西藏北姆朗斑岩型铜钼矿床的发现及意义

次琼 ,  郑有业 ,  吴松 ,  刘鹏 ,  赵亚云 ,  龚福志 ,  杜泽忠 ,  侯依涛

地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1305 -1318.

PDF (12482KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1305 -1318. DOI: 10.3799/dqkx.2024.120

西藏北姆朗斑岩型铜钼矿床的发现及意义

作者信息 +

Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang

Author information +
文章历史 +
PDF (12781K)

摘要

西藏朱诺矿集区位于冈底斯成矿带西段,区内北东-南西向化探异常呈串珠状大面积展布,成矿条件优越,是新一轮找矿突破战略行动部署的重点区块.北姆朗铜钼矿床为近年来在该矿集区内继朱诺超大型矿床之后新发现的又一斑岩型铜钼矿床,累计查明铜金属量49.72万吨,平均品位0.51%.北姆朗铜钼矿床岩浆作用强烈,发育成矿前石英斑岩(~49.7 Ma),成矿主期二长花岗斑岩(~14.8~14.0 Ma)、二长花岗岩(~14.8~14.1 Ma)、闪长玢岩(~14.6 Ma)和成矿晚期花岗斑岩(~12.5~11.0 Ma)、煌斑岩.矿化主要赋存在成矿主期岩体及成矿前石英斑岩中,与成矿密切相关的地质体为二长花岗斑岩和二长花岗岩.北姆朗铜钼矿床辉钼矿Re-Os年龄限定成矿时代为13.8±0.1 Ma.北姆朗铜钼矿床角砾岩发育,包括电气石胶结角砾岩、碎屑物支撑结构角砾岩和石英-黄铁矿胶结角砾岩.北姆朗铜钼矿床热液蚀变强烈发育,由中心钾化(进一步分为钾长石蚀变和黑云母蚀变)、外围青磐岩化和浅部绢英岩化蚀变组成,3种蚀变相互叠加,其中黑云母化蚀变与矿化最为密切.北姆朗铜钼矿床的发现证实主流观点认为不能成矿或成矿潜力较小的区域也可以形成大型-超大型斑岩铜矿床,为深入研究碰撞造山带斑岩成矿作用过程及深部控矿机制提供了新的实例.北姆朗铜钼矿床的发现得益于地质、化探、高光谱等综合找矿方法应用示范,特别是短波红外光谱技术可以很好地指示热液/矿化中心.该矿床的发现为该区域寻找同类型矿床指明了方向,也为朱诺矿集区成为我国又一个新的千万吨级铜资源基地提供了重要成果支撑.

Abstract

The Zhunuo ore concentration district is located in the western Gangdese metallogenic belt, Xizang. The area contains a large NE-SW geochemistry anomaly, which exhibits favorable metallogenic conditions and is a key block for the deployment of a new round of breakthrough strategic actions in mineral exploration. The Beimulang deposit is a newly discovered porphyry Cu-Mo deposit after the Zhunuo deposit in the area. Beimulang contains a mental reserve of 1.3 million tons averaging 0.51% Cu. Magmatic activity in the deposit is strong, including pre-mineralization quartz porphyry (~49.7 Ma), inter-mineralization monzogranite porphyry(~14.8-14.0 Ma), monzogranite(~14.1 Ma), diorite porphyry, and late-mineralization granite porphyry (~11.0-11.7 Ma), lamprophyre. Mineralization occurs mainly in the main inter-mineralization and pre-mineralization intrusions. Molybdenite Re-Os dating shows that main-stage mineralization at Beimulang formed in 13.8±0.1 Ma. Three breccia types have been observed in the deposit, typically located in the apical parts of monzogranite porphyry: (1) tourmaline-cemented breccia, (2) clast-supported breccia, and (3) quartz-pyrite-cemented breccia. Hydrothermal alteration is strongly developed and includes central potassic, peripheral propylitic, and shallow phyllic alteration. The three kinds of alteration are superimposed on each other. Biotite alteration is most closely associated with Cu mineralization. The discovery of the Beimulang deposit confirms the prevailing view that large and super-large porphyry Cu deposits can be formed in areas that cannot be formed or have low ore-forming potential, which provides a new example for further study of the porphyry mineralization process and deep metallogenic mechanism in collision orogenic belt. The discovery of the Beimulang Cu-Mo deposit is attributed to the demonstration of comprehensive exploration methods such as geology, stream sediment geochemical, and hyperspectral analysis. In particular, short-wave infrared spectroscopy technology can effectively trace hydrothermal/mineralization centers. The discovery of the deposit has pointed out the direction for searching for similar deposits in the region and also provided important support for the Zhunuo ore concentration district to become another new ten million tons of copper resource base in China.

Graphical abstract

关键词

蚀变-矿化 / 高光谱 / 斑岩型铜矿 / 北姆朗 / 西藏 / 矿床学.

Key words

alteration-mineralization / hyperspectral / porphyry copper deposit / Beimulang / Xizang / mineral deposits

引用本文

引用格式 ▾
次琼,郑有业,吴松,刘鹏,赵亚云,龚福志,杜泽忠,侯依涛. 西藏北姆朗斑岩型铜钼矿床的发现及意义[J]. 地球科学, 2025, 50(04): 1305-1318 DOI:10.3799/dqkx.2024.120

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

冈底斯成矿带西段陆相火山岩大面积覆盖,其是否具备铜多金属找矿潜力长期以来备受关注和争议(郑有业等,2021).朱诺矿集区位于冈底斯成矿带西段昂仁县和谢通门县境内,发育强烈的北东-南西向化探异常,成矿条件优越.长期以来,受制于朱诺矿集区复杂的构造背景、不便的交通条件、极低的工作程度,区内仅朱诺矿床取得找矿突破(郑有业等,2006;Zheng et al., 2007).2014年以来,针对国家对铜矿资源的重大战略需求,西藏地勘局第二地质大队、中国地质大学(北京)和中国地质调查局发展研究中心历时10年,依托“西藏朱诺整装勘查区专项填图与技术应用示范”“冈底斯中段斑岩成矿系统深部预测评价与找矿示范”“西藏昂仁县北姆朗铜矿普查”等多个国家级或自治区级科研示范和地勘专项,克服西藏高寒缺氧、生态脆弱的特殊环境,产学研用紧密结合,综合利用高光谱、化探等技术方法在朱诺斑岩型铜矿床相邻的北姆朗地区实现了斑岩铜矿的新发现和重大找矿突破(Liu et al., 2022).近年来,随着冈底斯西段朱诺超大型斑岩铜矿床外围空白区次玛班硕铜矿床(赵亚云等,2017;李家桢等,2022)、无巴多来铜矿床和错祖、致古弄、藏马让及丁阳等铜矿化点或线索的陆续发现,证明朱诺矿集区具有巨大的进一步找矿潜力,特别是呈北东-南西向串珠状展布的化探异常区(Zheng et al., 2014a),很可能成为继玉龙、巨龙、多龙之后新发现的第四大铜资源基地.北姆朗铜钼矿床的发现得益于地质、化探、高光谱综合找矿方法应用示范,本文重点从短波红外光谱特征波长变化方面介绍其发现过程,并分析矿床地质特征、矿体特征,总结矿床成因及发现意义,为该区域寻找同类型矿床提供勘查思路、找矿方向和勘查经验,为国家新一轮找矿突破战略行动工作部署提供决策依据.

1 区域地质

青藏高原是世界上最大的大陆碰撞造山带(Yin and Harrison, 2000),以金沙江缝合带、班公湖-怒江缝合带及印度河-雅鲁藏布江缝合带为界,由北至南可分为松潘-甘孜地体、羌塘地体、拉萨地体及喜马拉雅地体(图1a; Yin and Harrison, 2000).其中,拉萨地体从北至南可被狮泉河-纳木错蛇绿混杂岩带和洛巴堆-米拉山断裂进一步划分为北拉萨地体、中拉萨地体以及南拉萨地体(图1b; Zhu et al., 2011).冈底斯带位于青藏高原南部,由中拉萨地体南缘和南拉萨地体组成,呈东西向展布,延伸可达1 500 km.受新特提斯洋板片北向俯冲的影响,在冈底斯带形成了侏罗纪和白垩纪广泛而强烈的构造岩浆事件,形成了东西延伸几千千米的冈底斯岩基以及火山岩.其中,冈底斯岩基主要由侵入岩组成,火山岩主要由侏罗系叶巴组火山岩和上白垩统桑日群火山岩组成(Zhu et al., 2008).自印度大陆和欧亚大陆65~55 Ma左右发生陆-陆碰撞以来,冈底斯带发生了大规模的岩浆作用,形成了上白垩统至始新统的林子宗群火山岩(Mo et al., 2008;黄永高等,2024)、渐新世至中新世钾质-超钾质火山岩(Ding et al., 2003)以及渐新世至中新世的埃达克质侵入体(Hou et al., 2004).其中,位于冈底斯带中东部的埃达克岩与形成于碰撞背景斑岩铜矿床密切相关.

冈底斯带斑岩型矿床以Cu和Cu-Mo组合为主,Cu-Au组合矿床较少,共存在5期成矿作用事件,分别为~213 Ma(牙娃夹格;Chen et al., 2020)、173~165 Ma(雄村;Tafti et al., 2014)、~45 Ma(吉如;Zheng et al., 2014b)、~30 Ma(明则-程巴;孙祥等,2013)、17~13 Ma(驱龙、甲玛、朱诺等;Zheng et al., 2007Hou et al., 2015Yang et al., 2016),其中中新世斑岩铜矿床大量发育.空间上,斑岩矿床主要分布在冈底斯东段,从北至南,成矿元素从Mo-Cu-Pb-Zn,过渡为Cu-Mo,最后变化为Cu-W-Mo(Hou et al., 2015).朱诺矿集区处于冈底斯成矿带,大地构造位于冈底斯-念青唐古拉板片次级构造单元冈底斯陆缘火山-岩浆弧之西段(图1b).自晚三叠世以来,受新特提斯洋北向俯冲及随后印度-欧亚大陆碰撞造山的影响(侯增谦等,2020),区内岩浆作用强烈,尤其是喜马拉雅期强烈的中酸性岩浆活动,为该区铜多金属矿床的形成提供了丰富的物质来源,具备较好的成矿地质条件和找矿前景.朱诺矿集区出露多套地层,由老至新分别为上侏罗统-下白垩统麻木下组(J3K1m)、下白垩统比马祖(K1b)、古新统-始新统林子宗群(E1-2l).矿集区内岩浆作用主要集中在始新世及中新世.始新世花岗岩类主要分布在矿集区南部,主要以岩株形式产出.中新世花岗岩类零散分布在矿集区北部、西部、东部,以岩株或岩脉产出.矿集区内已发现多个矿床(点),以朱诺超大型斑岩铜矿床为代表.该区内存在多种矿床类型,包括斑岩铜(钼)矿床,包括朱诺、北姆朗、次玛班硕、懂师布、无巴多来等;矽卡岩型铜铅锌矿床,包括唐格等矿床(黄倩等,2025);浅成低温热液型金银矿床,包括罗布真等;热液脉型钼铅锌矿床,包括巴热拉等(图2).

2 矿区地质

北姆朗铜钼矿床位于西藏自治区昂仁县北东方向大约25 km处,紧邻于朱诺超大型斑岩铜矿床.矿区出露的地层为始新统帕那组,仅在少量钻孔中识别,由英安岩、流纹斑岩(图3a)和凝灰岩(图3b)组成.北姆朗铜钼矿床构造较为简单,仅包括1条尾脏逆断层,其走向为北北西,倾角40°~50°.该断层错断了中新世成矿期二长花岗岩,表明其为成矿后断层(图4).

2.1 成岩-成矿时代

北姆朗铜钼矿床发育始新世石英斑岩和中新世复式岩体(图5表1).始新世石英斑岩(图3c;49.7±0.4 Ma;Liu et al., 2022)作为岩基出露在地表,出露面积约2.86 km2,复式岩体由一系列成矿主期和成矿晚期岩体组成,出露地表面积达5.83 km2图4).其中,成矿主期侵入体包括二长花岗斑岩(图3d;(14.8±0.2)~(14.0±0.1) Ma;Liu et al., 2022Du et al., 2023Ai et al., 2024)、二长花岗岩(图3e;(14.8±0.1)~(14.1±0.2) Ma;Liu et al., 2022Ai et al., 2024)和闪长玢岩(图3f;14.6±0.1 Ma;Ai et al., 2024),成矿晚期侵入体由花岗斑岩(图3g;(12.5±0.1)~(11.0±0.1) Ma;Liu et al., 2022; Du et al., 2023;Ai et al., 2024)和煌斑岩(图3h)组成.辉钼矿Re-Os年龄限定矿化作用时间为13.8±0.1 Ma(Du et al., 2023).北姆朗矿床致矿岩体具有高的SiO2(65.7%~72.7%)、K2O(3.3%~7.5%)、Sr含量(477×10-6~864×10-6)、Sr/Y比值(51~139)、La/Yb比值(18~100)以及高的(87Sr/86Sr)i(0.707 25~0.708 45)、低的εNdt)(-9.4~-1.9)、εHft)(-3.2~-0.9)值,这些特征表明这些侵入体源自于新生下地壳的部分熔融(表2表3Liu et al., 2022Du et al., 2023).然而,相比于冈底斯东段斑岩铜矿床中成矿岩体的Sr、Nd、Hf同位素特征,北姆朗铜钼矿床这些岩体表现出更加富集的同位素特征,表明新生下地壳在部分熔融过程中可能混染了更富集的超钾质岩浆(Zhao et al., 2009Hou et al., 2015).

2.2 角砾岩特征

基于结构、胶结物、蚀变特征,在北姆朗铜钼矿床识别出3种类型角砾岩,分别为:电气石胶结角砾岩、碎屑物支撑结构角砾岩和石英-黄铁矿胶结角砾岩(图6a, 6d).电气石胶结角砾岩是北姆朗铜钼矿床最为发育的一种角砾岩,主要出现在石英斑岩中,厚约150 m(图6a).电气石胶结角砾岩中胶结物占主导(图7a),碎屑物由棱角-次棱角状石英斑岩组成,胶结物为电气石和少量金红石.局部可见碎屑物发生强烈的绢英岩化蚀变(图7b)以及电气石胶结物遭受弥散状绿帘石化蚀变.该角砾岩中未观察到黄铜矿化.碎屑物支撑结构角砾岩仅在个别钻孔中出现,分布在钻孔深部(图6a),表现为碎屑物支撑、原位可拼贴的特征(图7c),碎屑物为石英斑岩,呈次棱角状,大小为0.5~3.5 cm,碎屑物发育强列的绢英岩化蚀变(图7d);胶结物由石英和黄铁矿组成.少量黄铜矿化与该角砾岩相关.石英-黄铁矿胶结角砾岩揭露较少,仅在少量钻孔中发现,分布在钻孔浅部(图6a),表现为胶结物支撑的特征,碎屑物呈棱角-次棱角状,大小0.2~3.0 cm,由石英斑岩和二长花岗斑岩组成,被石英和黄铁矿胶结(图7e, 7f),碎屑物发育选择-弥散状绢英岩化蚀变.该角砾岩中未发现黄铜矿化.

2.3 蚀变-矿化特征及分带

北姆朗铜钼矿床热液蚀变包括钾化蚀变、青磐岩化蚀变和绢英岩化蚀变.总体上,钾化蚀变分布在钻孔深部,青磐岩化蚀变部分叠加在钾化蚀变之上分布在钾化外围,绢英岩化蚀变分布在钻孔中浅部,部分叠加在早期蚀变之上(图6b, 6e).钾化蚀变是北姆朗铜钼矿床中识别出来的最早期蚀变,矿物组合包括大量热液钾长石、黑云母、石英以及少量电气石、磁铁矿、方解石、硬石膏.钾化蚀变能够进一步分为钾长石蚀变和黑云母蚀变.钾长石蚀变主要分布在深部,主要影响了二长花岗岩、二长花岗斑岩以及花岗斑岩.钾长石蚀变以脉体蚀变晕(图8a)和选择性取代两种形式产出.选择弥散状蚀变表现为岩浆钾长石转变为热液钾长石和石英(图8b).该蚀变包含少量黄铜矿化.整体上,黑云母蚀变相比钾长石蚀变范围更大,一般叠加在钾长石蚀变上,该蚀变主要影响了二长花岗岩和二长花岗斑岩.黑云母蚀变也以选择性取代和脉体蚀变晕(图8c)两种形式产出.选择弥散状表现为原生铁镁质矿物转变为细粒热液黑云母(图8d).黑云母蚀变与矿化密切相关(图8e).青磐岩化蚀变主要影响了二长花岗岩,少量出现在二长花岗斑岩中(图8f).该蚀变矿物组合包括绿泥石、绿帘石、方解石和少量电气石和黄铁矿(图8g).该蚀变主要以选择弥散状产出.选择弥散状青磐岩化蚀变表现为绿泥石取代黑云母(图8h)以及绿帘石取代斜长石(图8i, 8j).该蚀变包含极少矿化.绢英岩化蚀变主要影响了石英斑岩、二长花岗岩和二长花岗斑岩.弱绢英岩化蚀变也出现在花岗斑岩中.绢英岩化蚀变矿物组合包括绢云母、石英、电气石、少量绿泥石和磁铁矿,表现为选择性取代或蚀变晕(图8k, 8l),其中选择弥散状表现为角闪石和黑云母被绢云母、方解石、绿泥石(图8n)以及斜长石被绢云母、电气石取代(图8m, 8o).绢英岩化蚀变与部分黄铜矿化相关.

北姆朗铜钼矿床主要的矿石矿物为黄铜矿、辉钼矿,少量斑铜矿、方铅矿、闪锌矿(图8p,8q,8r),包含自形晶结构、半自形-他形结构、交代结构、包含结构和出溶结构(图8r)等.矿化主要赋存在二长花岗岩、二长花岗斑岩和石英斑岩中,与黑云母化和绢英岩化蚀变密切相关.不同于俯冲背景形成的斑岩铜矿床矿化主要形成在钾化蚀变带,在碰撞背景绢英岩化蚀变中也出现大量黄铜矿化,这可能是因为碰撞背景斑岩铜矿床经历了更高的同矿化期的隆升(Yang and Cooke, 2019).

3 矿体特征

根据矿体形态及展布特征,北姆朗铜钼矿床发育两个矿体,分别为CuⅠ和CuⅡ,其控制+推断铜金属量为49.72万吨,平均品位为0.51%,达到中型斑岩铜矿床规模.

3.1 CuⅠ矿体

CuⅠ矿体位于矿区北部(图4),平面上呈较规则“茶壶状”,走向北东向,倾向南东,长约2 261 m,宽约807~1 864 m,出露标高为5 426~4 326 m.矿体在垂向上呈不规则的板状,从矿体南西部至北东部厚度由厚变薄再变厚,埋深逐渐变浅,矿体整体向南西倾斜,倾角小于10°,属于隐伏矿体.矿体形态较复杂,厚度变化较大,一般厚度15~50 m,钻孔中单层最大见矿厚度164 m,最小厚度4 m.矿体品位变化不大,仅局部地段较富.矿体内铜品位一般在0.2%~0.7%,平均品位0.51%,品位较均匀.该矿体伴生有大量银和少量钼,银几乎分布在控制矿体的所有钻孔中,并且与铜矿化呈明显的正相关,矿体中银平均品位为2.48 g/t.钼主要分布在ZK0201、KYKY01及ZK0501钻孔中,矿体中钼平均品位大于0.01%,最高品位0.46%.

3.2 CuⅡ矿体

CuⅡ矿体位于矿区南部(图4),在平面上总体呈北东展布、较规则“板型”,长约635 m,宽约300~350 m,矿体出露标高4 619~4 268 m.矿体在垂向上呈板状,埋深较浅,矿体产状不明,属于地表-半隐伏矿体.矿体形态较单一,厚度变化较大,一般厚度2.00~4.22 m.矿体品位变化不大,铜最高品位为0.46%,最低品位0.2%.矿体内铜品位一般在0.2%~0.4%,平均品位0.20%.该矿体伴生有银,矿体中银平均品位4.87 g/t.

4 找矿方法及标志

北姆朗铜钼矿床的发现得益于地质、化探、高光谱、遥感等找矿方法的综合应用.

北姆朗铜钼矿床发育大面积的1∶5万水系沉积物化探异常,其中Cu元素最小值27×10-6,最大值1 400×10-6,平均值375×10-6,显示巨大的找矿潜力(图9b).但受地形的影响,北姆朗铜钼矿床水系沉积物Cu元素高值点主要分布在CuI矿体的外围,与真正的矿化位置存在一定的空间偏移(图9b).

勘查初期通过大比例尺专项填图,确定北姆朗铜钼矿床关键成矿地质体为中新世二长花岗(斑)岩,该岩体主要分布在主矿区中部及东北部,但其多被成矿前石英斑岩覆盖和成矿晚期花岗斑岩脉穿插(图4),成矿地质体分布范围很难准确圈定.卫星遥感技术被广泛应用于区域矿物填图、蚀变信息提取、构造解译等方面,特别是在一些高寒缺氧、交通不便的高山深切割地区,其大大提高了地质勘查工作效率,发挥了不可替代的优势(杨金中等, 2003;吕凤军等, 2009; Pour et al., 2011).为了进一步缩小北姆朗靶区范围,基于ASTER数据开展了钾化蚀变异常、褐铁矿化蚀变异常、青磐岩化蚀变异常、绢云母化蚀变异常以及硅化蚀变异常提取.如图9a所示,北姆朗铜钼矿床各种蚀变主要分布在第四系的北侧,南东角发育少量钾化、青磐岩化及褐铁矿化蚀变,主矿区CuI矿体范围内发育大面积的硅化、褐铁矿化及青磐岩化蚀变,可作为遥感找矿标志(图9a).但受制于ASTER数据本身空间分辨率较低的问题,CuI矿体内局部矿化较好的地段并未提取出蚀变异常(图9a).

近年来,由于生产需求和交叉学科的深入发展,短波红外光谱技术被广泛应用于地质找矿领域,运用该技术可准确鉴别蚀变矿物种类、划分蚀变矿物组合分带、圈定找矿靶区、指导找矿方向(Yang et al., 2005; 陈华勇等, 2019; Zheng et al., 2021Ren et al., 2023).如图9所示,北姆朗铜钼矿床地表样品短波红外光谱白云母Al-OH波长变化于2 200~2 209 nm,CuI矿体范围内主体以短波为主(Pos 2 200≤2 203 nm),由矿化中心至外围白云母Al-OH波长逐渐变大(图9c);白云母结晶度变化于0.53~4.22,CuI矿体范围内主体以高结晶度为主(≥1.64),由矿化中心至外围白云母结晶度逐渐变小,可间接指示温度的降低(图9d);白云母Al-OH特征峰吸收深度变化于0.021~0.271,CuI矿体范围内主体以高吸收深度为主(≥0.186),由矿化中心至外围白云母吸收深度逐渐变小,可间接指示蚀变强度减弱(图9d).白云母Al-OH波长、结晶度、吸收深度的浓集中心也是矿体最厚、最富的位置.此外,绿泥石Fe-OH波长变化于2 250~2 254 nm,主要分布在CuI矿体的外围,可指示青磐岩化蚀变的范围(图9f).因此,短波红外光谱白云母和绿泥石特征波长的变化可以很好地指示热液/矿化中心,为矿区尺度钻探工程部署提供依据,值得推广应用.

5 发现意义

当前在冈底斯成矿带发现的大多数大型-超大型中新世斑岩铜矿床位于该带以东.已有研究表明,大致以88°E为界,冈底斯成矿带东段和西段具有明显的差异,尤其是不同的地壳结构,不均一的地幔热状态及壳幔作用方式,导致了冈底斯西段具有较差的成矿潜力(Hou et al., 2015Wang et al., 2015,20182021).研究发现在中新世,印度大陆板片在东冈底斯带为热的陡俯冲,产生了大量幔源/新生物质的部分熔融,形成具有中-高氧逸度的岩浆,而在西冈底斯印度板片仍为冷的平板俯冲,产生了有限的地壳熔融,从而仅形成了少量具有高Sr/Y岩浆,产生了弱的矿化作用(Wang et al., 2018).最近,Wang et al (2022)整合了冈底斯带已发表岩浆岩年龄及全岩Nd同位素数据,并结合地球物理资料发现在冈底斯带东段亚东-谷露断裂深部,自中新世印度岩石圈发生了撕裂,为东段斑岩铜矿床的形成提供了有利的构造及热异常.

北姆朗是冈底斯成矿带西段新发现的又一例斑岩型铜钼矿床,该矿床的发现证实主流观点认为不能成矿或成矿潜力较小的区域也可以形成斑岩型铜矿床,对冈底斯成矿带已有的成矿认识、模型等提出了新的挑战,也为深入研究碰撞造山带斑岩成矿作用过程及深部控矿机制提供了新的实例.北姆朗铜钼矿床的发现和突破,为国家新一轮的找矿突破战略行动工作部署指明了方向,为朱诺矿集区成为我国又一个新的千万吨铜资源基地提供了重要的成果支撑,极大地保障了我国战略性矿产铜矿资源安全.

6 结论

(1)北姆朗为近年来在朱诺矿集区内继朱诺超大型矿床之后新发现的又一斑岩型铜钼矿床,目前已探明2个原生矿体,累计查明铜资源量49.72万吨,平均品位0.51%.

(2)北姆朗铜钼矿床形成于中新世,矿化主要赋存在成矿主期岩体及成矿前石英斑岩中,与成矿密切相关的地质体为二长花岗(斑)岩.北姆朗铜钼矿床发育中心钾化(钾长石化和黑云母化)、外围青磐岩化和浅部绢英岩化蚀变,不同蚀变相互叠加.其中黑云母化蚀变与矿化最为密切.

(3)北姆朗铜钼矿床的发现得益于地质、化探、高光谱等找矿方法的综合应用,特别是短波红外光谱找矿新技术可以很好地指示热液/矿化中心.北姆朗铜钼矿床的发现为国家新一轮找矿突破战略行动工作部署指明了方向,也为朱诺矿集区成为我国又一个新的千万吨级铜资源基地提供了重要的成果支撑.

参考文献

[1]

Ai, Y. M., Xiao, B., Zhao, J. F., et al., 2024. Ages, Petrogenesis and Metallogenesis Implications of the Miocene Adakite-Like Igneous Rocks in the Beimulang Porphyry Cu Deposit, Southern Tibet. Ore Geology Reviews, 173: 106249. https://doi.org/10.1016/j.oregeorev.2024.106249

[2]

Chen, H.Y., Zhang, S.T., Chu, G.B., et al., 2019. The Short Wave Infrared (SWIR) Spectral Characteristics of Alteration Minerals and Applications for Ore Exploration in the Typical Skarn-Porphyry Deposits, Edong Ore District, Eastern China. Acta Petrologica Sinica, 35(12): 3629-3643 (in Chinese with English abstract).

[3]

Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006

[4]

Ding, L. I. N.,Kapp, P.,Zhong, D.,et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction.Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061

[5]

Du, Z. Z., Cheng, Z. Z., Yu, X. F., et al., 2023. Geochronology and Petrogeochemistry of Miocene Porphyries from the Beimulang Deposit, Western Gangdese Copper Belt.Ore Geology Reviews, 162: 105682. https://doi.org/10.1016/j.oregeorev.2023.105682

[6]

Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X

[7]

Hou, Z.Q., Yang, Z., Lu, Y., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/G36362.1

[8]

Hou, Z.Q., Zheng, Y.C., Lu, Z.W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815 (in Chinese with English abstract).

[9]

Huang, Q., Wu, S., Liu, X.F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638 (in Chinese with English abstract).

[10]

Li, J.Z., Wu, S., Lin, Y.B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244 (in Chinese with English abstract).

[11]

Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823.

[12]

Lü, F.J., Hao, Y.S., Shi, J., et al., 2009. Alteration Remote Sensing Anomaly Extraction Based on Aster Remote Sensing Data. Acta Geoscientica Sinica, 30(2): 271-276 (in Chinese with English abstract).

[13]

Mo, X., Niu, Y., Dong, G., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250: 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003

[14]

Pour, A. B., Hashim, M., Marghany, M., 2011. Using Spectral Mapping Techniques on Short Wave Infrared Bands of ASTER Remote Sensing Data for Alteration Mineral Mapping in SE Iran. International Journal of Physical Sciences, 6(4): 917-929.

[15]

Ren, H., Zheng, Y. Y., Wu, S., et al., 2023. Short-Wavelength Infrared Characteristics and Composition of White Mica in the Demingding Porphyry Cu-Mo Deposit, Gangdese Belt, Tibet: Implications for Mineral Exploration. Ore Geology Reviews, 105833.

[16]

Sun, X., Zheng, Y.Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406 (in Chinese with English abstract).

[17]

Tafti, R., Lang, J. R., Mortensen, J. K., et al., 2014. Geology and Geochronology of the Xietongmen (Xiongcun) Cu-Au Porphyry District, Southern Tibet, China. Economic Geology, 109(7): 1967-2001. https://doi.org/10.2113/econgeo.109.7.1967

[18]

Wang, R.,Luo, C. H., Xia, W.,et al., 2021. Role of Alkaline Magmatism in Formation of Porphyry Deposits in Non-arc Settings: Gangdese and Sanjiang Metallogenic Belts. SEG Special Publications,24: 205-229.https://doi:10.5382/SP.24.12

[19]

Wang, R., Richards, J.P., Zhou, L. M., et al.,2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth-Science Reviews,150: 68-94.

[20]

Wang, R.,Weinberg, R. F.,Collins, W. J.,et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143.https://doi:10.1016/j.earscirev.2018.02.019

[21]

Wang, R., Weinberg, R. F., Zhu, D. C., et al., 2022. The Impact of a Tear in the Subducted Indian Plate on the Miocene Geology of the Himalayan-Tibetan Orogen. Geological Society of America Bulletin, 134(3-4): 681-690. https://doi.org/10.1130/B36023.1

[22]

Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023

[23]

Yang, J.Z., Fang, H.B., Zhang, Y.J., et al., 2003. Remote Sensing Anomaly Extraction in Important Metallogenic

[24]

Belts of Western China. Remote Sensing for Land & Resources, 15(3): 50-53(in Chinese with English abstract).

[25]

Yang, K., Lian, C., Huntington, J. F., et al., 2005. Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China. Mineralium Deposita, 40(3): 324-336. https://doi.org/10.1007/s00126-005-0479-7

[26]

Yang, Z.M., Cooke, D.R., 2019. Porphyry Copper Deposits in China. Society of Economic Geologists Special Publication, 22: 133-187.https://doi.org/10.5382/SP.22.05

[27]

Yang, Z. M.,Goldfarb, R.,Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-300.https://doi:10.5382/SP.19.11

[28]

Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211

[29]

Zhao, Y.Y., Liu, X.F., Liu, Y.C., et al., 2017. Copper Metallogenic Condition of Cimabanshuo Area around Zhunuo Copper Mine in Tibet. Gansu Geology, 26(4): 28-36 (in Chinese with English abstract).

[30]

Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004

[31]

Zheng, Y.Y., Ci, Q., Gao, S.B., et al., 2021. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402 (in Chinese with English abstract).

[32]

Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239 (in Chinese with English abstract).

[33]

Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014a. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. https://doi.org/10.1016/j.gexplo.2014.02.012

[34]

Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014b. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/J.JSEAES.2013.03.029

[35]

Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7

[36]

Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020-6814.50.5.442

[37]

Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005

基金资助

中央引导地方科技发展资金项目(XZ202401YD0006)

AI Summary AI Mindmap
PDF (12482KB)

92

访问

0

被引

详细

导航
相关文章

AI思维导图

/