基于地质年代与热流关系的中国陆区热流分布
Heat Flow Distribution in the Continental Area of China Based on the Relationship between Geologic Age and Heat Flow
,
大地热流是表征地球内部热状态传输到表层的重要参数,大地热流分布是地热研究中的基础工作. 我国陆区大地热流数据质量差异大且空间分布不均匀,对大地热流的科学预测是开展大地热流及相关研究的重要基础. 在地质年代与热流关系的基础上,采用地理信息系统(GIS)技术,利用中国陆区数字地质图定义不同地质区域的热流值,对热流离散性较大的地质年代结合构造分区统计赋值,使热流预测更符合我国构造-热背景. 热流预测采用1°×1°等经度网格将热流的影响范围约束在网格单元中. 我国陆区的大地热流预测平均值为63.54 mW/m2,中值为62.32 mW/m2,热流分布离散性较小.预测结果接近我国构造-热背景,为热流数据空白区的热流值预测提供科学依据.
Terrestrial heat flow is an important parameter to characterize the heat transfer from the earth's interior to the surface. The distribution of terrestrial heat flow is the basic work in geothermal research. The data quality of terrestrial heat flow varies greatly and the spatial distribution of heat flow data in China is uneven. The scientific prediction of continental heat flow is an essential basis for the development of continental heat flow and related research. Based on the relationship between geologic age and heat flow, this paper uses geographic information system (GIS) technology to define heat flow values in different geological regions by using digital geological map of the Chinacontinentalarea, and assigns statistical values to geologic age with large heat flow dispersion combined with tectonic subdivision, so that heat flow prediction is more in line with Chinese tectonic⁃thermal background. Heat flow prediction is based on 1×1 degree equal longitude grid to restrict the influence range of heat flow in grid cell. The predicted mean value of terrestrial heat flow in China continental area is 63.54 mW/m2, and the median value is 62.32 mW/m2, with small discreteness of heat flow distribution. The prediction results in this paper are close to the tectonic⁃thermal background in China, which provides a scientific basis for the prediction of heat flow in the blank area of heat flow data.
大地热流 / 地质年代 / 构造分区 / 热流预测 / GIS.
terrestrial heat flow / geologic age / tectonic subdivision / heat flow prediction / GIS.
| [1] |
Chapman, D. S., Pollack, H. N., 1975. Global Heat Flow: a New Look. Earth and Planetary Science Letters, 28(1): 23-32. https://doi.org/10.1016/0012⁃821X(75)90069⁃2 |
| [2] |
Cui, P., Jia, Y., Su, F. H., et al., 2017. Natural Hazards in Tibetan Plateau and Key Issue forFeature Research. Bulletin of Chinese Academy of Sciences, 32(9): 985-992 (in Chinese with English abstract). |
| [3] |
Davies, J. H., 2013. Global Map of Solid Earth Surface Heat Flow. Geochemistry, Geophysics, Geosystems, 14(10): 4608-4622. https://doi.org/10.1002/ggge.20271 |
| [4] |
Davies, J. H., Davies, D. R., 2010. Earth’s Surface Heat Flux. Solid Earth, 1(1): 5-24. https://doi.org/10.5194/se⁃1⁃5⁃2010 |
| [5] |
Diao, Q., Niu, S.Y., Sun, A.Q., et al., 2019. Development Potential and Suggestions of Geothermal in Eastern China. Journal of Hebei GEO University, 42(5): 1-8 (in Chinese with English abstract). |
| [6] |
Du, L.L., Yang, C.H., Song, H.X., et al., 2020. Neoarchean⁃Paleoproterozoic Multi⁃Stage Geological Events and Their Tectonic Implications in the Fuping Complex, North China Craton. Earth Science, 45(9): 3179-3195 (in Chinese with English abstract). |
| [7] |
Feng, C.G., Liu, S.W., Wang, L.S., et al., 2009. Present⁃Day Geothermal Regime in Tarim Basin, Northwest China. Chinese Journal of Geophysics, 52(11): 2752-2762 (in Chinese with English abstract). |
| [8] |
Feng, C. G., Liu, S. W., Wang, L. S., et al., 2010. Present⁃Day Geotemperature Field Characteristics in the Central Uplift Area of the Tarim Basin and Implications for Hydrocarbon Generation and Preservation. Earth Science, 35(4): 645-656 (in Chinese with English abstract). |
| [9] |
Fuchs, S., Beardsmore, G., Chiozzi, P., et al., 2021. A New Database Structure for the IHFC Global Heat Flow Database. International Journal of Terrestrial Heat Flow and Applications, 4(1): 1-14. https://doi.org/10.31214/ijthfa.v4i1.62 |
| [10] |
Goes, S., Hasterok, D., Schutt, D. L., et al., 2020. Continental Lithospheric Temperatures: a Review. Physics of the Earth and Planetary Interiors, 306: 106509. https://doi.org/10.1016/j.pepi.2020.106509 |
| [11] |
Goutorbe, B., Poort, J., Lucazeau, F., et al., 2011. Global Heat Flow Trends Resolved from Multiple Geological and Geophysical Proxies. Geophysical Journal International, 187(3): 1405-1419. https://doi.org/10.1111/j.1365⁃246X.2011.05228.x |
| [12] |
Hamza, V. M., Vieira, F., 2018. Global Heat Flow: New Estimates Using Digital Maps and GIS Techniques. International Journal of Terrestrial Heat Flow andApplications, 1(1): 6-13. https://doi.org/10.31214/ijthfa.v1i1.6 |
| [13] |
Hao, C.Y., Liu, S.W., Wang, H.Y., et al., 2014. Global Heat Flow: an Overview over Past 20 Years. Chinese Journal of Geology (Scientia Geologica Sinica), 49(3): 754-770 (in Chinese with English abstract). |
| [14] |
He, L. J., Wang, J. Y., 2021. Concept and Application of Some Important Terms in Geothermicsand Geophysics such as Terrestrial Heat Flow. China Terminology, 23(3): 3-9 (in Chinese with English abstract). |
| [15] |
Hu, S. B., He, L. J., Wang, J. Y., 2000. Heat Flow in the Continental Area of China: a New Data Set. Earth and Planetary Science Letters, 179(2): 407-419. https://doi.org/10.1016/S0012⁃821X(00)00126⁃6 |
| [16] |
Hu, S. B., He, L. J., Wang, J. Y., 2001. Compilation of Heat Flow Data in the China Continental Area (3rd Edition). Chinese Journal of Geophysics, 44(5): 604-618.https://doi.org/10.1002/cjg2.180 |
| [17] |
Jiang, G., Gao,P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition).Chinese Journal of Geophysics, 59(8):2892-2910 (in Chinese with English abstract). |
| [18] |
Jiang, G. Z., Hu, S. B., Shi, Y. Z., et al., 2019. Terrestrial Heat Flow of Continental China: Updated Dataset and Tectonic Implications. Tectonophysics, 753: 36-48. https://doi.org/10.1016/j.tecto.2019.01.006 |
| [19] |
Kuang, J., Qi, S. H., Wang, S., et al., 2020. Granite Intrusion in Huizhou,Guangdong Province and Its Geothermal Implications. Earth Science, 45(4): 1466-1480 (in Chinese with English abstract). |
| [20] |
Li, Z.X., Gao, J., Li, W.F., et al., 2016. The Characteristics of Geothermal Field and Controlling Factors in Qaidam Basin, Northwest China. Earth Science Frontiers, 23(5): 23-32 (in Chinese with English abstract). |
| [21] |
Lin, W.J., Gan, H.N., Wang, G.L., et al., 2016. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China. Acta Geologica Sinica, 90(8): 2043-2058 (in Chinese with English abstract). |
| [22] |
Lin, W.J., Liu, Z.M., Ma, F., et al., 2012. An Estimation of HDR Resources in China’s Mainland. Acta Geoscientica Sinica, 33(5): 807-811 (in Chinese with English abstract). |
| [23] |
Lucazeau, F., 2019. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochemistry, Geophysics, Geosystems, 20(8): 4001-4024. https://doi.org/10.1029/2019GC008389 |
| [24] |
Ma, F., Lin, W.J., Lang, X.J., et al., 2015. Deep Geothermal Structures of Potential Hot Dry Rock Resources Area in China. Bulletin of Geological Science and Technology, 34(6): 176-181 (in Chinese with English abstract). |
| [25] |
Mareschal, J.C., Jaupart, C., Iarotsky, L., 2017. The Earth Heat Budget, Crustal Radioactivity and Mantle Geoneutrinos. Neutrino Geoscience, 4.1-4.46. |
| [26] |
Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-28 (in Chinese with English abstract). |
| [27] |
Pollack, H. N., Hurter, S. J., Johnson, J. R., 1993. Heat Flow from the Earth’s Interior: Analysis of the Global Data Set. Reviews of Geophysics, 31(3): 267-280. https://doi.org/10.1029/93RG01249 |
| [28] |
Qiu, N. S., Tang, B. N., Zhu, C. Q., 2022. Deep Thermal Background of Hot Spring Distribution in the Chinese Continent. Acta GeologicaSinica, 96(1): 195-207 (in Chinese with English abstract). |
| [29] |
Steinshouer, D., Qiang, J., McCabe, P., et al., 2006. Maps Showing Geology, Oil and Gas Fields, and Geologic Provinces of the Asia Pacific Region. U.S. Geological Survey Open⁃File Report 97⁃470⁃F, 16. https://doi.org/ 10.3133/ofr97470F |
| [30] |
Sun, Y. J., Dong, S. W., Wang, X. Q., et al., 2022. Three⁃Dimensional Thermal Structure of East Asian Continental Lithosphere. Journal of Geophysical Research: Solid Earth, 127(5): e2021JB023432. https://doi.org/10.1029/2021JB023432 |
| [31] |
Tao, W., Shen, Z. K., 2008. Heat Flow Distribution in Chinese Continent and Its Adjacent Areas. Progress in Natural Science, 18(7): 843-849. https://doi.org/10.1016/j.pnsc.2008.01.018 |
| [32] |
Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2020. Timing of Tectonothermal Events in Archean Basement of the North China Craton. Earth Science, 45(9): 3119-3160 (in Chinese with English abstract). |
| [33] |
Wang, J.Y., Hu, S.B., Pang, Z.H., et al., 2012. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science & Technology Review, 30(32): 25-31 (in Chinese with English abstract). |
| [34] |
Wang, J.Y., Huang, S.P., 2001. Compilation of Heat Flow Data for Continental Area of China. Chinese Journal of Geology (Scientia GeologicaSinica), (2): 196-204(in Chinese). |
| [35] |
Wang, J. Y., Huang, S. P., 1990. Compilation of Heat Flow Data for Continental Area of China (2nd Edition). Seismology and Geology, 12(4): 351-363+366(in Chinese with English abstract). |
| [36] |
Xu, C.J., Zhang, J., Zhang, L., et al., 2021. Estimation of Geothermal Resource Potential of Dry Hot Rock in Shandong Province. Shandong Land and Resources, 37(10): 44-50 (in Chinese with English abstract). |
| [37] |
Zhang, J., Fang, G., HE, Y. B., 2022. The Deep High Temperature Characteristics and Geodynamic Background of Geothermal Anomaly Areas in Eastern China. Earth Science Frontiers,30(2):316-332 (in Chinese with English abstract). |
| [38] |
Zhi, J. L., Du, J. S., Chen, C., 2018. Characteristics of Large⁃Scale Thermal Structure in Lithosphere Beneath Junggar Basin and Surroundings. Earth Science, 43(Suppl. 2): 103-118(in Chinese with English abstract). |
| [39] |
Zhu, W. J., Liu, S. W., Huang, S. P., 2022. Heat Flow in the Asian Continent and Surrounding Areas. International Journal of Terrestrial Heat Flow andApplications, 5(1): 1-8. https://doi.org/10.31214/ijthfa.v5i1.77 |
国家自然科学基金面上项目(41874100)
重点研发计划项目(2018YFA0404104)
全国大地热流值测量与靶区优选(DD20190128)
全国地热资源调查与区划(DD20221676)
/
| 〈 |
|
〉 |