北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义

任文秀 ,  胡斌 ,  唐德亮 ,  吴靖宇 ,  孙柏年

地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1234 -1249.

PDF (5221KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (03) : 1234 -1249. DOI: 10.3799/dqkx.2022.237

北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义

作者信息 +

Palynological Assemblage and Its Significance of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi Basin, Beishan Area

Author information +
文章历史 +
PDF (5346K)

摘要

孢粉化石在确定地层时代和恢复古气候方面都具有重要指示意义.本文首次对北山地区中口子盆地下白垩统赤金堡组中段的孢粉化石进行了细致的分析,共获得孢粉56属84种,其中蕨类植物孢子含量为29.3%,裸子植物花粉含量为62.6%,被子植物花粉含量为8.1%.依据具有时代意义孢粉分子,将赤金堡组中段的地质时代厘定为早白垩世中期Hauterivian-Aptian.并划分出3个孢粉组合,底部为Ephedripites-Pterisisporites-Retitricolpites组合,中部为Classopollis-Cicatricosisporites-Tricolpites组合,上部为Triporoletes⁃Laricoidites组合.3个孢粉组合带从老到新分别代表南亚热带半干半湿的针叶林、灌草丛到亚热带半干旱的针叶林、灌木丛再到北亚热带半湿润针叶林植被类型,气候呈现先变干热后变湿热的特征.

Abstract

Fossil spores and pollen are important indicators for stratigraphic age determination and paleoclimate recovery. In this paper, we first reported the palynological assemblage in the middle part of the Lower Cretaceous Chijinbao Formation in the Zhongkouzi basin of the Beishan area. A total of 56 genera and 84 species of spores and pollens were obtained from the deposits, including 29.3% of fern spores, 62.6% of gymnosperm pollens, and 8.1% of angiosperm pollens. Based on the significant spore and pollen components in the palynological assemblage, we assigned the middle part of the Chijinbao Formation to the middle Early Cretaceous Hauterivian-Aptian. We divided three sequences based on palynological assemblage characteristics, with Ephedripites⁃Pterisisporites⁃Retitricolpites assemblage at the bottom, Classopollis⁃Cicatricosisporites⁃Tricolpites assemblage at the middle, and Triporoletes⁃Laricoidites assemblage at the top. Three Palynological assemblages from old to new respectively represent the vegetation of southern subtropical semi-dry and semi-humid coniferous forests, scrubs to subtropical semi-arid coniferous forests, northern subtropical semi-humid coniferous forests. The climate shows a characteristic of first becoming dry and hot and then becoming hot and humid.

Graphical abstract

关键词

北山地区 / 中口子盆地 / 赤金堡组中段 / 孢粉组合 / 地质时代 / 古气候 / 地层学.

Key words

Beishan area / Zhongkouzi basin / middle section of Chijinbao Formation / palynological assemblage / geochronology / paleoclimate / stratigraphy

引用本文

引用格式 ▾
任文秀,胡斌,唐德亮,吴靖宇,孙柏年. 北山地区中口子盆地下白垩统赤金堡组孢粉组合及其意义[J]. 地球科学, 2025, 50(03): 1234-1249 DOI:10.3799/dqkx.2022.237

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

我国西北内陆甘肃和内蒙古交界的北山地区,处于我国早白垩世混生植物区系和孢粉植物地理分区中北方与南方区的交互地带,这个特殊的地理位置是研究早白垩世古气候环境演变的理想地区之一.北山地区分布大面积侏罗纪和白垩纪山前走滑盆地,形成由中口子、黑鹰山、扎格高脑、公婆泉、骆驼泉和石板井6个小盆地组成的北山盆地群(吴少波,2006).张明震(2014)对公婆泉盆地早白垩世早期下老树窝群开展了详细的孢粉鉴定和研究工作,建立了DeltoidosoraCyathiditesPerinopollenitesBisaccatepollen孢粉组合,研究结果显示该地植被类型多样,松柏类占优势(出现少量的掌鳞杉科),蕨类植物中除桫椤科、蚌壳蕨含量较多外,木贼科和石松类较为常见,紫萁科、水龙骨科和里白科也频繁出现,但未见被子植物花粉.此后,该盆地群中口子等其他盆地至今未开展过白垩纪孢粉学相关研究工作.中口子盆地位于北山盆地群的最南端,面积约2 850 km2,基底为华力西期侵入的花岗岩、石炭纪火山岩及中元古代的变质碎屑岩,盖层主要为侏罗系、白垩系和新近系(靳拥护等,2020),是我国西部重要的油气远景区.盆地中白垩纪地层分布范围较大,主要为赤金堡组.但前人对于赤金堡组的时代归属仍存在分歧,既有晚侏罗世的依据,也有早白垩世的证据(马其鸿等,1982;内蒙古自治区地质局,1996;甘肃省地矿局,1997;杜宝霞,2013;张明震,2014;张金龙等,2017).本文通过对中口子盆地赤金堡组中段孢粉化石开展详细鉴定研究,厘定了赤金堡组中段的地质时代,并进一步探讨了它的植被类型及古气候变化,为我国西北侏罗系‒白垩系划分对比和白垩纪古气候演变研究提供依据.

1 研究剖面及方法

1.1 研究剖面

中口子盆地赤金堡组下段岩性以灰白、黄褐色砾岩、含砾砂岩、中粗粒砂岩夹棕红色粉砂岩、细砂岩等为主,往上渐变为土黄色长石砂岩、泥质粉砂岩、泥质页岩夹砂砾岩,含腹足类、叶肢介等化石,代表了盆地强烈断陷初期的沉积;中段岩性以富含泥质的细碎屑岩为主,主要由灰绿色细砂岩、粉砂岩、泥质页岩、泥岩和油页岩等组成,并夹有多层石膏薄层、铁质砂岩薄层、圆饼状钙质结核和铁质结核,岩相变化不大,含有丰富的叶肢介、介形虫、瓣鳃类和植物化石碎片,显示了盆地湖水变深,湖盆范围变大;上段岩性由以砖红色为主的砾岩、含砾粘土质粉砂岩、泥岩、中粗粒砂岩等组成,代表了盆地开始萎缩变浅(任文秀等,2022).

本文研究化石材料采自早白垩世赤金堡组中段,剖面列述如下(图1):

-未见顶-

6.灰色中层状泥岩夹细砂岩. 3.0 m

5.灰绿色、灰色薄层状页岩与浅灰色中层泥岩互层,二者比例约5∶1;中间夹粉砂岩和结晶的石膏条带,石膏层宽3~5 cm,在泥岩、页岩中含大量植物化石、叶肢介及鱼类化石. 20.0 m

4.土黄、灰色页岩、泥岩与粉砂质泥岩互层并夹石膏条带,在页岩中含植物化石碎片及黄铁矿结核. 21.0 m

3.黄褐色长石细砂岩、泥岩与页岩互层,夹薄层粉砂质泥岩,在泥岩、页岩中含大量炭化植物化石碎片、叶肢介化石30.0 m

2.土黄色厚层状长石细砂岩,红棕色泥岩、粉砂岩夹少量砾岩. 13.1 m

1.灰黄、土黄色厚层状砾岩夹灰黄色厚层状长石细砂岩,极少量的含砾长石砂岩及砂砾岩. 18.3 m

-不整合-

下伏地层:侏罗系中下统龙凤山群砾岩.

1.2 研究方法

本文研究材料采自中口子盆地赤金堡组中段剖面,在研究剖面的第三层到第六层每间隔3 m采集一个孢粉样品,共采集了23个孢粉样品(图1).

孢粉化石的提取方法采取的是目前国际上最为常用的酸泡‒筛虑法(韦一等,2021),研究中所有样品的孢粉鉴定、统计全部在兰州大学地层古生物学实验室完成,观察及拍照在Leica DM4000B多功能生物显微镜下完成.通过对孢粉样品的细致分析,在其中发现了较为丰富的孢粉化石.

2 孢粉组合特征

通过对赤金堡组中段所采集孢粉样品的处理及分析,共获得孢粉56属84种,及15个未定种(见附表1图2~图8),其中蕨类植物孢子25属29种,占组合的29.3%,裸子植物花粉27属62种,占组合的62.6%,被子植物花粉4属8种,占组合的8.1%.

23个孢粉样品显示,整体上蕨类植物孢子含量为28.3%,裸子植物花粉含量为62.8%,被子植物花粉含量为8.9%.根据孢粉化石的纵向分布规律及含量变化自下而上可划分为3个孢粉组合(如图9):

孢粉组合Ⅰ(31.5~61.5 m),为EphedripitesPterisisporitesRetitricolpites组合,该组合特点是裸子植物花粉占优势,蕨类孢子和被子植物花粉相当.

其中蕨类植物孢子占19.6%,主要属种包括Baculatisporites comaumensis、Brochotriletes degradatus、Cicatricosisporites pseudotripartitus、Contignisporites glebulentus、Crassoretitriletes vanraadshovenii、Densoisporites velatus、Laevigatosporites ovatus、Playfordiaspora crenulata、Pterisisporites verrus、Seductisporites minor、Toroisporissp.、Yichangsporites sp.、Zlivisporis sp..其中以有环三缝孢类Pterisisporites verrus(0~36.45%)占主要地位,Seductisporites minor(0~29.4%)和Zlivisporis sp.(0~24.2%)占优势,其次为无环三缝孢类Yichangsporites sp.(0~11.5%)、Crassoretitriletes vanraadshovenii(0~10.8%),并出现了重要的Cicatricosisporites(0~1.1%),但数量少、类型单调,其他属种均小于8%.

裸子植物花粉占69.4%,主要属种为Abietineaepollieites cembraeformis、Araucariacites austrilis、Araucariacites sp.、Benmeteiteaepollenites cf. chenxianensis、Cedripites deodariformis、Cedripites medius、Cedripites pachydermus、Classopollis classoides、Cycadopites sp.、Ephedripites fushunensis、Ephedripites megafusiformis、Ephedripites sp.、Ephedripites major、Exesipollenites pseudotriletes、Jugella claribaculata、Keteleeriaepollenites davidianaeformis、Keteleeriaepollenites dubius、Laricoidites magnus、Parcisporites annylatus、Perinopollenites elatoides、Perinopollenites turbatus、Piceapollis alatus、Piceapollis sp.、Piceapollis tobolicus、Pinuspollenites cf. hubeiensis、Pinuspollenites labdacus cf. maximus、Pinuspollenites labdacus cf. minitus、Podocarpidites andiniformis、Podocarpidites elongatus、Podocarpidites piciformis、Podocarpidites unicus、Protoconiferus sp.、Taxodiaceaepollenites elongatus、Taxodiaceaepollenites hiatus、Taxodiaceaepollenites sp.、Taxodiaceaepollenites Zhichengensis、Tsugaepollenites cf. azonalis、Tsugaepollenites sp.、Tsugaepollenites verruspinus、Tsugaepollenites viridifluminpites.其中双囊类Taxodiaceaepollenites hiatus(0~25.6%)、Tsugaepollenites cf. azonalis(5.1%~21.3%)、Parcisporites(0~17%),有孔类Perinopollenites turbatus(0~22.1%)和有沟类Ephedripites(0~16.8%)占优势,并零星出现了少量的有沟类Jugella(0~4.6%)和具环沟类Classopollis(0~0.4%),其他的含量均小于10%.

被子植物花粉占11.7%,其中Magnolipollis(0~22.6%)常见,类型多样,占优势,包括Magnolipollis fusiformis(0~10%)、Magnolipollis magnolioides(0~22.6%)、Magnolipollis maximus(0~1.4%)、Magnolipollis grandus(0~9%)、Magnolipollis oblongus(0~5.3%)五种,其次为Retitricolpites sp.(0~1.9%).Retitricolpites广泛分布于北半球晚白垩世‒第三纪,分布在我国湖北荆门革家集晚白垩世跑马岗组;Magnolipollis主要分布在全球早白垩世至第三纪,在我国广东三水盆地白鹤洞组、辽西义县盆地义县组均有分布(张清如,2009).

孢粉组合Ⅱ(64.5~82.5 m),为ClassopollisCicatricosisporitesTricolpites组合,特点还是以裸子植物花粉占优势并有所增加,蕨类植物孢子次之并有所减少,被子植物花粉含量也缓慢降低.

其中蕨类植物孢子占14.8%,类型相对丰富,主要属种包括Brochotriletes degradatusCicatricosisporites halle、Cyathidites punctatas、Deltoidospora hallii、Laevigatosporites robustus、Lygodioisporites sp.、Playfordiaspora crenulata、Polypodiisporites usmensis、Toroisporis longilaeeatratus、Zlivisporis sp..其中Zlivisporis sp.(0~12.9%)、Polypodiisporites usmensis(0~10.9%)和Toroisporis longilaeeatratus(0~10.7%)占比最高,其他属种均小于9%.重要的海金沙科Cicatricosisporites(0~2.9%)含量有所增加,并出现Lygodioisporites(0~8.4%).

裸子植物花粉占76.8%,主要种属为Abietineaepollenites microalatus cf. major、Abietineaepollenites microalatus cf. minor、Abietineaepollieites cembraeformis、Araucariacites austrilis、Cedripites deodariformis、Cedripites arcuatus、Classopollis classoides、Cycadopites sp.、Ephedripites fushunensis、Ephedripites longformis、Ephedripites Psudotrinatus、Ephedripites sp.、Ephedripites errumenosus、Ephedripites major、Exesipollenites pseudotriletes、Jiaohepollis sp.Monocolpopollenites microreticulatusParcisporites annylatus、Perinopollenites elatoides、Perinopollenites turbatus、Piceaepollis sp.、Piceapollis tobolicus、Pinuspollenites cf. hubeiensis、Pinuspollenites labdacus cf. minitus、Podocarpidites cf. nagaeaformis、Podocarpidites podocanpoidites、Podocarpidites unicusPotonieisporites novicus、Protoconiferus funarius、Protoconiferus sp.、Psophosphaera minor、Taxodiaceaepollenites bockwitzensis、Taxodiaceaepollenites cf. hiatus、Taxodiaceaepollenites hiatus、Tsugaepollenites cf. azonalis、Tsugaepollenites cf. minimus、Tsugaepollenites verruspinus、Tsugaepollenites viridifluminpites.其中双囊类Tsugaepollenites(11.8%~37.4%)和Perinopollenites(0~37.3%)占优势、Taxodiaceaepollenites(0~20%)有所减少,有沟类Ephedripites (0~18.5%)和具环沟类Classopollis(0~12.9%)明显增加,出现了单囊类Jiaohepollis(0~1.5%).

被子植物花粉占8.4%,主要种属为Tricolpites sp.(0~2.5%)、Magnolipollis magnolioides(0~9.7%)、Magnolipollis maximus(0~5.1%)、Magnolipollis grandus(0~10.2%)、Magnolipollis oblongus(0~11.8%).比上一组合新出现了TricolpitesTricolpites广泛分布于全球白垩纪、第三纪地层中,在我国内蒙古二连盆地哈达图组、广东三水盆地白鹤洞组、江西会昌周家店组、海拉尔盆地尹敏组等白垩纪地层中均有分布(张清如,2009).

孢粉组合Ⅲ(85.5~100.5 m),为Triporoletes⁃Laricoidites组合.该组合主要特征为蕨类植物孢子占绝对优势,裸子植物花粉急剧减少,被子植物花粉也有所减少.

其中蕨类植物孢子占58.5%,类型较为丰富,主要属种包括Apiculatasporites delicatusArchaeoperisaccus indistinctusCalamospora breviradiataCicatricosisporites pseudotripartitusPlayfordiaspora crenulataPolycingulatisporites sp.Polypodiaceoisporites verrucatusPolypodiisporites usmensisPunctatosporites venustusToroisporis sp.、Triporoletes tornatilisVerrucosisporites microtuberosusVerrucosisporites ovimammusZlivisporis sp..其中有环三缝孢类Triporoletestornatilis(0~50.8%)、Zlivisporis sp.(0~32.2%)、Polypodiisporites(0~28.8%)占绝对优势,其次为Apiculatasporites(0~18.2%)、Archaeoperisaccus(0~17.3%)、Toroisporis(0~16.9%)、Polypodiaceoisporites(0~16%),其余孢子类型含量均为0~12%.与上一个组合相比有环三缝孢类Triporoletes、具环单缝孢类Polypodiaceoisporites、具腔单缝孢类Archaeoperisaccus、无环三缝孢类Apiculatasporites出现并繁盛,无环三缝孢类Toroisporis(0~16.9%)、海金沙科Cicatricosisporites(0~3.8%)、无环单缝孢类Playfordiaspora、Polypodiisporites含量有所增加,出现了无环三缝孢类Verrucosisporites(0~4.1%)、无环单缝孢Punctatosporites(0~8.5%).

裸子植物花粉急剧减少,占36.5%,主要属种为Araucariacites austrilis、Cycadopites caperatus、Cycadopites cymbatus、Ephedripites sp.、Ephedripites major、Florinites florinii、Laricoidites magnus、Labiisporites manos、Nanlingpollis projecensis、Nuskoisporites dulhuntyi、Piceapollis sp.、Podocarpidites podocanpoidites、Potonieisporites novicus、Tsugaepollenites cf. azonalis.其中两气囊类Tsugaepollenites(0~28%)和有沟类Cycadopites(0~16.4%)占绝对优势,其他含量都在8%以下.相对上一组合Laricoidites(2.2%~8.7%)出现并稳定,Ephedripites(0~4%)减少,Classopollis消失.

被子植物花粉占5.0%,主要种属为Magnolipollis grandus(0~14.7%)、Magnolipollis oblongus(0~1.7%).

3 讨论

3.1 地层时代

北山地区中口子盆地出露的赤金堡组,原地质部甘肃省地质局第二区域地质测量队(1971,1∶20万红柳大泉幅区域地质测量报告)将该套地层定为赤金堡群,认为其地质时代可能为早白垩世或晚侏罗世.内蒙古自治区地质局(1996)经岩石地层对比研究将赤金堡群改为赤金堡组,并根据化石及上下地层接触关系将其地层时代确定为早白垩世早期.杜宝霞(2013)在甘肃西部玉门地区旱峡剖面的赤金堡组上段开展了研究,根据大化石和孢粉化石将甘肃境内的赤金堡组厘定为早白垩世.张金龙等(2017)通过开展内蒙古1∶5万基东、尖山、蒜井子、三道明水幅区域地质矿产调查项目,对公婆泉盆地东部蒜井子地区的赤金堡组的时代进行了厘定,依据古生物化石组合认为其时代为早白垩世.张明震(2014)对甘肃酒泉盆地红柳峡剖面赤金堡组的孢粉化石开展了详细研究,根据孢粉化石的地史分布情况,将该剖面赤金堡组顶部厘定为早白垩世中期欧特里夫期至巴列姆期.

本次在中口子盆地赤金堡组中发现了一些大化石(任文秀,2022,2024),该大化石组合和热河生物群非常相似,动物化石有热河生物群典型的三尾拟蜉蝣(Ephemeropsis trisetalis)、狼鳍鱼(Lycoptera)和叶肢介(Eosestheria)等分子(黄建东和任东,2008),植物化石中发现的蕨类和松柏类也都是热河生物群的典型分子,说明其地质时代应与热河生物群相当,为早白垩世凡兰吟(Valanginian)晚期至阿普特(Aptian)中期(Yang et al.,2020).

本文对北山地区中口子盆地出露的赤金堡组中段的孢粉化石进行了细致的研究,其中富含一些具有生物地层意义的分子.无突肋纹孢Cicatricosisporites在晚侏罗世最晚期少量出现,但其分布范围小、有局限性且类型较为单调(Dörhöfer and Norris, 1977).在世界大多数地区,Cicatricosisporites属均出现在侏罗系与白垩系界线之上,故Cicatricosisporites孢子的出现具有重要的指示意义(张明震,2014).白垩纪中Cicatricosisporites化石含量和类型上的变化也具有时代指示意义(张明震,2014).白垩纪早期Cicatricosisporites个体含量很少而且类型匮乏,中、晚期Cicatricosisporites数量变多且种类丰富(黎文本, 1984).本次发现了Cicatricosisporites属两种,含量甚微,具有白垩纪早期的特点.

本文发现的孢粉中包含了被子植物花粉,为木兰属和百合粉属.在国内外的记录里, 被子植物花粉最早见于凡蓝今期到欧特里夫期(Hughes and McDougall, 1987; 张一勇, 1999; 林妙琴等, 2016),说明该组时代不早于Valanginian.Herngreen et al. (1996)指出麻黄类花粉Ephedripites一般可以作为白垩纪的特征分子,Ephedripites在纵向的变化也具有地层指示意义(Hochuli, 1981Schrank, 1992Batten, 1996Herngreen et al., 1996).Ephedripites在早白垩世早期贝里阿斯期(Berriasian)至凡蓝今期(Valanginian)含量不足2%,一般较为罕见;到欧特里夫期(Hauterivian)⁃巴雷姆期(Barremian)之间,含量有所提高,南方区系提高到3.0%~20.6%、北方区系增加到0.7%~15.2%;至早白垩世晚期阿普特期(Aptian)时,迅速发展,北方区系占1.2%~19%、南方区系已经达到3%~36%左右(刘兆生,2000;张明震,2014).本次发现了较多的Ephedripites化石,花粉含量占0~18.5%,说明赤金堡组时代应不早于Hauterivian.本次组合中还出现了少量的Classopollis粉(0~12.9%),Classopollis粉在晚侏罗世繁盛(含量60%~80%),进入早白垩世早期快速下降,直到早白垩世晚期(一般于Aptian)又开始大量增加(高瑞祺等,1999),说明该组合地层时代应早于Aptian.本次孢粉中出现了极少量的蛟河粉(Jiaohepollis),Jiaohepollis是黎文本(1984)研究吉林蛟河早白垩世孢粉组合时所建的新属.随后在我国下白垩统中均有报道,如吉林蛟河地区早白垩世乌林组和磨石砬子组、内蒙古大磨拐河组、辽西朝阳九佛堂组、吉林安图县屯田营组、河北滦平大北沟组、河南确山县谭楼组、甘肃玉门下沟组和西藏八宿多尼组,Jiaohepollis始见于欧特里夫期‒巴列姆期,一直延续至阿普特期(钱少华和王从风, 1986; 余静贤等, 1986; 刘兆生, 2000; 黎文本, 2001; 丁秋红等, 2010; 程金辉和尚玉珂, 2015; Lin and Li, 2019),说明该地层时代不晚于阿普特期.本文孢粉组合及特征与辽西义县组中部孢粉特征基本一致,而义县组中部的时代为早白垩世欧特里夫期‒巴列姆期.综合以上结果,本文将北山地区中口子盆地赤金堡组中部的地质时代厘定为早白垩世中期欧特里夫期(Hauterivian)至阿普特期(Aptian).

3.2 古植被、古气候分析

现今,中口子盆地海拔1 000~1 600 m,光照充足、干燥多风、蒸发量大、降水稀少、温差大,年蒸发量约为3 700~4 000 mm,年降水量 50 mm,属典型的戈壁荒漠气候.植物以梭梭树、锦鸡儿、泡泡刺、霸王、沙蒿、星毛短舌菊、麻黄等乔灌木和其他盐碱草本植物为主.而白垩纪该地区的古气候状况与现代差别很大,可利用地层中保存的孢粉化石资料,近似地恢复当时的古植被,以进一步研究当时的古气候状况及其演变.

植物大化石中繁殖器官极难保存,而孢粉化石因数量多、易保存、分布广的特点在古植被与古气候恢复方面发挥了重要作用(林妙琴,2020).高瑞祺等(1999)尝试利用“孢粉植被”的思路重建了松辽盆地白垩纪的古植被面貌;万传彪(2006)对海拉尔盆地白垩纪地层中孢粉的种类和含量进行了研究,并采用植被类型、干湿度和气候带3个维度对古植被及古气候进行了重建.崔莹(2015)利用孢粉对辽西地区早白垩世欧特里夫期到巴列姆期的孢粉植被、气候带、干湿度类型分别进行了研究.研究区赤金堡组孢粉化石较为丰富,本文采用以上方法对赤金堡的古植被、古气候进行恢复.

依据各孢粉组合的孢粉谱,结合所出现孢粉对应现生母体植物的生态数据,将其归类于针叶林、落叶阔叶林、常绿阔叶林、灌木林与草本植物5大生态类群.气候带划分的思路与植被类型大体一样,是将孢粉依据母体植物分别划分为热带植物、热‒亚热带、亚热带、热带‒温带植物和温带植物5类.干湿度划分是依据其可能的母体植物的生态环境将其归类于:旱、中、湿、沼、水生5个生态类群,并将5大生态类群分别对应干旱、半干旱、半干半湿、半湿润、湿润5种干湿度类型.如为干旱气候,则其相应的旱生植物类群的含量必须>50%,湿润气候其相应的湿生植物类群的含量必须大于一半.

应用“孢粉植被”的理念,通过孢粉谱及其母体植物的生态环境特征,对北山地区赤金堡组的植被类型、气候带类型、干湿度类型分别进行定量划分,重建结果见表1~表3.重建结果显示,北山地区中口子盆地赤金堡组中段下部沉积(31.5~61.5 m)中针叶树52.88%、灌木8.47%、草本9.41%,指示这个时期的植被类型为针叶林、灌草丛;植被中亚热带植物占35.16%,热带植物占21.91%,其气侯带属于南亚热带;植被中中生和旱生植物占30.14%,湿生和沼生植物占26.39%,说明当时的气候为半干半湿.中部沉积(61.5~82.5 m)针叶树53%、灌木12.7%、草本2.54%,指示当时的植被类型为针叶林、灌木丛;植被中亚热带植物占41.67%,热带‒亚热带植物占12.61%,温带植物占13.41%,其气侯带属于亚热带;植被中中生和旱生占32.59%,湿生和沼生占19.31%,说明当时的气候为半干旱.上部沉积(82.5~100.5 m)针叶树25.78%,灌木和草本均小于3%,指示当时的植被类型为针叶林;植被中亚热带植物占19.34%,其他均小于8%,其气侯带属于北亚热带;植被中中生和湿生占15.4%,说明当时的气候为半湿润.

综上,赤金堡组中段的植被从下部到上部经历了从南亚热带半干半湿的针叶林、灌草丛到亚热带半干旱的针叶林、灌木丛再到北亚热带半湿润针叶林的演变,气候先变干热后变湿热.这与张明震(2014)研究公婆泉盆地获得早白垩世的植被和气候变化趋势相吻合.

4 结论

(1)本文首次报道了北山地区中口子盆地赤金堡组中段孢粉序列,鉴定孢粉56属84种,及15个未定种,其中蕨类植物孢子25属29种,占组合的29.3%,裸子植物花粉27属62种,占组合的62.6%,被子植物花粉4属8种,占组合的8.1%.并划分出3个组合,底部为EphedripitesTaxodiaceaepollenitesMagnolipollis孢粉组合,中部为Classopollis⁃Cicatricosisporites⁃Tricolpites孢粉组合,上部为Triporoletes⁃Laricoidites孢粉组合.

(2)根据特殊孢粉及含量变化,将北山地区中口子盆地赤金堡组中段的地质时代厘定为早白垩世中期欧特里夫期(Hauterivian)至阿普特期(Aptian).

(3)通过古植被重建,说明赤金堡组中段植被整体上从老到新经历了从南亚热带半干半湿的针叶林、灌草丛到亚热带半干旱的针叶林、灌木丛再到北亚热带半湿润针叶林的演变,气候先变干热后变湿热.

参考文献

[1]

Batten, D. J., 1996. Upper Jurassic and Cretaceous Miospores. In: Jansonius, J., Mcgregor, D. C., eds., Palynology: Principles and Applications, No. 2. American Association of Stratigraphic Palynologists’ Foundation, Dallas, 807-830.

[2]

Bureau of Geology and Mineral Resources of Gansu Province, 1997. Stratigraphy (Lithostratic) of Gansu Province. China University of Geosciences Press, Wuhan (in Chinese).

[3]

Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region, 1996. Stratigraphy(Lithostratic) of Nei Mongol Autonomous Region. China University of Geosciences Press, Wuhan (in Chinese).

[4]

Chen, J. H., Shang, Y. K., 2015. Early Cretaceous Palynological Assemblage Sequence and Palaeoclimate Research in Zhalainuoer Coalmine, Manzhouli, Inner Mongolia. Acta Palaeontologica Sinica, 54(3): 316-341 (in Chinese with English abstract).

[5]

Cui, Y., 2015. Analysis of Palynomorph Assemblage and Palaeoclimate in the Middle Part of Yixian Formation, Yixian Basin in Western Liaoning Province (Dissertation). Northeastern University, Shenyang (in Chinese with English abstract).

[6]

Ding, Q. H., Li, Y. F., Zhang, J., et al., 2010. Early Cretaceous Palynological Assemblages from the Wulangai Basin, Inner Mongolia. Acta Micropalaeontologica Sinica, 27(2): 159-172 (in Chinese with English abstract).

[7]

Dörhöfer, G., Norris, G., 1977. Discrimination and Correlation of Highest Jurassic and Lowest Cretaceous Terrestrial Palynofloras in North⁃West Europe. Palynology, 1(1): 79-93. https://doi.org/10.1080/01916122.1977.9989151

[8]

Du, B. X., 2013. Fossil Plants from the Lower Cretaceous of Yumen, Gansu Province and Palaeoenvironmental Reconstruction (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).

[9]

Gao, R. Q., Zhao, C. B., Qiao, X. Y., et al., 1999. Cretaceous Oil Strata Palynology from Songliao Basin. Geological Publishing House, Beijing, 206-372 (in Chinese with English abstract).

[10]

Herngreen, G. F. W., Kedves, M., Rovnina, L. V., et al., 1996. Cretaceous Palynofloral Provinces: A Review. In: Jansonius, J., Mcgregor, D. C., eds., Palynology: Principles and Applications, No. 3. American Association of Stratigraphic Palynologists’Foundation, Dallas, 1157-1188.

[11]

Hochuli, P. A., 1981. North Gondwanan Floral Elements in Lower to Middle Cretaceous Sediments of the Southern Alps (Southern Switzerland, Northern Italy). Review of Palaeobotany and Palynology, 35(2-4): 337-358. https://doi.org/10.1016/0034⁃6667(81)90116⁃0

[12]

Huang, J. D., Ren, D., 2008. Ephemeropsis Trisetalis Eichwald might Have been Absent in the Jehol Biota from China. Geological Review, 54(5): 602-608 (in Chinese with English abstract).

[13]

Hughes, N. F., McDougall, A. B., 1987. Records of Angiospermid Pollen Entry into the English Early Cretaceous Succession. Review of Palaeobotany and Palynology, 50(3): 255-272. https://doi.org/10.1016/0034⁃6667(87)90003⁃0

[14]

Jin, Y. H., Chang, L., Peng, C., et al., 2020. Geochemical Anomaly Characteristics and Uranium Deposit Prospecting Indication in Zhongkouzi Basin, Beishan Mountains. Mineral Exploration, 11(3): 546-552 (in Chinese with English abstract).

[15]

Li, W. B., 1984. Early Cretaceous Sporopollen Assemblages in Jiaohe, Jilin Province. Journal of Nanjing Institute of Geology and paleontology, Chinese Academy of Sciences, 19: 67-141 (in Chinese).

[16]

Li, W. B., 2001. An Earliest Cretaceous Palynological Assemblage from the Tuntianyin Formation in Antu, Jilin Province. Acta Palaeontologica Sinica, 40(4): 450-456 (in Chinese with English abstract).

[17]

Lin, M. Q., 2020. Late Jurassic to Early Cretaceous Palynofloras of Northern China and Xizang and Their Palaeoenvironmental Significances (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).

[18]

Lin, M. Q., Li, J. G., 2019. Late Jurassic⁃Early Cretaceous Palynofloras in the Lhasa Block, Central Xizang, China and Their Bearing on Palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 515: 95-106. https://doi.org/10.1016/j.palaeo.2018.05.038

[19]

Lin, M. Q., Li, J. G., Peng, J. G., 2016. Early Cretaceous Palynological Assemblages from the Third Member of the Tuchengzi Formation at Sihetun, Beipiao County, Western Liaoning Province, Northeast China and Their Implications. Acta Micropalaeontologica Sinica, 33(3): 261-271 (in Chinese with English abstract).

[20]

Liu, Z. S., 2000. Early Cretaceous Sporopollen Assemblage from the Hanxia of Yumen in Gansu, Nw China. Acta Micropalaeontologica Sinica, 17(1): 73-84 (in Chinese with English abstract).

[21]

Ma, Q. H., Lin, Q. B., Ye, C. H., et al., 1982. Division and Comparison of Chijinbao Formation and Xinminbao Group in the West of Jiuquan Basin. Journal of Stratigraphy, 6(2): 112-120 (in Chinese with English abstract).

[22]

Qiao, S. H., Wang, C. F., 1986. Early Cretaceous sporo⁃Pollen Assemblages from Southern Henan, China. Acta Palaeontologica Sinica, 25(1): 97-103 (in Chinese with English abstract).

[23]

Ren, W. X., 2022. Early Cretaceous Plant Fossils and Paleoenvironment of Zhongkouzi Basin in Beishan Area (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).

[24]

Ren, W. X., Han, L., Wu, G. T., et al., 2024. Discovery of Early Cretaceous Ginkgoites in Beishan, Gansu Province: Also on Changes of Paleoatmospheric CO2 in Jurassic to Cretaceous in Gansu Province. Earth Science, 49(1): 209-223 (in Chinese with English abstract).

[25]

Schrank, E., 1992. Nonmarine Cretaceous Correlations in Egypt and Northern Sudan: Palynological and Palaeobotanical Evidence. Cretaceous Research, 13(4): 351-368. https://doi.org/10.1016/0195⁃6671(92)90040⁃w

[26]

Wan, C. B., 2006. Cretaceous Palynological Flora in Hailar Basin (Dissertation). Jilin University, Changchun (in Chinese with English abstract).

[27]

Wei, Y., Yang, B., Xia, H. D., et al., 2021. Paleovegetation and Paleoclimate during Mid⁃Late Eocene in Fushun Basin. Earth Science, 46(5): 1848-1861 (in Chinese with English abstract).

[28]

Wu, S. B., Bai, Y. B., 2006. Jurassic⁃Cretaceous Source rock⁃Reservoir⁃Cap Associations and Hydrocarbon Potentials in the Beishan Basins. Chinese Journal of Geology, 41(1): 1-9 (in Chinese with English abstract).

[29]

Yang, S. H., He, H. Y., Jin, F., et al., 2020. The Appearance and Duration of the Jehol Biota: Constraint from SIMS U⁃Pb Zircon Dating for the Huajiying Formation in Northern China. Proceedings of the National Academy of Sciences of the United States of America, 117(25): 14299-14305. https://doi.org/10.1073/pnas.1918272117

[30]

Yu, J. X., Pu, R. G., Wu, H. Z., 1986. Sporo⁃Pollen Assemblages from the Upper Part of the Rehe Group, Liaoning Province. Acta Geoscientica Sinica, 7(2): 93-119 (in Chinese with English abstract).

[31]

Zhang, J. L., Pan, Z. L., Chen, C., et al., 2017. Sedimentary Characteristics and Age of the Early Cretaceous Chijinbao Formation in the Sandaomingshui of Beishan Area, Inner Mongolia. Geological Survey and Research, 40(1): 29-34, 80 (in Chinese with English abstract).

[32]

Zhang, M. Z., 2014. Late Mesozoic Environment and Ecology EvolutionBased on Palynological Records from Central East Asia (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract).

[33]

Zhang, Q. R., 2009. Preliminary Summary of Cretaceous Neogene Sporopollen Fossil Assemblages in Central South China. China University of Geosciences Press, Wuhan (in Chinese).

[34]

Zhang, Y. Y., 1999. The Evolutionary Succession of Cretaceous Angiosperm Pollen in China. Acta Palaeontologica Sinica, 38(4): 435-453 (in Chinese with English abstract).

基金资助

甘肃省自然科学基金项目(20JR5RA039)

国家自然科学基金项目(42362003)

国家自然科学基金项目(32170222)

国家自然科学基金项目(31870200)

AI Summary AI Mindmap
PDF (5221KB)

76

访问

0

被引

详细

导航
相关文章

AI思维导图

/