling Organic Carbon Burial during Sea Level Rise with Reference to the Cretaceous. Geochemistry, Geophysics, Geosystems, 7(5): 1-24. https://doi.org/10.1029/2005gc001032 |
| [19] |
Bjerrum, C. J., Canfield, D. E., 2002. Ocean Productivity before about 1.9 Gyr Ago Limited by Phosphorus Adsorption onto Iron Oxides. Nature, 417(6885): 159-162. https://doi.org/10.1038/417159a |
| [20] |
Bosak, T., Knoll, A. H., Petroff, A., 2013. The Meanings of Stromatolites. Annual Review of Earth and Planetary Sciences, 41(1): 21-44. https://doi.org/10.1146/annurev⁃earth⁃042711⁃105327 |
| [21] |
Bowyer, F. T., Krause, A. J., Song, Y.F., et al., 2023. Biological Diversification Linked to Environmental Stabilization Following the Sturtian Snowball Glaciation. Science Advances, 9(34): eadf9999. https://doi.org/10.1126/sciadv.adf9999 |
| [22] |
Bowyer, F. T., Shore, A. J., Wood, R. A., et al., 2020. Regional Nutrient Decrease Drove Redox Stabilisation and Metazoan Diversification in the Late Ediacaran Nama Group, Namibia. Scientific Reports, 10: 1-11. https://doi.org/10.1038/s41598⁃020⁃59335⁃2 |
| [23] |
Boyle, R. A., Dahl, T. W., Dale, A. W., et al., 2014. Stabilization of the Coupled Oxygen and Phosphorus Cycles by the Evolution of Bioturbation. Nature Geoscience, 7: 671-676. https://doi.org/10.1038/ngeo2213 |
| [24] |
Böning, P., Brumsack, H. J., Böttcher, M. E., et al., 2004. Geochemistry of Peruvian Near⁃Surface Sediments. Geochimica et Cosmochimica Acta, 68(21): 4429-4451. https://doi.org/10.1016/j.gca.2004.04.027 |
| [25] |
Brasier, M. D., Lindsay, J. F., 1998. A Billion Years of Environmental Stability and the Emergence of Eukaryotes: New Data from Northern Australia. Geology, 26(6): 555-558. https://doi.org/10.1130/0091⁃7613(1998)026<0555: abyoes>2.3.co;2 |
| [26] |
Buick, R., Des Marais, D. J., Knoll, A. H., 1995. Stable Isotopic Compositions of Carbonates from the Mesoproterozoic Bangemall Group, Northwestern Australia. Chemical Geology, 123(1-4): 153-171. https://doi.org/10.1016/0009⁃2541(95)00049⁃r |
| [27] |
Butterfield, N. J., 2003. Exceptional Fossil Preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43(1): 166-177. https://doi.org/10.1093/icb/43.1.166 |
| [28] |
Calvert, S. E., Pedersen, T. F., Karlin, R. E., 2001. Geochemical and Isotopic Evidence for Post⁃Glacial Palaeoceanographic Changes in Saanich Inlet, British Columbia. Marine Geology, 174(1-4): 287-305. https://doi.org/10.1016/S0025⁃3227(00)00156⁃0 |
| [29] |
Canfield, D. E., 1998. A New Model for Proterozoic Ocean Chemistry. Nature, 396(6710): 450-453. https://doi.org/10.1038/24839 |
| [30] |
Canfield, D. E., Bjerrum, C. J., Zhang, S. C., et al., 2020. The Modern Phosphorus Cycle Informs Interpretations of Mesoproterozoic Era Phosphorus Dynamics. Earth⁃Science Reviews, 208: 103267. https://doi.org/10.1016/j.earscirev.2020.103267 |
| [31] |
Canfield, D. E., Raiswell, R., Bottrell, S. H., 1992. The Reactivity of Sedimentary Iron Minerals toward Sulfide. American Journal of Science, 292(9): 659-683. https://doi.org/10.2475/ajs.292.9.659 |
| [32] |
Canfield, D. E., Zhang, S. C., Wang, H. J., et al., 2018. A Mesoproterozoic Iron Formation. Proceedings of the National Academy of Sciences of the United States of America, 115(17): E3895-E3904. https://doi.org/10.1073/pnas.1720529115 |
| [33] |
Carstensen, J., Andersen, J. H., Gustafsson, B. G., et al., 2014. Deoxygenation of the Baltic Sea during the Last Century. Proceedings of the National Academy of Sciences of the United States of America, 111(15): 5628-5633. https://doi.org/10.1073/pnas.1323156111 |
| [34] |
Chen, M.E., Li, J.Y., Chen, Q.Y., 1999. The Late Sinian Microbiolite and Its Phosphorus Enrichment in Central Guizhou Province. Acta Petrologica Sinica, 15(3): 446-451 (in Chinese with English abstract). |
| [35] |
Cole, D. B., Reinhard, C. T., Wang, X. L., et al., 2016. A Shale⁃Hosted Cr Isotope Record of Low Atmospheric Oxygen during the Proterozoic. Geology, 44(7): 555-558. https://doi.org/10.1130/g37787.1 |
| [36] |
Colman, A. S., Mackenzie, F. T., Holland, H. D., et al., 1997. Redox Stabilization of the Atmosphere and Oceans and Marine Productivity. Science, 275(5298): 406-408. https://doi.org/10.1126/science.275.5298.406 |
| [37] |
Condie, K. C., Des Marais, D. J., Abbott, D., 2001. Precambrian Superplumes and Supercontinents: A Record in Black Shales, Carbon Isotopes, and Paleoclimates? Precambrian Research, 106(3-4): 239-260. https://doi.org/10.1016/S0301⁃9268(00)00097⁃8 |
| [38] |
Cook, P. J., 1992. Phosphogenesis around the Proterozoic⁃Phanerozoic Transition. Journal of the Geological Society, 149(4): 615-620. https://doi.org/10.1144/gsjgs.149.4.0615 |
| [39] |
Cook, P. J., Shergold, J. H., 1984. Phosphorus, Phosphorites and Skeletal Evolution at the Precambrian⁃Cambrian Boundary. Nature, 308: 231-236. https://doi.org/10.1038/308231a0 |
| [40] |
Cordell, D., Drangert, J. O., White, S., 2009. The Story of Phosphorus: Global Food Security and Food for Thought. Global Environmental Change, 19(2): 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009 |
| [41] |
Cox, G. M., Lyons, T. W., Mitchell, R. N., et al., 2018. Linking the Rise of Atmospheric Oxygen to Growth in the Continental Phosphorus Inventory. Earth and Planetary Science Letters, 489: 28-36. https://doi.org/10.1016/j.epsl.2018.02.016 |
| [42] |
Creveling, J. R., Johnston, D. T., Poulton, S. W., et al., 2014. Phosphorus Sources for Phosphatic Cambrian Carbonates. Geological Society of America Bulletin, 126(1-2): 145-163. https://doi.org/10.1130/b30819.1 |
| [43] |
Dale, A. W., Boyle, R. A., Lenton, T. M., et al., 2016. A Model for Microbial Phosphorus Cycling in Bioturbated Marine Sediments: Significance for Phosphorus Burial in the Early Paleozoic. Geochimica et Cosmochimica Acta, 189: 251-268. https://doi.org/10.1016/j.gca.2016.05.046 |
| [44] |
Derry, L. A., 2015. Causes and Consequences of Mid⁃Proterozoic Anoxia. Geophysical Research Letters, 42(20): 8538-8546. https://doi.org/10.1002/2015gl065333 |
| [45] |
Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329. https://doi.org/10.1016/0016⁃7037(92)90064⁃P |
| [46] |
Des Marais, D. J., Strauss, H., Summons, R. E., et al., 1992. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 359(6396): 605-609. https://doi.org/10.1038/359605a0 |
| [47] |
Diaz, J., Ingall, E., Benitez⁃Nelson, C., et al., 2008. Marine Polyphosphate: A Key Player in Geologic Phosphorus Sequestration. Science, 320(5876): 652-655. https://doi.org/10.1126/science.1151751 |
| [48] |
Dijkstra, N., Kraal, P., Séguret, M. J. M., et al., 2018. Phosphorus Dynamics in and below the Redoxcline in the Black Sea and Implications for Phosphorus Burial. Geochimica et Cosmochimica Acta, 222: 685-703. https://doi.org/10.1016/j.gca.2017.11.016 |
| [49] |
Dijkstra, N., Slomp, C. P., Behrends, T., 2016. Vivianite is a Key Sink for Phosphorus in Sediments of the Landsort Deep, an Intermittently Anoxic Deep Basin in the Baltic Sea. Chemical Geology, 438: 58-72. https://doi.org/10.1016/j.chemgeo.2016.05.025 |
| [50] |
Drever, J. I., 1994. The Effect of Land Plants on Weathering Rates of Silicate Minerals. Geochimica et Cosmochimica Acta, 58(10): 2325-2332. https://doi.org/10.1016/0016⁃7037(94)90013⁃2 |
| [51] |
Egger, M., Jilbert, T., Behrends, T., et al., 2015. Vivianite is a Major Sink for Phosphorus in Methanogenic Coastal Surface Sediments. Geochimica et Cosmochimica Acta, 169: 217-235. https://doi.org/10.1016/j.gca.2015.09.012 |
| [52] |
Eijsink, L. M., Krom, M. D., Herut, B., 2000. Speciation and Burial Flux of Phosphorus in the Surface Sediments of the Eastern Mediterranean. American Journal of Science, 300(6): 483-503. https://doi.org/10.2475/ajs.300.6.483 |
| [53] |
Elser, J. J., Bracken, M. E. S., Cleland, E. E., et al., 2007. Global Analysis of Nitrogen and Phosphorus Limitation of Primary Producers in Freshwater, Marine and Terrestrial Ecosystems. Ecology Letters, 10(12): 1135-1142. https://doi.org/10.1111/j.1461⁃0248.2007.01113.x |
| [54] |
Elser, J. J., Dobberfuhl, D. R., MacKay, N. A., et al., 1996. Organism Size, Life History, and N: P Stoichiometry: Toward a Unified View of Cellular and Ecosystem Processes. BioScience, 46(9): 674-684. https://doi.org/10.2307/1312897 |
| [55] |
Erwin, D. H., Laflamme, M., Tweedt, S. M., et al., 2011. The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 334(6059): 1091-1097. https://doi.org/10.1126/science.1206375 |
| [56] |
Fan, H. F., Wen, H. J., Zhu, X. K., 2016. Marine Redox Conditions in the Early Cambrian Ocean: Insights from the Lower Cambrian Phosphorite Deposits, South China. Journal of Earth Science, 27(2): 282-296. https://doi.org/10.1007/s12583⁃016⁃0687⁃3 |
| [57] |
Feely, R. A., Trefry, J. H., Lebon, G. T., et al., 1998. The Relationship between P/Fe and V/Fe Ratios in Hydrothermal Precipitates and Dissolved Phosphate in Seawater. Geophysical Research Letters, 25(13): 2253-2256. https://doi.org/10.1029/98gl01546 |
| [58] |
Fennel, K., Follows, M., Falkowski, P. G., 2005. The Co⁃Evolution of the Nitrogen, Carbon and Oxygen Cycles in the Proterozoic Ocean. American Journal of Science, 305(6-8): 526-545. https://doi.org/10.2475/ajs.305.6⁃8.526 |
| [59] |
Filippelli, G. M., 2011. Phosphate Rock Formation and Marine Phosphorus Geochemistry: The Deep Time Perspective. Chemosphere, 84(6): 759-766. https://doi.org/10.1016/j.chemosphere.2011.02.019 |
| [60] |
Filippelli, G. M., Delaney, M. L., 1992. Similar Phosphorus Fluxes in Ancient Phosphorite Deposits and a Modern Phosphogenic Environment. Geology, 20(8): 709-712. https://doi.org/10.1130/0091⁃7613(1992)020<0709: spfiap>2.3.co;2 |
| [61] |
Flament, N., Coltice, N., Rey, P. F., 2008. A Case for Late⁃Archaean Continental Emergence from Thermal Evolution Models and Hypsometry. Earth and Planetary Science Letters, 275(3-4): 326-336. https://doi.org/10.1016/j.epsl.2008.08.029 |
| [62] |
Flament, N., Coltice, N., Rey, P. F., 2013. The Evolution of the 87Sr/86Sr of Marine Carbonates does not Constrain Continental Growth. Precambrian Research, 229: 177-188. https://doi.org/10.1016/j.precamres.2011.10.009 |
| [63] |
Föllmi, K. B., 1996. The Phosphorus Cycle, Phosphogenesis and Marine Phosphate⁃Rich Deposits. Earth⁃Science Reviews, 40(1-2): 55-124. https://doi.org/10.1016/0012⁃8252(95)00049⁃6 |
| [64] |
Fournier, G. P., Moore, K. R., Rangel, L. T., et al., 2021. The Archean Origin of Oxygenic Photosynthesis and Extant Cyanobacterial Lineages. Proceedings of the Royal Society B: Biological Sciences, 288(1959): 1-10. https://doi.org/10.1098/rspb.2021.0675 |
| [65] |
Froelich, P. N., 1988. Kinetic Control of Dissolved Phosphate in Natural Rivers and Estuaries: A Primer on the Phosphate Buffer Mechanism. Limnology and Oceanography, 33: 649-668. https://doi.org/10.4319/lo.1988.33.4_part_2.0649 |
| [66] |
Froelich, P. N., Bender, M. L., Luedtke, N. A., et al., 1982. The Marine Phosphorus Cycle. American Journal of Science, 282(4): 474-511. https://doi.org/10.2475/ajs.282.4.474 |
| [67] |
Ge, Y. Z., Algeo, T. J., Wen, H. G., et al., 2023. Dynamics of Tethyan Marine De⁃Oxygenation and Relationship to S⁃N⁃P Cycles during the Permian⁃Triassic Boundary Crisis. Earth⁃Science Reviews, 246: 104576. https://doi.org/10.1016/j.earscirev.2023.104576 |
| [68] |
Gilleaudeau, G. J., Romaniello, S. J., Luo, G. M., et al., 2019. Uranium Isotope Evidence for Limited Euxinia in Mid⁃Proterozoic Oceans. Earth and Planetary Science Letters, 521: 150-157. https://doi.org/10.1016/j.epsl.2019.06.012 |
| [69] |
Glenn, C. R., Föllmi, K. B., Riggs, S. R., et al., 1994. Phosphorus and Phosphorites: Sedimentology and Environments of Formation. Eclogae Geologicae Helvetiae, 87: 747-788. https://doi.org/10.1111/j.1365⁃3091.1994.tb01397.x |
| [70] |
Goddéris, Y., Joachimski, M. M., 2004. Global Change in the Late Devonian: Modelling the Frasnian⁃ Famennian Short⁃Term Carbon Isotope Excursions. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(3-4): 309-329. https://doi.org/10.1016/S0031⁃0182(03)00641⁃2 |
| [71] |
Guilbaud, R., Poulton, S. W., Thompson, J., et al., 2020. Phosphorus⁃Limited Conditions in the Early Neoproterozoic Ocean Maintained Low Levels of Atmospheric Oxygen. Nature Geoscience, 13: 296-301. https://doi.org/10.1038/s41561⁃020⁃0548⁃7 |
| [72] |
Halverson, G. P., Hoffman, P. F., Schrag, D. P., et al., 2005. Toward a Neoproterozoic Composite Carbon⁃ Isotope Record. Geological Society of America Bulletin, 117(9): 1181-1207. https://doi.org/10.1130/b25630.1 |
| [73] |
Handoh, I. C., Lenton, T. M., 2003. Periodic Mid⁃ Cretaceous Oceanic Anoxic Events Linked by Oscillations of the Phosphorus and Oxygen Biogeochemical Cycles. Global Biogeochemical Cycles, 17(4): 1-11. https://doi.org/10.1029/2003gb002039 |
| [74] |
Hao, J. H., Knoll, A. H., Huang, F., et al., 2020. Cycling Phosphorus on the Archean Earth: Part I. Continental Weathering and Riverine Transport of Phosphorus. Geochimica et Cosmochimica Acta, 273: 70-84. https://doi.org/10.1016/j.gca.2020.01.027 |
| [75] |
Hardisty, D. S., Lu, Z. L., Bekker, A., et al., 2017. Perspectives on Proterozoic Surface Ocean Redox from Iodine Contents in Ancient and Recent Carbonate. Earth and Planetary Science Letters, 463: 159-170. https://doi.org/10.1016/j.epsl.2017.01.032 |
| [76] |
Hermans, M., Lenstra, W. K., van Helmond, N. A. G. M., et al., 2019. Impact of Natural Re⁃Oxygenation on the Sediment Dynamics of Manganese, Iron and Phosphorus in a Euxinic Baltic Sea Basin. Geochimica et Cosmochimica Acta, 246: 174-196. https://doi.org/10.1016/j.gca.2018.11.033 |
| [77] |
Holland, H. D., 2005. Sedimentary Mineral Deposits and the Evolution of Earth’s near⁃Surface Environments. Economic Geology, 100(8): 1489-1509. https://doi.org/10.2113/gsecongeo.100.8.1489 |
| [78] |
Holland, H. D., 2006. The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 903-915. https://doi.org/10.1098/rstb.2006.1838 |
| [79] |
Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., et al., 2019. A Productivity Collapse to End Earth’s Great Oxidation. Proceedings of the National Academy of Sciences of the United States of America, 116(35): 17207-17212. https://doi.org/10.1073/pnas.1900325116 |
| [80] |
Hoffman, P. F., Schrag, D. P., 2002. The Snowball Earth Hypothesis: Testing the Limits of Global Change. Terra Nova, 14(3): 129-155. https://doi.org/10.1046/j.1365⁃3121.2002.00408.x |
| [81] |
Horton, F., 2015. Did Phosphorus Derived from the Weathering of Large Igneous Provinces Fertilize the Neoproterozoic Ocean? Geochemistry, Geophysics, Geosystems, 16(6): 1723-1738. https://doi.org/10.1002/2015gc005792 |
| [82] |
Hotinski, R. M., Bice, K. L., Kump, L. R., et al., 2001. Ocean Stagnation and End⁃Permian Anoxia. Geology, 29(1): 7-10. https://doi.org/10.1130/0091⁃7613(2001)029<0007: osaepa>2.0.co;2 |
| [83] |
Hsu, T. W., Jiang, W. T., Wang, Y., 2014. Authigenesis of Vivianite as Influenced by Methane⁃Induced Sulfidization in Cold⁃Seep Sediments off Southwestern Taiwan. Journal of Asian Earth Sciences, 89: 88-97. https://doi.org/10.1016/j.jseaes.2014.03.027 |
| [84] |
Huang, J.Y., Gu, X.W., Lu, L.Y., et al., 2007. Comparison of Phosphorite Resources between Xingiang, Kazakhstan and Mongolia. Xinjiang Geology, 25(1): 75-76 (in Chinese with English abstract). |
| [85] |
Huang, S. Y., Xie, H. W., Hou, G. T., et al., 2023. Key Transition of Chinese Plate Configuration at the End of Early Paleozoic. Earth Science, 48(4): 1321-1329 (in Chinese with English abstract). |
| [86] |
Huang, T.Z., Wang, R.M., Shen, B., 2022. The Phosphorus Cycle and Biological Pump in Earth’s Middle Age: Reappraisal of the “Boring Billion”. Chinese Science Bulletin, 67(15): 1614-1623 (in Chinese). |
| [87] |
Hülse, D., Lau, K. V., van de Velde, S. J., et al., 2021. End⁃Permian Marine Extinction Due to Temperature⁃Driven Nutrient Recycling and Euxinia. Nature Geoscience, 14: 862-867. https://doi.org/10.1038/s41561⁃021⁃00829⁃7 |
| [88] |
Ingall, E. D., Bustin, R. M., Van Cappellen, P., 1993. Influence of Water Column Anoxia on the Burial and Preservation of Carbon and Phosphorus in Marine Shales. Geochimica et Cosmochimica Acta, 57(2): 303-316. https://doi.org/10.1016/0016⁃7037(93)90433⁃W |
| [89] |
Ingall, E., Jahnke, R., 1994. Evidence for Enhanced Phosphorus Regeneration from Marine Sediments Overlain by Oxygen Depleted Waters. Geochimica et Cosmochimica Acta, 58(11): 2571-2575. https://doi.org/10.1016/0016⁃7037(94)90033⁃7 |
| [90] |
Ingall, E., Jahnke, R., 1997. Influence of Water⁃Column Anoxia on the Elemental Fractionation of Carbon and Phosphorus during Sediment Diagenesis. Marine Geology, 139(1-4): 219-229. https://doi.org/10.1016/S0025⁃3227(96)00112⁃0 |
| [91] |
Ingall, E. D., Van Cappellen, P., 1990. Relation between Sedimentation Rate and Burial of Organic Phosphorus and Organic Carbon in Marine Sediments. Geochimica et Cosmochimica Acta, 54(2): 373-386. https://doi.org/10.1016/0016⁃7037(90)90326⁃G |
| [92] |
Jones, C., Nomosatryo, S., Crowe, S. A., et al., 2015. Iron Oxides, Divalent Cations, Silica, and the Early Earth Phosphorus Crisis. Geology, 43(2): 135-138. https://doi.org/10.1130/g36044.1 |
| [93] |
Kamaye, T., Romanovitch, P., 2005. Origin of Phosphorite Nodules of Lebedinsky Iron Deposit in Kursk Magnetic Anomaly (KMA) of the Russian Platform. Journal of Earth Science, 16(2): 170-177, 182. |
| [94] |
Karl, D. M., 2000. Aquatic Ecology: Phosphorus, the Staff of Life. Nature, 406(6791): 31-33. https://doi.org/10.1038/35017683 |
| [95] |
Kasting, J. F., Ono, S., 2006. Palaeoclimates: The First Two Billion Years. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 361(1470): 917-929. https://doi.org/10.1098/rstb.2006.1839 |
| [96] |
Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C⁃Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1-4): 27-49. https://doi.org/10.1016/0301⁃9268(94)00070⁃8 |
| [97] |
Kendall, B., Gordon, G. W., Poulton, S. W., et al., 2011. Molybdenum Isotope Constraints on the Extent of Late Paleoproterozoic Ocean Euxinia. Earth and Planetary Science Letters, 307(3-4): 450-460. https://doi.org/10.1016/j.epsl.2011.05.019 |
| [98] |
Kipp, M. A., 2022. A Double⁃Edged Sword: The Role of Sulfate in Anoxic Marine Phosphorus Cycling through Earth History. Geophysical Research Letters, 49(20):1-11. https://doi.org/10.1029/2022gl099817 |
| [99] |
Kipp, M. A., Stüeken, E. E., 2017. Biomass Recycling and Earth’s Early Phosphorus Cycle. Science Advances, 3(11): eaao4795. https://doi.org/10.1126/sciadv.aao4795 |
| [100] |
Kirschvink, J. L., Gaidos, E. J., Bertani, L. E., et al., 2000. Paleoproterozoic Snowball Earth: Extreme Climatic and Geochemical Global Change and Its Biological Consequences. Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1400-1405. https://doi.org/10.1073/pnas.97.4.1400 |
| [101] |
Koehler, M. C., Buick, R., Kipp, M. A., et al., 2018. Transient Surface Ocean Oxygenation Recorded in the ∼2.66 Ga Jeerinah Formation, Australia. Proceedings of the National Academy of Sciences of the United States of America, 115(30): 7711-7716. https://doi.org/10.1073/pnas.1720820115 |
| [102] |
Konhauser, K. O., Lalonde, S. V., Amskold, L., et al., 2007. Was There Really an Archean Phosphate Crisis? Science, 315(5816): 1234. https://doi.org/10.1126/science.1136328 |
| [103] |
Kraal, P., Bostick, B. C., Behrends, T., et al., 2015. Characterization of Phosphorus Species in Sediments from the Arabian Sea Oxygen Minimum Zone: Combining Sequential Extractions and X⁃Ray Spectroscopy. Marine Chemistry, 168: 1-8. https://doi.org/10.1016/j.marchem.2014.10.009 |
| [104] |
Kraal, P., Dijkstra, N., Behrends, T., et al., 2017. Phosphorus Burial in Sediments of the Sulfidic Deep Black Sea: Key Roles for Adsorption by Calcium Carbonate and Apatite Authigenesis. Geochimica et Cosmochimica Acta, 204: 140-158. https://doi.org/10.1016/j.gca.2017.01.042 |
| [105] |
Kraal, P., Slomp, C. P., Forster, A., et al., 2010. Phosphorus Cycling from the Margin to Abyssal Depths in the Proto⁃Atlantic during Oceanic Anoxic Event 2. Palaeogeography, Palaeoclimatology, Palaeoecology, 295(1-2): 42-54. https://doi.org/10.1016/j.palaeo.2010.05.014 |
| [106] |
Kraal, P., Slomp, C. P., Reed, D. C., et al., 2012. Sedimentary Phosphorus and Iron Cycling in and below the Oxygen Minimum Zone of the Northern Arabian Sea. Biogeosciences, 9(7): 2603-2624. https://doi.org/10.5194/bg⁃9⁃2603⁃2012 |
| [107] |
Krom, M. D., Berner, R. A., 1981. The Diagenesis of Phosphorus in a Nearshore Marine Sediment. Geochimica et Cosmochimica Acta, 45(2): 207-216. https://doi.org/10.1016/0016⁃7037(81)90164⁃2 |
| [108] |
Krom, M. D., Kress, N., Brenner, S., et al., 1991. Phosphorus Limitation of Primary Productivity in the Eastern Mediterranean Sea. Limnology and Oceanography, 36(3): 424-432. https://doi.org/10.4319/lo.1991.36.3.0424 |
| [109] |
Kump, L. R., Pavlov, A., Arthur, M. A., 2005. Massive Release of Hydrogen Sulfide to the Surface Ocean and Atmosphere during Intervals of Oceanic Anoxia. Geology, 33(5): 397-400. https://doi.org/10.1130/g21295.1 |
| [110] |
Kuypers, M. M. M., Pancost, R. D., Damsté, J. S. S., 1999. A Large and Abrupt Fall in Atmospheric CO2 Concentration during Cretaceous Times. Nature, 399: 342-345. https://doi.org/10.1038/20659 |
| [111] |
Laakso, T. A., Schrag, D. P., 2018. Limitations on Limitation. Global Biogeochemical Cycles, 32: 486-496. https://doi.org/ 10.1002/2017GB005832 |
| [112] |
Lamboy, M., 1993. Phosphatization of Calcium Carbonate in Phosphorites: Microstructure and Importance. Sedimentology, 40(1): 53-62. https://doi.org/10.1111/j.1365⁃3091.1993.tb01090.x |
| [113] |
Lenton, T. M., Watson, A. J., 2000. Redfield Revisited: 2. What Regulates the Oxygen Content of the Atmosphere? Global Biogeochemical Cycles, 14: 249-268. https://doi.org/10.1029/1999GB900076 |
| [114] |
Li, K.Y., She, Z.B., 2017. Discovery and Possible Genesis of Micron⁃Sized Euhedral Albites in the Ediacaran Doushantuo Phosphorites, South China. Earth Science Frontiers, 24(1): 308-320 (in Chinese with English abstract). |
| [115] |
Li, Y. F., Li, F., 2022. How did Reefs Evolve during the Precambrian⁃Cambrian Transition? Earth Science, 47(10): 3853-3855 (in Chinese with English abstract). |
| [116] |
Li, Z. H., Chen, Z. Q., Zhang, F. F., et al., 2020. Global Carbon Cycle Perturbations Triggered by Volatile Volcanism and Ecosystem Responses during the Carnian Pluvial Episode (Late Triassic). Earth⁃Science Reviews, 211: 103404. https://doi.org/10.1016/j.earscirev.2020.103404 |
| [117] |
Lomnitz, U., Sommer, S., Dale, A. W., et al., 2016. Benthic Phosphorus Cycling in the Peruvian Oxygen Minimum Zone. Biogeosciences, 13(5): 1367-1386. https://doi.org/10.5194/bg⁃13⁃1367⁃2016 |
| [118] |
Longman, J., Mills, B. J. W., Manners, H. R., et al., 2021. Late Ordovician Climate Change and Extinctions Driven by Elevated Volcanic Nutrient Supply. Nature Geoscience, 14(12): 924-929. https://doi.org/10.1038/s41561⁃021⁃00855⁃5 |
| [119] |
Love, G. D., Grosjean, E., Stalvies, C., et al., 2009. Fossil Steroids Record the Appearance of Demospongiae during the Cryogenian Period. Nature, 457: 718-721. https://doi.org/10.1038/nature07673 |
| [120] |
Lovley, D. R., Phillips, E. J., 1988. Novel Mode of Microbial Energy Metabolism: Organic Carbon Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese. Applied and Environmental Microbiology, 54(6): 1472-1480. https://doi.org/10.1128/aem.54.6.1472⁃1480.1988 |
| [121] |
Lucotte, M., Mucci, A., Hillaire⁃Marcel, C., et al., 1994. Early Diagenetic Processes in Deep Labrador Sea Sediments: Reactive and Nonreactive Iron and Phosphorus. Canadian Journal of Earth Sciences, 31(1): 14-27. https://doi.org/10.1139/e94⁃003 |
| [122] |
Lyons, T. W., Reinhard, C. T., Planavsky, N. J., 2014. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 506: 307-315. https://doi.org/10.1038/nature13068 |
| [123] |
Macdonald, F. A., Schmitz, M. D., Crowley, J. L., et al., 2010. Calibrating the Cryogenian. Science, 327(5970): 1241-1243. https://doi.org/10.1126/science.1183325 |
| [124] |
Mahowald, N., Jickells, T. D., Baker, A. R., et al., 2008. Global Distribution of Atmospheric Phosphorus Sources, Concentrations and Deposition Rates, and Anthropogenic Impacts. Global Biogeochemical Cycles, 22(4): 1-19. https://doi.org/10.1029/2008gb003240 |
| [125] |
Mather, R. L., Reynolds, S. E., Wolff, G. A., et al., 2008. Phosphorus Cycling in the North and South Atlantic Ocean Subtropical Gyres. Nature Geoscience, 1: 439-443. https://doi.org/10.1038/ngeo232 |
| [126] |
März, C., Poulton, S. W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, Non⁃ Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72(15): 3703-3717. https://doi.org/10.1016/j.gca.2008.04.025 |
| [127] |
Melezhik, V. A., Pokrovsky, B. G., Fallick, A. E., et al., 2009. Constraints on 87Sr/86Sr of Late Ediacaran Seawater: Insight from Siberian High⁃Sr Limestones. Journal of the Geological Society, 166(1): 183-191. https://doi.org/10.1144/0016⁃76492007⁃171 |
| [128] |
Meybeck, M., 1982. Carbon, Nitrogen, and Phosphorus Transport by World Rivers. American Journal of Science, 282(4): 401-450. https://doi.org/10.2475/ajs.282.4.401 |
| [129] |
Meyer, K. M., Kump, L. R., Ridgwell, A., 2008. Biogeochemical Controls on Photic⁃Zone Euxinia during the End⁃Permian Mass Extinction. Geology, 36(9): 747-750. https://doi.org/10.1130/G24618A.1 |
| [130] |
Mills, B. J. W., Donnadieu, Y., Goddéris, Y., 2021. Spatial Continuous Integration of Phanerozoic Global Biogeochemistry and Climate. Gondwana Research, 100: 73-86. https://doi.org/10.1016/j.gr.2021.02.011 |
| [131] |
Mort, H. P., Adatte, T., Föllmi, K. B., et al., 2007. Phosphorus and the Roles of Productivity and Nutrient Recycling during Oceanic Anoxic Event 2. Geology, 35(6): 483-486. https://doi.org/10.1130/g23475a.1 |
| [132] |
Mort, H. P., Slomp, C. P., Gustafsson, B. G., et al., 2010. Phosphorus Recycling and Burial in Baltic Sea Sediments with Contrasting Redox Conditions. Geochimica et Cosmochimica Acta, 74(4): 1350-1362. https://doi.org/10.1016/j.gca.2009.11.016 |
| [133] |
Muscente, A. D., Vinnes, O., Sinha, S., et al., 2023. What Role does Anoxia Play in Exceptional Fossil Preservation? Lessons from the Taphonomy of the Posidonia Shale (Germany). Earth⁃Science Reviews, 238: 104323. https://doi.org/10.1016/j.earscirev.2023.104323 |
| [134] |
Müller, J., Sun, Y. D., Yang, F., et al., 2022. Phosphorus Cycle and Primary Productivity Changes in the Tethys Ocean during the Permian⁃Triassic Transition: Starving Marine Ecosystems. Frontiers in Earth Science, 10: 832308. https://doi.org/10.3389/feart.2022.832308 |
| [135] |
Och, L. M., Shields⁃Zhou, G. A., 2012. The Neoproterozoic Oxygenation Event: Environmental Perturbations and Biogeochemical Cycling. Earth⁃Science Reviews, 110(1-4): 26-57. https://doi.org/10.1016/j.earscirev.2011.09.004 |
| [136] |
Okin, G. S., Baker, A. R., Tegen, I., et al., 2011. Impacts of Atmospheric Nutrient Deposition on Marine Productivity: Roles of Nitrogen, Phosphorus, and Iron. Global Biogeochemical Cycles, 25(2): 1-10. https://doi.org/10.1029/2010gb003858 |
| [137] |
Ostrander, C. M., Nielsen, S. G., Owens, J. D., et al., 2019. Fully Oxygenated Water Columns over Continental Shelves before the Great Oxidation Event. Nature Geoscience, 12(4): 186-191. https://doi.org/10.1038/s41561⁃019⁃0309⁃7 |
| [138] |
Ozaki, K., Reinhard, C. T., Tajika, E., 2019. A Sluggish Mid⁃Proterozoic Biosphere and Its Effect on Earth’s Redox Balance. Geobiology, 17(1): 3-11. https://doi.org/10.1111/gbi.12317 |
| [139] |
Papadomanolaki, N. M., Lenstra, W. K., Wolthers, M., et al., 2022. Enhanced Phosphorus Recycling during Past Oceanic Anoxia Amplified by Low Rates of Apatite Authigenesis. Science Advances, 8(26): eabn2370. https://doi.org/10.1126/sciadv.abn2370 |
| [140] |
Papineau, D., 2010. Global Biogeochemical Changes at Both Ends of the Proterozoic: Insights from Phosphorites. Astrobiology, 10(2): 165-181. https://doi.org/10.1089/ast.2009.0360 |
| [141] |
Papineau, D., Purohit, R., Goldberg, T., et al., 2009. High Primary Productivity and Nitrogen Cycling after the Paleoproterozoic Phosphogenic Event in the Aravalli Supergroup, India. Precambrian Research, 171(1-4): 37-56. https://doi.org/10.1016/j.precamres.2009.03.005 |
| [142] |
Partin, C. A., Bekker, A., Planavsky, N. J., et al., 2013. Large⁃Scale Fluctuations in Precambrian Atmospheric and Oceanic Oxygen Levels from the Record of U in Shales. Earth and Planetary Science Letters, 369-370: 284-293. https://doi.org/10.1016/j.epsl.2013.03.031 |
| [143] |
Percival, L. M. E., Bond, D. P. G., Rakociński, B.M., et al., 2020. Phosphorus⁃Cycle Disturbances during the Late Devonian Anoxic Events. Global and Planetary Change, 184: 103070. https://doi.org/10.1016/j.gloplacha.2019.103070 |
| [144] |
Planavsky, N. J., Asael, D., Hofmann, A., et al., 2014. Evidence for Oxygenic Photosynthesis Half a Billion Years before the Great Oxidation Event. Nature Geoscience, 7(4): 283-286. https://doi.org/10.1038/ngeo2122 |
| [145] |
Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron⁃Rich Conditions in the Mid⁃ Proterozoic Ocean. Nature, 477: 448-451. https://doi.org/10.1038/nature10327 |
| [146] |
Planavsky, N. J., Rouxel, O. J., Bekker, A., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088-1090. https://doi.org/10.1038/nature09485 |
| [147] |
Planavsky, N. J., Slack, J. F., Cannon, W. F., et al., 2018. Evidence for Episodic Oxygenation in a Weakly Redox⁃Buffered Deep Mid⁃Proterozoic Ocean. Chemical Geology, 483: 581-594. https://doi.org/10.1016/j.chemgeo.2018.03.028 |
| [148] |
Porter, S. M., 2004. Closing the Phosphatization Window: Testing for the Influence of Taphonomic Megabias on the Pattern of Small Shelly Fossil Decline. Palaios, 19(2): 178-183. https://doi.org/10.1669/0883⁃1351(2004)019<0178: ctpwtf>2.0.co;2 |
| [149] |
Poulton, S. W., 2017. Early Phosphorus Redigested. Nature Geoscience, 10(2): 75-76. https://doi.org/10.1038/ngeo2884 |
| [150] |
Poulton, S. W., Canfield, D. E., 2011. Ferruginous Conditions: A Dominant Feature of the Ocean through Earth’s History. Elements, 7(2): 107-112. https://doi.org/10.2113/gselements.7.2.107 |
| [151] |
Poulton, S. W., Henkel, S., März, C., et al., 2015. A Continental⁃Weathering Control on Orbitally Driven Redox⁃Nutrient Cycling during Cretaceous Oceanic Anoxic Event 2. Geology, 43(11): 963-966. https://doi.org/10.1130/G36837.1 |
| [152] |
Qiu, Z., Zou, C. N., Mills, B. J. W., et al., 2022. A Nutrient Control on Expanded Anoxia and Global Cooling during the Late Ordovician Mass Extinction. Communications Earth & Environment, 3: 1-9. https://doi.org/10.1038/s43247⁃022⁃00412⁃x |
| [153] |
Rasmussen, B., 1996. Early⁃Diagenetic REE⁃Phosphate Minerals (Florencite, Gorceixite, Crandallite, and Xenotime) in Marine Sandstones: A Major Sink for Oceanic Phosphorus. American Journal of Science, 296(6): 601-632. https://doi.org/10.2475/ajs.296.6.601 |
| [154] |
Redfield, A. C., 1958. The Biological Control of Chemical Factors in the Environment. American Scientist, 46(3): 205-221. https://doi.org/10.2307/27827150 |
| [155] |
Rego, E. S., Busigny, V., Lalonde, S. V., et al., 2023. Low⁃Phosphorus Concentrations and Important Ferric Hydroxide Scavenging in Archean Seawater. PNAS Nexus, 2(3):1-17. https://doi.org/10.1093/pnasnexus/pgad025 |
| [156] |
Reinhard, C. T., Planavsky, N. J., Gill, B. C., et al., 2017. Evolution of the Global Phosphorus Cycle. Nature, 541(7637): 386-389. https://doi.org/10.1038/nature20772 |
| [157] |
Reinhard, C. T., Planavsky, N. J., Robbins, L. J., et al., 2013. Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences of the United States of America, 110(14): 5357-5362. https://doi.org/10.1073/pnas.1208622110 |
| [158] |
Reinhard, C. T., Raiswell, R., Scott, C., et al., 2009. A Late Archean Sulfidic Sea Stimulated by Early Oxidative Weathering of the Continents. Science, 326(5953): 713-716.10.1126/science.1176711 |
| [159] |
Rico, K. I., Sheldon, N. D., 2019. Nutrient and Iron Cycling in a Modern Analogue for the Redoxcline of a Proterozoic Ocean Shelf. Chemical Geology, 511: 42-50. https://doi.org/10.1016/j.chemgeo.2019.02.032 |
| [160] |
Rimmer, S. M., Thompson, J. A., Goodnight, S. A., et al., 2004. Multiple Controls on the Preservation of Organic Matter in Devonian⁃Mississippian Marine Black Shales: Geochemical and Petrographic Evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2): 125-154. https://doi.org/10.1016/j.palaeo.2004.09.001 |
| [161] |
Ruttenberg, K. C., 1992. Development of a Sequential Extraction Method for Different Forms of Phosphorus in Marine Sediments. Limnology and Oceanography, 37(7): 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460 |
| [162] |
Ruttenberg, K. C., Berner, R. A., 1993. Authigenic Apatite Formation and Burial in Sediments from Non⁃ Upwelling, Continental Margin Environments. Geochimica et Cosmochimica Acta, 57(5): 991-1007. https://doi.org/10.1016/0016⁃7037(93)90035⁃U |
| [163] |
Ruvalcaba Baroni, I., Tsandev, I., Slomp, C. P., 2014. Enhanced N2⁃Fixation and NH4 + Recycling during Oceanic Anoxic Event 2 in the Proto⁃North Atlantic. Geochemistry, Geophysics, Geosystems, 15(10): 4064-4078. https://doi.org/10.1002/2014gc005453 |
| [164] |
Sahoo, S. K., Planavsky, N. J., Kendall, B., et al., 2012. Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 489: 546-549. https://doi.org/10.1038/nature11445 |
| [165] |
Schenau, S. J., De Lange, G. J., 2001. Phosphorus Regeneration vs. Burial in Sediments of the Arabian Sea. Marine Chemistry, 75(3): 201-217. https://doi.org/10.1016/S0304⁃4203(01)00037⁃8 |
| [166] |
Schopf, J. W., Kudryavtsev, A. B., 2010. A Renaissance in Studies of Ancient Life. Geology Today, 26(4): 140-145. https://doi.org/10.1111/j.1365⁃2451.2010.00760.x |
| [167] |
Schobben, M., Foster, W. J., Sleveland, A. R. N., et al., 2020. A Nutrient Control on Marine Anoxia during the End⁃Permian Mass Extinction. Nature Geoscience, 13(9): 640-646. https://doi.org/10.1038/s41561⁃020⁃0622⁃1 |
| [168] |
She, Z. B., Strother, P., McMahon, G., et al., 2013. Terminal Proterozoic Cyanobacterial Blooms and Phosphogenesis Documented by the Doushantuo Granular Phosphorites I: In Situ Micro⁃Analysis of Textures and Composition. Precambrian Research, 235: 20-35. https://doi.org/10.1016/j.precamres.2013.05.011 |
| [169] |
Shen, J., Schoepfer, S. D., Feng, Q. L., et al., 2015. Marine Productivity Changes during the End⁃Permian Crisis and Early Triassic Recovery. Earth⁃Science Reviews, 149: 136-162. https://doi.org/10.1016/j.earscirev.2014.11.002 |
| [170] |
Shen, J. H., Pearson, A., Henkes, G. A., et al., 2018. Improved Efficiency of the Biological Pump as a Trigger for the Late Ordovician Glaciation. Nature Geoscience, 11(7): 510-514. https://doi.org/10.1038/s41561⁃018⁃0141⁃5 |
| [171] |
Shi, Q., Shi, X. Y., Tang, D. J., et al., 2021. Heterogeneous Oxygenation Coupled with Low Phosphorus Bio⁃Availability Delayed Eukaryotic Diversification in Mesoproterozoic Oceans: Evidence from the ca 1.46 Ga Hongshuizhuang Formation of North China. Precambrian Research, 354: 106050. https://doi.org/10.1016/j.precamres.2020.106050 |
| [172] |
Shields, G.A., Veizer, J., 2002. Precambrian Marine Carbonate Isotope Database: Version 1.1. Geochemistry, Geophysics, Geosystems, 3(6): 1-12. https://doi.org/10.1029/2001gc000266 |
| [173] |
Shields⁃Zhou, G., Och, L., 2011. The Case for a Neoproterozoic Oxygenation Event: Geochemical Evidence and Biological Consequences. GSA Today, 21(3): 4-11. https://doi.org/10.1130/gsatg102a.1 |
| [174] |
Shimura, T., Kon, Y., Sawaki, Y., et al., 2014. In⁃Situ Analyses of Phosphorus Contents of Carbonate Minerals: Reconstruction of Phosphorus Contents of Seawater from the Ediacaran to Early Cambrian. Gondwana Research, 25(3): 1090-1107. https://doi.org/10.1016/j.gr.2013.08.001 |
| [175] |
Sisodia, M. S., 2009. Impact during the Proterozoic Era Possibly Inundated the Earth with Phosphorus. International Journal of Astrobiology, 8(3): 187-191. https://doi.org/10.1017/s1473550409004480 |
| [176] |
Slomp, C. P., Thomson, J., De Lange, G. J., 2004. Controls on Phosphorus Regeneration and Burial during Formation of Eastern Mediterranean Sapropels. Marine Geology, 203(1-2): 141-159. https://doi.org/10.1016/S0025⁃3227(03)00335⁃9 |
| [177] |
Slomp, C. P., Van der Gaast, S. J., Van Raaphorst, W., 1996. Phosphorus Binding by Poorly Crystalline Iron Oxides in North Sea Sediments. Marine Chemistry, 52(1): 55-73. https://doi.org/10.1016/0304⁃4203(95)00078⁃X |
| [178] |
Song, Y. F., Bowyer, F. T., Mills, B. J. W., et al., 2023. Dynamic Redox and Nutrient Cycling Response to Climate Forcing in the Mesoproterozoic Ocean. Nature Communications, 14(1): 1-10. https://doi.org/10.1038/s41467⁃023⁃41901⁃7 |
| [179] |
Sperling, E. A., Wolock, C. J., Morgan, A. S., et al., 2015. Statistical Analysis of Iron Geochemical Data Suggests Limited Late Proterozoic Oxygenation. Nature, 523: 451-454. https://doi.org/10.1038/nature14589 |
| [180] |
Stüeken, E. E., Catling, D. C., Buick, R., 2012. Contributions to Late Archaean Sulphur Cycling by Life on Land. Nature Geoscience, 5: 722-725. https://doi.org/10.1038/ngeo1585 |
| [181] |
Tang, M., Chu, X., Hao, J.H., et al., 2021. Orogenic Quiescence in Earth’s Middle Age. Science, 371(6530): 728-731. https://doi.org/10.1126/science.abf1876 |
| [182] |
Thomas, R. D., Shearman, R. M., Stewart, G. W., 2000. Evolutionary Exploitation of Design Options by the First Animals with Hard Skeletons. Science, 288(5469): 1239-1242. https://doi.org/10.1126/science.288.5469.1239 |
| [183] |
Thompson, J., Poulton, S. W., Guilbaud, R., et al., 2019. Development of a Modified SEDEX Phosphorus Speciation Method for Ancient Rocks and Modern Iron⁃Rich Sediments. Chemical Geology, 524: 383-393. https://doi.org/10.1016/j.chemgeo.2019.07.003 |
| [184] |
Tsandev, I., Slomp, C. P., 2009. Modeling Phosphorus Cycling and Carbon Burial during Cretaceous Oceanic Anoxic Events. Earth and Planetary Science Letters, 286(1-2): 71-79. https://doi.org/10.1016/j.epsl.2009.06.016 |
| [185] |
Tyrrell, T., 1999. The Relative Influences of Nitrogen and Phosphorus on Oceanic Primary Production. Nature, 400: 525-531. https://doi.org/10.1038/22941 |
| [186] |
Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geological Society of America Bulletin, 72(2): 175-192. https://doi.org/10.1130/0016⁃7606(1961)72[175: doteis]2.0.co;2 |
| [187] |
Van Cappellen, P., Berner, R. A., 1988. A Mathematical Model for the Early Diagenesis of Phosphorus and Fluorine in Marine Sediments: Apatite Precipitation. American Journal of Science, 288(4): 289-333. https://doi.org/10.2475/ajs.288.4.289 |
| [188] |
Van Cappellen, P., Ingall, E. D., 1994. Benthic Phosphorus Regeneration, Net Primary Production, and Ocean Anoxia: A Model of the Coupled Marine Biogeochemical Cycles of Carbon and Phosphorus. Paleoceanography, 9(5): 677-692. https://doi.org/10.1029/94pa01455 |
| [189] |
Van Cappellen, P., Ingall, E. D., 1996. Redox Stabilization of the Atmosphere and Oceans by Phosphorus⁃Limited Marine Productivity. Science, 271(5248): 493-496. https://doi.org/10.1126/science.271.5248.493 |
| [190] |
Wang, D. S., Liu, Y., Zhang, J. C., et al., 2022. Controls on Marine Primary Productivity Variation and Organic Matter Accumulation during the Late Ordovician⁃Early Silurian Transition. Marine and Petroleum Geology, 142: 105742. https://doi.org/10.1016/j.marpetgeo.2022.105742 |
| [191] |
Wang, X. M., Zhang, S. C., Wang, H. J., et al., 2017. Oxygen, Climate and the Chemical Evolution of a 1 400 Million Year Old Tropical Marine Setting. American Journal of Science, 317(8): 861-900. https://doi.org/10.2475/08.2017.01 |
| [192] |
Wallmann, K., 2003. Feedbacks between Oceanic Redox States and Marine Productivity: A Model Perspective Focused on Benthic Phosphorus Cycling. Global Biogeochemical Cycles, 17(3): 1-18. https://doi.org/10.1029/2002gb001968 |
| [193] |
Wheat, C.G., Feely, R. A., Mottl, M. J., 1996. Phosphate Removal by Oceanic Hydrothermal Processes: An Update of the Phosphorus Budget in the Oceans. Geochimica et Cosmochimica Acta, 60(19): 3593-3608. https://doi.org/10.1016/0016⁃7037(96)00189⁃5 |
| [194] |
Xiao, S. H., 2004. New Multicellular Algal Fossils and Acritarchs in Doushantuo Chert Nodules (Neoproterozoic; Yangtze Gorges, South China). Journal of Paleontology, 78(2): 393-401. https://doi.org/10.1666/0022⁃3360(2004)078<0393: nmafaa>2.0.co;2 |
| [195] |
Xiao, S. H., Knoll, A. H., 1999. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerstätte, South China. Lethaia, 32(3): 219-240. https://doi.org/10.1111/j.1502⁃3931.1999.tb00541.x |
| [196] |
Xiao, S. H., Knoll, A. H., 2000. Phosphatized Animal Embryos from the Neoproterozoic Doushantuo Formation at Weng’an, Guizhou, South China. Journal of Paleontology, 74(5): 767-788. https://doi.org/10.1017/s002233600003300x |
| [197] |
Xiao, S. H., Yuan, X. L., Knoll, A. H., 2000. Eumetazoan Fossils in Terminal Proterozoic Phosphorites? Proceedings of the National Academy of Sciences of the United States of America, 97(25): 13684-13689. https://doi.org/10.1073/pnas.250491697 |
| [198] |
Xiong, Y. J., Guilbaud, R., Peacock, C. L., et al., 2019. Phosphorus Cycling in Lake Cadagno, Switzerland: A Low Sulfate Euxinic Ocean Analogue. Geochimica et Cosmochimica Acta, 251: 116-135. https://doi.org/10.1016/j.gca.2019.02.011 |
| [199] |
Ye, Q., An, Z. H., Yu, Y., et al., 2023. Phosphatized Microfossils from the Miaohe Member of South China and Their Implications for the Terminal Ediacaran Biodiversity Decline. Precambrian Research, 388: 107001. https://doi.org/10.1016/j.precamres.2023.107001 |
| [200] |
Yin, H.F., Yu, J.X., Luo, G.M., et al., 2018. Biotic Influence on the Formation of Icehouse Climates in Geologic History. Earth Science, 43(11): 3809-3822 (in Chinese with English abstract). |
| [201] |
Zegeye, A., Bonneville, S., Benning, L.G., et al., 2012. Green Rust Formation Controls Nutrient Availability in a Ferruginous Water Column. Geology, 40: 599-602. https://doi.org/10.1130/G32959.1 |
| [202] |
Zhang, F. F., Shen, S. Z., Cui, Y., et al., 2020. Two Distinct Episodes of Marine Anoxia during the Permian⁃Triassic Crisis Evidenced by Uranium Isotopes in Marine Dolostones. Geochimica et Cosmochimica Acta, 287: 165-179. https://doi.org/10.1016/j.gca.2020.01.032 |
| [203] |
Zhang, H. Q., Xiao, S. H., Liu, Y. H., et al., 2015. Armored Kinorhynch⁃like Scalidophoran Animals from the Early Cambrian. Scientific Reports, 5: 16521. https://doi.org/10.1038/srep16521 |
| [204] |
Zhang, S.C., Wang, H.J., Wang, X.M., et al., 2022. Mesoproterozoic Marine Biological Carbon Pump: Source, Degradation, and Enrichment of Organic Matter. Chinese Science Bulletin, 67(15): 1624-1643 (in Chinese). |
| [205] |
Zhang, S. C., Wang, X. M., Wang, H. J., et al., 2016. Sufficient Oxygen for Animal Respiration 1 400 Million Years ago. Proceedings of the National Academy of Sciences of the United States of America, 113(7): 1731-1736. https://doi.org/10.1073/pnas.1523449113 |
| [206] |
Zhao, X.K., Shi, X.Y., Wang, X.Q., et al., 2018. Stepwise Oxygenation of Early Cambrian Ocean Drove Early Metazoan Diversification. Earth Science, 43(11): 3873-3890 (in Chinese with English abstract). |
中国石油天然气股份有限公司科学研究与技术开发项目(2021DJ05)
国家自然科学基金项目(42230812)
/
| 〈 |
|
〉 |