CO2地质封存中随机裂隙网络走向对盖层密封性影响
盛丹娜 , 王惠民 , 盛金昌 , 郑惠峰 , 黄泰仁 , 吴洪涛 , 黄石峰
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 349 -360.
CO2地质封存中随机裂隙网络走向对盖层密封性影响
Effect of Random Fracture Network Orientations on Sealing Performance of Caprock in CO2 Geological Sequestration
,
在CO2地质封存过程中,为探究盖层中裂隙网络走向对CO2-咸水两相运移的影响规律,进而评价盖层密封性,本文数值模拟选用了6种不同走向的裂隙网络(其角度分别为0°~180°、30°~150°、45°~135°、60°~120°、90°~90°和90°~180°),实现显式裂隙网络下CO2驱替咸水的两相流研究.研究发现裂隙网络走向会直接改变液相饱和度的赋存情况,从而影响CO2-咸水驱替难度;当CO2在盖层中达到相同渗透深度时,驱替时间随裂隙倾角(0°~60°)降低了12.59倍,但倾角增大到60°后不再有明显影响;随着裂隙网络渗透范围的扩大,CO2在盖层中的渗透量增加.其中,正交裂隙(90°~180°)的渗透量最大.因此,考虑裂隙网络走向对于盖层密封性的评价具有重要意义.
In the process of CO2 geological storage, in order to explore the influence of fracture network orientations on the two-phase transport of CO2-salt water in the caprock and evaluate the sealing performance of the caprock, six fracture networks with different orientations (with angles of 0°-180°, 30°-150°, 45°-135°, 60°-120°, 90°-90° and 90°-180°, respectively) were selected for numerical simulation, so as to realize the two-phase flow study of CO2 displacement of salt water under explicit fracture network. It is found that the fracture network orientations directly change the occurrence of water saturation, thereby affecting the difficulty of CO2-salt water displacement. When CO2 reaches the same penetration depth in the caprock, the displacement time decreased by 12.59 times with the fracture angle (0°-60°), but there is no obvious effect after the inclination angle increased to 60°. With the expansion of the permeability range of the fracture network, the permeability of CO2 in the caprock increases. Among them, orthogonal fractures (90°-180°) have the largest permeability. Therefore, considering the fracture network direction is of great significance for the caprock sealing evaluation.
CO2地质封存 / 盖层密封性 / 裂隙走向 / 离散裂隙基质模型 / 数值模拟.
CO2 geological sequestration / caprock sealing / orientation of fracture / discrete fracture matrix model / numerical simulation
| [1] |
Adu⁃Gyamfi, B., Ampomah, W., Tu, J. W., et al., 2022. Assessment of Chemo⁃Mechanical Impacts of CO2 Sequestration on the Caprock Formation in Farnsworth Oil Field, Texas. Scientific Reports, 12(1): 1-23. https://doi.org/10.1038/s41598⁃022⁃16990⁃x |
| [2] |
Arif, M., Al⁃Yaseri, A. Z., Barifcani, A., et al., 2016. Impact of Pressure and Temperature on CO2–Brine– Mica Contact Angles and CO2–Brine Interfacial Tension: Implications for Carbon Geo⁃Sequestration. Journal of Colloid and Interface Science, 462: 208–215. https://doi.org/10.1016/j.jcis.2015.09.076 |
| [3] |
Bachu, S., 2015. Review of CO2 Storage Efficiency in Deep Saline Aquifers. International Journal of Greenhouse Gas Control, 40: 188–202. https://doi.org/10.1016/j.ijggc.2015.01.007 |
| [4] |
Bacon, D. H., Qafoku, N. P., Dai, Z. X., et al., 2016. Modeling the Impact of Carbon Dioxide Leakage into an Unconfined, Oxidizing Carbonate Aquifer. International Journal of Greenhouse Gas Control, 44: 290-299. https://doi.org/10.1016/j.ijggc.2015.04.008 |
| [5] |
Bai, X.F., 2009. Fracture Characteristics of Volcanic Reservoir in Yingcheng Formation, Songliao Basin. Global Geology, 28(3): 318-325 (in Chinese with English abstract). |
| [6] |
Berre, I., Doster, F., Keilegavlen, E., 2019. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. Transport in Porous Media, 130(1): 215-236. https://doi.org/10.1007/s11242⁃018⁃1171⁃6 |
| [7] |
Chen, B.W., Wang, R., Li, Q., et al., 2023. Status and Advances of Research on Caprock Sealing Properties of CO2 Geological Storage. Geological Journal of China Universities, 29(1): 85-99 (in Chinese with English abstract). |
| [8] |
Chen, F., Yang, B.D., Ma, J., et al., 2016.Effects of CO2 Geological Storage Leakage on Soil Microbial Community. Journal of China University of Mining & Technology, 45(6): 1285-1293, 1299 (in Chinese with English abstract). |
| [9] |
Currie, N.D., 2017.Characterizing Injectite Related Fracture Networks and Their Impact on Seal Integrity, Rainbow Rocks Injectite Complex,Grand County,Utah (Dissertation). New Mexico Institute of Mining and Technology, New Mexico. |
| [10] |
Dai, L., You, L., Zhao, Z.J., et al., 2019. Petrological Characteristics and Sealing Analysis of Mesozoic Caprock in Dongfang⁃Ledong Area, Yinggehai Basin. Earth Science, 44(8): 2677-2685 (in Chinese with English abstract). |
| [11] |
Deng, Y.R., Wang, Y.H., Zhao, Y.J., et al., 2023. Carbon Dioxide Storage in China: Current Status, Main Challenges, and Future Outlooks. Earth Science Frontiers, 30(4): 429-439 (in Chinese with English abstract). |
| [12] |
Fu,B.C., Xu,Y., 2022.Preliminary Study on Environmental Monitoring and Assessment System for CO2 Geological Storage Project. Shanxi Chemical Industry, 42(8):139-140,143 (in Chinese with English abstract). |
| [13] |
Guo, B., 2020.Study on the Sealing Ability Evolution of Caprock System in the Process of CO2 Geological Storage: A Case Study of Ziniquanzi Formation Mudstone Caprock in Xinjiang Junggar Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract). |
| [14] |
He, S., Qin, Q. R., Qin, Z. J., et al., 2022. Natural Fracture Development Characteristics and Their Relationship with Gas Contents─A Case Study of Wufeng– Longmaxi Formation in Luzhou Area, Southern Sichuan Basin, China. ACS Omega, 7(38): 34066-34079. https://doi.org/10.1021/acsomega.2c03318 |
| [15] |
Hyman, J. D., Jiménez⁃Martínez, J., Gable, C. W., et al., 2020. Characterizing the Impact of Fractured Caprock Heterogeneity on Supercritical CO2 Injection. Transport in Porous Media, 131(3): 935-955. https://doi.org/10.1007/s11242⁃019⁃01372⁃1 |
| [16] |
Jiang,S.,Zhang,K.,Du,F.S.,et al.,2023. Progress and Prospects of CO2 Storage and Enhanced Oil, Gas, and Geothermal Recovery. Earth Science, 48(7): 2733-2749 (in Chinese with English abstract). |
| [17] |
Olabode, A., Radonjic, M., 2017. Fracture Conductivity Modelling in Experimental Shale Rock Interactions with Aqueous CO2. Energy Procedia, 114: 4494-4507. https://doi.org/10.1016/j.egypro.2017.03.1610 |
| [18] |
Raduha, S., Butler, D., Mozley, P. S., et al., 2016. Potential Seal Bypass and Caprock Storage Produced by Deformation⁃Band⁃to⁃Opening⁃Mode⁃Fracture Transition at the Reservoir/Caprock Interface. Geofluids, 16(4): 752-768. https://doi.org/10.1111/gfl.12177 |
| [19] |
Rutqvist, J., Tsang, C. F., 2002. A Study of Caprock Hydromechanical Changes Associated with CO2⁃Injection into a Brine Formation. Environmental Geology, 42(2): 296-305. https://doi.org/10.1007/s00254⁃001⁃0499⁃2 |
| [20] |
Shang, X., Wang, J., Wang, H., et al., 2022. Combined Effects of CO2 Adsorption⁃Induced Swelling and Dehydration⁃Induced Shrinkage on Caprock Sealing Efficiency. International Journal of Environmental Research and Public Health, 19(21): 14574. https://doi.org/10.3390/ijerph192114574 |
| [21] |
Song, J., Zhang, D. X., 2013. Comprehensive Review of Caprock⁃Sealing Mechanisms for Geologic Carbon Sequestration. Environmental Science & Technology, 47(1): 9-22. https://doi.org/10.1021/es301610p |
| [22] |
Verdon, J. P., Kendall, J. M., Stork, A. L., et al., 2013. Comparison of Geomechanical Deformation Induced by Megatonne⁃Scale CO2 Storage at Sleipner, Weyburn, and in Salah. Proceedings of the National Academy of Sciences of the United States of America, 110(30): E2762-E2771. https://doi.org/10.1073/pnas.1302156110 |
| [23] |
Wang, J. G., Peng, Y., 2014. Numerical Modeling for the Combined Effects of Two⁃Phase Flow, Deformation, Gas Diffusion and CO2 Sorption on Caprock Sealing Efficiency. Journal of Geochemical Exploration, 144: 154–167. https://doi.org/10.1016/j.gexplo.2013.12.011 |
| [24] |
Wang, J. G., Wang, H. M., 2018. Sealing Efficiency Analysis for Shallow⁃Layer Caprocks in CO2 Geological Storage. Environmental Earth Sciences, 77(21): 1-14. https://doi.org/10.1007/s12665⁃018⁃7924⁃2 |
| [25] |
Wang, Z.N., Yuan, J.S., Pang, B., et al., 2022. The Interpretation and Highlights on Mitigation of Climate Change in IPCC AR6 WGⅢ Report. Climate Change Research, 18(5):531-537 (in Chinese with English abstract). |
| [26] |
Wu, Z.D., 2011. Research on the Stability of Cavern in Bedded Rock Salt Based on Permeability and Time Dependent Behavior (Dissertation). China University of Mining and Technology, Beijing (in Chinese with English abstract). |
| [27] |
Yin, Q., Jing, H. W., Su, H. J., et al., 2017. CO2 Permeability Analysis of Caprock Containing a Single Fracture Subject to Coupled Thermal⁃Hydromechanical Effects. Mathematical Problems in Engineering, 2017(1): 1-13. https://doi.org/10.1155/2017/1290748 |
| [28] |
Zeng,L.B.,Ma,S.J.,Tian,H., et al.,2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442 (in Chinese with English abstract). |
| [29] |
Zhao, Z. Y., Yao, S., Yang, S. P., et al., 2023. Under Goals of Carbon Peaking and Carbon Neutrality: Status, Problems, and Suggestions of CCUS in China. Environmental Science, 44(2):1128-1138 (in Chinese with English abstract). |
| [30] |
Zhou, X.F., Zhang, Y.S., Yan, D.T., et al., 2018. Quantitative Evaluation of Sealing Ability of Tertiary Mudstone Caprock in Lenghu Area of Qaidam Basin. Earth Science, 43(S2): 226-233 (in Chinese with English abstract). |
国家自然科学基金项目(42202286)
国家自然科学基金项目(62103198)
江苏省博士后科研资助项目(2021K350C)
河海大学自由探索专项‒新引进教师项目(B210201037)
河海大学大型仪器设备共享基金(B220370201)
/
| 〈 |
|
〉 |