西藏北姆朗斑岩型铜钼矿床的发现及意义
次琼 , 郑有业 , 吴松 , 刘鹏 , 赵亚云 , 龚福志 , 杜泽忠 , 侯依涛
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1305 -1318.
西藏北姆朗斑岩型铜钼矿床的发现及意义
Discovery and Significance of Beimulang Porphyry Cu-Mo Deposit, Xizang
,
西藏朱诺矿集区位于冈底斯成矿带西段,区内北东-南西向化探异常呈串珠状大面积展布,成矿条件优越,是新一轮找矿突破战略行动部署的重点区块.北姆朗铜钼矿床为近年来在该矿集区内继朱诺超大型矿床之后新发现的又一斑岩型铜钼矿床,累计查明铜金属量49.72万吨,平均品位0.51%.北姆朗铜钼矿床岩浆作用强烈,发育成矿前石英斑岩(~49.7 Ma),成矿主期二长花岗斑岩(~14.8~14.0 Ma)、二长花岗岩(~14.8~14.1 Ma)、闪长玢岩(~14.6 Ma)和成矿晚期花岗斑岩(~12.5~11.0 Ma)、煌斑岩.矿化主要赋存在成矿主期岩体及成矿前石英斑岩中,与成矿密切相关的地质体为二长花岗斑岩和二长花岗岩.北姆朗铜钼矿床辉钼矿Re-Os年龄限定成矿时代为13.8±0.1 Ma.北姆朗铜钼矿床角砾岩发育,包括电气石胶结角砾岩、碎屑物支撑结构角砾岩和石英-黄铁矿胶结角砾岩.北姆朗铜钼矿床热液蚀变强烈发育,由中心钾化(进一步分为钾长石蚀变和黑云母蚀变)、外围青磐岩化和浅部绢英岩化蚀变组成,3种蚀变相互叠加,其中黑云母化蚀变与矿化最为密切.北姆朗铜钼矿床的发现证实主流观点认为不能成矿或成矿潜力较小的区域也可以形成大型-超大型斑岩铜矿床,为深入研究碰撞造山带斑岩成矿作用过程及深部控矿机制提供了新的实例.北姆朗铜钼矿床的发现得益于地质、化探、高光谱等综合找矿方法应用示范,特别是短波红外光谱技术可以很好地指示热液/矿化中心.该矿床的发现为该区域寻找同类型矿床指明了方向,也为朱诺矿集区成为我国又一个新的千万吨级铜资源基地提供了重要成果支撑.
The Zhunuo ore concentration district is located in the western Gangdese metallogenic belt, Xizang. The area contains a large NE-SW geochemistry anomaly, which exhibits favorable metallogenic conditions and is a key block for the deployment of a new round of breakthrough strategic actions in mineral exploration. The Beimulang deposit is a newly discovered porphyry Cu-Mo deposit after the Zhunuo deposit in the area. Beimulang contains a mental reserve of 1.3 million tons averaging 0.51% Cu. Magmatic activity in the deposit is strong, including pre-mineralization quartz porphyry (~49.7 Ma), inter-mineralization monzogranite porphyry(~14.8-14.0 Ma), monzogranite(~14.1 Ma), diorite porphyry, and late-mineralization granite porphyry (~11.0-11.7 Ma), lamprophyre. Mineralization occurs mainly in the main inter-mineralization and pre-mineralization intrusions. Molybdenite Re-Os dating shows that main-stage mineralization at Beimulang formed in 13.8±0.1 Ma. Three breccia types have been observed in the deposit, typically located in the apical parts of monzogranite porphyry: (1) tourmaline-cemented breccia, (2) clast-supported breccia, and (3) quartz-pyrite-cemented breccia. Hydrothermal alteration is strongly developed and includes central potassic, peripheral propylitic, and shallow phyllic alteration. The three kinds of alteration are superimposed on each other. Biotite alteration is most closely associated with Cu mineralization. The discovery of the Beimulang deposit confirms the prevailing view that large and super-large porphyry Cu deposits can be formed in areas that cannot be formed or have low ore-forming potential, which provides a new example for further study of the porphyry mineralization process and deep metallogenic mechanism in collision orogenic belt. The discovery of the Beimulang Cu-Mo deposit is attributed to the demonstration of comprehensive exploration methods such as geology, stream sediment geochemical, and hyperspectral analysis. In particular, short-wave infrared spectroscopy technology can effectively trace hydrothermal/mineralization centers. The discovery of the deposit has pointed out the direction for searching for similar deposits in the region and also provided important support for the Zhunuo ore concentration district to become another new ten million tons of copper resource base in China.
蚀变-矿化 / 高光谱 / 斑岩型铜矿 / 北姆朗 / 西藏 / 矿床学.
alteration-mineralization / hyperspectral / porphyry copper deposit / Beimulang / Xizang / mineral deposits
| [1] |
Ai, Y. M., Xiao, B., Zhao, J. F., et al., 2024. Ages, Petrogenesis and Metallogenesis Implications of the Miocene Adakite-Like Igneous Rocks in the Beimulang Porphyry Cu Deposit, Southern Tibet. Ore Geology Reviews, 173: 106249. https://doi.org/10.1016/j.oregeorev.2024.106249 |
| [2] |
Chen, H.Y., Zhang, S.T., Chu, G.B., et al., 2019. The Short Wave Infrared (SWIR) Spectral Characteristics of Alteration Minerals and Applications for Ore Exploration in the Typical Skarn-Porphyry Deposits, Edong Ore District, Eastern China. Acta Petrologica Sinica, 35(12): 3629-3643 (in Chinese with English abstract). |
| [3] |
Chen, X., Zheng, Y. Y., Gao, S. B., et al., 2020. Ages and Petrogenesis of the Late Triassic Andesitic Rocks at the Luerma Porphyry Cu Deposit, Western Gangdese, and Implications for Regional Metallogeny. Gondwana Research, 85: 103-123. https://doi.org/10.1016/j.gr.2020.04.006 |
| [4] |
Ding, L. I. N.,Kapp, P.,Zhong, D.,et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction.Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061 |
| [5] |
Du, Z. Z., Cheng, Z. Z., Yu, X. F., et al., 2023. Geochronology and Petrogeochemistry of Miocene Porphyries from the Beimulang Deposit, Western Gangdese Copper Belt.Ore Geology Reviews, 162: 105682. https://doi.org/10.1016/j.oregeorev.2023.105682 |
| [6] |
Hou, Z. Q., Gao, Y. F., Qu, X. M., et al., 2004. Origin of Adakitic Intrusives Generated during Mid-Miocene East-West Extension in Southern Tibet. Earth and Planetary Science Letters, 220(1/2): 139-155. https://doi.org/10.1016/S0012-821X(04)00007-X |
| [7] |
Hou, Z.Q., Yang, Z., Lu, Y., et al., 2015. A Genetic Linkage between Subduction- and Collision-Related Porphyry Cu Deposits in Continental Collision Zones. Geology, 43(3): 247-250. https://doi.org/10.1130/G36362.1 |
| [8] |
Hou, Z.Q., Zheng, Y.C., Lu, Z.W., et al., 2020. Growth, Thickening and Evolution of the Thickened Crust of the Tibet Plateau. Acta Geologica Sinica, 94(10): 2797-2815 (in Chinese with English abstract). |
| [9] |
Huang, Q., Wu, S., Liu, X.F., et al., 2025. The Metallogenic Age of Tangge Skarn-Type Copper-Lead-Zinc Deposit in Xizang: Constraints from Garnet U-Pb Geochronology. Earth Science, 50(2): 621-638 (in Chinese with English abstract). |
| [10] |
Li, J.Z., Wu, S., Lin, Y.B., et al., 2022. Alteration-Mineralization Style and Prospecting Potential of Cimabanshuo Porphyry Copper Deposit in Tibet. Earth Science, 47(6): 2219-2244 (in Chinese with English abstract). |
| [11] |
Liu, P., Wu, S., Zheng, Y. Y., et al., 2022. Geology and Factors Controlling the Formation of the Newly Discovered Beimulang Porphyry Cu Deposit in the Western Gangdese, Southern Tibet. Ore Geology Reviews, 144: 104823. |
| [12] |
Lü, F.J., Hao, Y.S., Shi, J., et al., 2009. Alteration Remote Sensing Anomaly Extraction Based on Aster Remote Sensing Data. Acta Geoscientica Sinica, 30(2): 271-276 (in Chinese with English abstract). |
| [13] |
Mo, X., Niu, Y., Dong, G., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250: 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003 |
| [14] |
Pour, A. B., Hashim, M., Marghany, M., 2011. Using Spectral Mapping Techniques on Short Wave Infrared Bands of ASTER Remote Sensing Data for Alteration Mineral Mapping in SE Iran. International Journal of Physical Sciences, 6(4): 917-929. |
| [15] |
Ren, H., Zheng, Y. Y., Wu, S., et al., 2023. Short-Wavelength Infrared Characteristics and Composition of White Mica in the Demingding Porphyry Cu-Mo Deposit, Gangdese Belt, Tibet: Implications for Mineral Exploration. Ore Geology Reviews, 105833. |
| [16] |
Sun, X., Zheng, Y.Y., Wu, S., et al., 2013. Mineralization Age and Petrogenesis of Associated Intrusions in the Mingze-Chengba Porphyry-Skarn Mo-Cu Deposit, Gangdese. Acta Petrologica Sinica, 29(4): 1392-1406 (in Chinese with English abstract). |
| [17] |
Tafti, R., Lang, J. R., Mortensen, J. K., et al., 2014. Geology and Geochronology of the Xietongmen (Xiongcun) Cu-Au Porphyry District, Southern Tibet, China. Economic Geology, 109(7): 1967-2001. https://doi.org/10.2113/econgeo.109.7.1967 |
| [18] |
Wang, R.,Luo, C. H., Xia, W.,et al., 2021. Role of Alkaline Magmatism in Formation of Porphyry Deposits in Non-arc Settings: Gangdese and Sanjiang Metallogenic Belts. SEG Special Publications,24: 205-229.https://doi:10.5382/SP.24.12 |
| [19] |
Wang, R., Richards, J.P., Zhou, L. M., et al.,2015. The Role of Indian and Tibetan Lithosphere in Spatial Distribution of Cenozoic Magmatism and Porphyry Cu-Mo Deposits in the Gangdese Belt, Southern Tibet. Earth-Science Reviews,150: 68-94. |
| [20] |
Wang, R.,Weinberg, R. F.,Collins, W. J.,et al., 2018. Origin of Postcollisional Magmas and Formation of Porphyry Cu Deposits in Southern Tibet. Earth-Science Reviews, 181: 122-143.https://doi:10.1016/j.earscirev.2018.02.019 |
| [21] |
Wang, R., Weinberg, R. F., Zhu, D. C., et al., 2022. The Impact of a Tear in the Subducted Indian Plate on the Miocene Geology of the Himalayan-Tibetan Orogen. Geological Society of America Bulletin, 134(3-4): 681-690. https://doi.org/10.1130/B36023.1 |
| [22] |
Wu, S., Zheng, Y. Y., Sun, X., 2016. Subduction Metasomatism and Collision-Related Metamorphic Dehydration Controls on the Fertility of Porphyry Copper Ore-Forming High Sr/Y Magma in Tibet. Ore Geology Reviews, 73: 83-103. https://doi.org/10.1016/j.oregeorev.2015.10.023 |
| [23] |
Yang, J.Z., Fang, H.B., Zhang, Y.J., et al., 2003. Remote Sensing Anomaly Extraction in Important Metallogenic |
| [24] |
Belts of Western China. Remote Sensing for Land & Resources, 15(3): 50-53(in Chinese with English abstract). |
| [25] |
Yang, K., Lian, C., Huntington, J. F., et al., 2005. Infrared Spectral Reflectance Characterization of the Hydrothermal Alteration at the Tuwu Cu-Au Deposit, Xinjiang, China. Mineralium Deposita, 40(3): 324-336. https://doi.org/10.1007/s00126-005-0479-7 |
| [26] |
Yang, Z.M., Cooke, D.R., 2019. Porphyry Copper Deposits in China. Society of Economic Geologists Special Publication, 22: 133-187.https://doi.org/10.5382/SP.22.05 |
| [27] |
Yang, Z. M.,Goldfarb, R.,Chang, Z. S., 2016. Generation of Postcollisional Porphyry Copper Deposits in Southern Tibet Triggered by Subduction of the Indian Continental Plate. Society of Economic Geologists Special Publication, 19: 279-300.https://doi:10.5382/SP.19.11 |
| [28] |
Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/ANNUREV.EARTH.28.1.211 |
| [29] |
Zhao, Y.Y., Liu, X.F., Liu, Y.C., et al., 2017. Copper Metallogenic Condition of Cimabanshuo Area around Zhunuo Copper Mine in Tibet. Gansu Geology, 26(4): 28-36 (in Chinese with English abstract). |
| [30] |
Zhao, Z. D., Mo, X. X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet: Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2): 190-212. https://doi.org/10.1016/j.lithos.2009.02.004 |
| [31] |
Zheng, Y.Y., Ci, Q., Gao, S.B., et al., 2021. The Ag-Sn-Cu Polymetallic Minerogenetic Series and Prospecting Direction in the Western Gangdese Belt, Tibet. Earth Science Frontiers, 28(3): 379-402 (in Chinese with English abstract). |
| [32] |
Zheng, Y.Y., Gao, S.B., Zhang, D.Q., et al., 2006. The Discovery of the Zhunuo Porphyry Copper Deposit in Tibet and Its Significance. Earth Science Frontiers, 13(4): 233-239 (in Chinese with English abstract). |
| [33] |
Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014a. Analysis of Stream Sediment Data for Exploring the Zhunuo Porphyry Cu Deposit, Southern Tibet. Journal of Geochemical Exploration, 143: 19-30. https://doi.org/10.1016/j.gexplo.2014.02.012 |
| [34] |
Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2014b. Multiple Mineralization Events at the Jiru Porphyry Copper Deposit, Southern Tibet: Implications for Eocene and Miocene Magma Sources and Resource Potential. Journal of Asian Earth Sciences, 79: 842-857. https://doi.org/10.1016/J.JSEAES.2013.03.029 |
| [35] |
Zheng, Y. Y., Zhang, G. Y., Xu, R. K., et al., 2007. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Zhunuo Porphyry Copper Deposit in Gangdese, Tibet. Chinese Science Bulletin, 52(22): 3139-3147. https://doi.org/10.1007/s11434-007-0406-7 |
| [36] |
Zhu, D. C., Pan, G. T., Chung, S. L., et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks from the Yeba Formation, Southern Gangdese, South Tibet. International Geology Review, 50(5): 442-471. https://doi.org/10.2747/0020-6814.50.5.442 |
| [37] |
Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2): 241-255. https://doi.org/10.1016/j.epsl.2010.11.005 |
中央引导地方科技发展资金项目(XZ202401YD0006)
/
| 〈 |
|
〉 |