滇中普渡河断裂相对构造活动性特征
余华玉 , 董有浦 , 于良 , 张东越 , 王丹 , 段佳鑫 , 任洋洋 , 李江涛
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 336 -348.
滇中普渡河断裂相对构造活动性特征
Relative Tectonic Activity of Puduhe Fault in Central Yunnan
,
,
鲜水河‒小江断裂带在滇中发散成数条SN向分支断裂,其中的普渡河断裂多次引发5级以上的地震,但其构造活动性的空间分布特征并不清晰.地貌指数对构造活动非常敏感,可以很好地指示构造活动性分布特征.利用30 m分辨率的数字高程模型(DEM)提取了普渡河断裂区域41个流域盆地,并将流域划分为北段(撒营盘‒富民段)、中段(富民‒晋宁段)、南段(晋宁‒峨山段)三段,通过分析获得了面积高程积分(HI)、流域盆地不对称度(AF)、流域形状指数(BS)、谷底宽高比(VF)、标准化河流阶梯指数(SLK)、山前曲折度(Smf)、河流陡峭指数(Ksn)这7种地貌指数来揭示研究区的相对构造活动分布规律.结果表明普渡河断裂的各地貌指数的空间变化特征不受非构造因素(降水和岩性)的影响,而表现为主要受构造活动影响.普渡河断裂相对构造活动性呈现出由北向南逐渐减弱趋势,且断裂东侧的构造活动性略弱于西侧.普渡河断裂构造活动性弱于小江断裂,表明川滇地块在挤出过程中,活动性强的区域主要集中在边界断裂带.
The Xianshuihe-Xiaojiang fault zone diverges into several SN-trending branch faults in central Yunnan, among which the Puduhe fault has triggered earthquakes of magnitude more than 5 for many times, but its spatial distribution characteristics of tectonic activity are not clear. Because geomorphic index is very sensitive to tectonic activity, it can well indicate the distribution characteristics of tectonic activity. In order to study the distribution characteristics of tectonic activity of the Purduhe fault, 41 basins in the Purduhe fault region were extracted by using digital elevation model (DEM) with a resolution of 30 m. The basin is divided into three sections: north section (Sayingpan-Fumin Section), middle section (Fumin-Jinning Section) and south section (Jinning-Eshan Section). Seven geomorphic indices including hypsometric curve and hypsometric integral (HI), asymmetric factor (AF), basin shape index (BS), the ratio of valley floor width to valley height (VF), normalized stream-length gradient (SLK), sinuosity of the mountain front (Smf) and the steepness index(Ksn)were obtained through analysis. The results show that the spatial variation characteristics of geomorphic indices of the Puduhe fault are not affected by non-structural factors (precipitation and lithology), but they are mainly affected by tectonic activities. The relative tectonic activity of the Puduhe fault gradually decreases from north to south, and the tectonic activity of the east side of the fault is slightly weaker than that of the west side. The structural activity of the Puduhe fault is weaker than that of the Xiaojiang fault, indicating that during the extrusion process of the Sichuan-Yunnan block, the highly active area is mainly concentrated in the boundary fault zone.
滇中地块 / 普渡河断裂 / 构造地貌参数 / 相对构造活动性 / 工程地质学.
Central Yunnan block / Puduhe fault / tectonic geomorphic parameter / relative tectonic activity / engineering geology
| [1] |
Allen, C. R., Gillespie, A. R., Han, Y. A., et al., 1984. Red River and Associated Faults, Yunnan Province, China: Quaternary Geology, Slip Rates, and Seismic Hazard. Geological Society of America Bulletin, 95(6): 686. https://doi.org/10.1130/0016⁃7606(1984)95686: rraafy>2.0.co;2 |
| [2] |
An, X.W., Chang, Z.F., Chen,N.J.,et al.,2018. Quaternary Active Faults in Yunnan and Distribution Map of Quaternary Active Faults in Yunnan. Seismological Press, Beijing (in Chinese). |
| [3] |
Bull, W. B., 2009. Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. In: Ravazzi, C., Orombelli, G., Donegana, M., et al., eds., Quaternary Research in the Southern Alps of Italy. Quaternary International, 204(1-2): 105-106. https://doi.org/10.1016/j.quaint.2009.03.001 |
| [4] |
Bull, W. B., McFadden, L. D., 1977. Tectonic Geomorphology North and South of the Garlock Fault, California. Synthetic Metals, 14(8):115-136. https://doi.org/10.1016/S0379⁃6779(00)01411⁃9 |
| [5] |
Burchfiel, B. C., Wang, E., 2003. Northwest⁃Trending, Middle Cenozoic, Left⁃Lateral Faults in Southern Yunnan, China, and Their Tectonic Significance. Journal of Structural Geology, 25(5): 781-792. https://doi.org/10.1016/S0191⁃8141(02)00065⁃2 |
| [6] |
Cao, K., Leloup, P. H., Wang, G. C., et al., 2021. Thrusting, Exhumation, and Basin Fill on the Western Margin of the South China Block during the India⁃Asia Collision. GSA Bulletin, 133(1-2): 74-90. https://doi.org/10.1130/b35349.1 |
| [7] |
Cheng, Y. L., He, C. Q., Rao, G., et al., 2018. Geomorphological and Structural Characterization of the Southern Weihe Graben, Central China: Implications for Fault Segmentation. Tectonophysics, 722: 11-24. https://doi.org/10.1016/j.tecto.2017.10.024 |
| [8] |
El Hamdouni, R., Irigaray, C., Fernández, T., et al., 2008. Assessment of Relative Active Tectonics, Southwest Border of the Sierra Nevada (Southern Spain). Geomorphology, 96(1-2): 150-173. https://doi.org/10.1016/j.geomorph.2007.08.004 |
| [9] |
Faghih, A., Nezamzadeh, I., Kusky, T. M., 2016. Geomorphometric Evidence of an Active Pop⁃up Structure along the Sabzpushan Fault Zone, Zagros Mountains, SW Iran. Journal of Earth Science, 27(6): 945-954. https://doi.org/10.1007/s12583⁃016⁃0663⁃y |
| [10] |
Figueroa, A. M., Knott, J. R., 2010. Tectonic Geomorphology of the Southern Sierra Nevada Mountains (California): Evidence for Uplift and Basin Formation. Geomorphology, 123(1-2): 34-45. https://doi.org/10.1016/j.geomorph.2010.06.009 |
| [11] |
Gilley, L. D., Harrison, T. M., Leloup, P. H., et al., 2003. Direct Dating of Left⁃Lateral Deformation along the Red River Shear Zone, China and Vietnam. Journal of Geophysical Research: Solid Earth, 108(B2): 2127. https://doi.org/10.1029/2001jb001726 |
| [12] |
Goren, L., Fox, M., Willett, S. D., 2014. Tectonics from Fluvial Topography Using Formal Linear Inversion: Theory and Applications to the Inyo Mountains, California. Journal of Geophysical Research: Earth Surface, 119(8): 1651-1681. https://doi.org/10.1002/2014jf003079 |
| [13] |
Guo, S.M., 2001. Red River Active Fault Zone: A Special Study on Active Faults in China. Ocean Press, Beijing (in Chinese). |
| [14] |
Hack, J. T., 1973. Stream⁃Profile Analysis and Stream⁃ Gradient Index. Journal of Research of the U.S. Geological Survey, 1(4):421-429. |
| [15] |
He, H.L., Fang,Z.J.,Li, P., 1993. A Preliminary Approach to the Fault Activity of Southern Segment on Xiaojiang West Branch Fault. Journal of Seismological Research, 16(3): 291-298 (in Chinese with English abstract). |
| [16] |
He, Z.Q., An, H.S., Shen, K., et al., 2013. Detection of Puduhe Fault in Yuxi Basin of Yunnan by Seismic Reflection Method. Acta Seismologica Sinica, 35(6): 836-847 (in Chinese with English abstract). |
| [17] |
Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739-752. https://doi.org/10.1130/0016⁃7606(1983)94739: ccib>2.0.co;2 |
| [18] |
Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54-75. https://doi.org/10.1016/j.jsg.2012.07.009 |
| [19] |
Leloup, P. H., Lacassin, R., Tapponnier, P., et al., 1995. The Ailao Shan⁃Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina. Tectonophysics, 251(1-4): 3-10, 13-84. https://doi.org/10.1016/0040⁃1951(95)00070⁃4 |
| [20] |
Li, S. H., Su, T., Spicer, R. A., et al., 2020. Oligocene Deformation of the Chuandian Terrane in the SE Margin of the Tibetan Plateau Related to the Extrusion of Indochina. Tectonics, 39(7): e2019TC005974. https://doi.org/10.1029/2019tc005974 |
| [21] |
Marshall, J. A., Roering, J. J., 2014. Diagenetic Variation in the Oregon Coast Range: Implications for Rock Strength, Soil Production, Hillslope Form, and Landscape Evolution. Journal of Geophysical Research: Earth Surface, 119(6): 1395-1417. https://doi.org/10.1002/2013jf003004 |
| [22] |
Qiao, X.J., Wang, Q., Du, R.L., 2004. Characteristics of Current Crustal Deformation of Active Blocks in the Sichuan⁃Yunnan Region. Chinese Journal of Geophysics, 47(5):806-812 (in Chinese with English abstract). |
| [23] |
Replumaz, A., Lacassin, R., Tapponnier, P., et al., 2001. Large River Offsets and Plio⁃Quaternary Dextral Slip Rate on the Red River Fault (Yunnan, China). Journal of Geophysical Research: Solid Earth, 106(B1): 819-836. https://doi.org/10.1029/2000jb900135 |
| [24] |
Sağlam Selçuk, A., 2016. Evaluation of the Relative Tectonic Activity in the Eastern Lake Van Basin, East Turkey. Geomorphology, 270: 9-21. https://doi.org/10.1016/j.geomorph.2016.07.009 |
| [25] |
Strahler, A. N., 1952. Hypsometric (Area⁃Altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63(11): 1117-1142. https://doi.org/10.1130/0016⁃7606(1952)63[1117: HAAOET]2.0.CO;2 |
| [26] |
Su, Q., Yuan, D.Y., Xie, H., et al., 2016. Geomorphic Features of the Shule River Drainage Basin in Qilianshan and Its Insight into Tectonic Implications. Seismology and Geology, 38(2): 240-258 (in Chinese with English abstract). |
| [27] |
Wang, D., Dong, Y.P., Jiao, Q.Q., et al., 2021. The Mechanism of Tectonic Deformation of the Central Yunnan Terrane in the Late Cenozoic Based on Tectonic Geomorphology. Earth Science, 47(8): 3016-3028 (in Chinese with English abstract). |
| [28] |
Wang, E., Burchfiel, B. C., 1997. Interpretation of Cenozoic Tectonics in the Right⁃Lateral Accommodation Zone between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. International Geology Review, 39(3): 191-219. https://doi.org/10.1080/00206819709465267 |
| [29] |
Wang, E., Burchfiel, B. C., Royden, L. H., et al., 1998. Late Cenozoic Xianshuihe⁃Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China. Special Paper of the Geological Society of America, 327:1-108. |
| [30] |
Wang, E.Q., Burchfiel, B. C., Royden, L. H., et al., 1995. Late Cenozoic Compressional Deformations and Their Origin along the Xiaojiang Strike⁃Slip Fault System in Central Yunnan China. Chinese Journal of Geology (Scientia Geologica Sinica), 30(3): 209-219 (in Chinese with English abstract). |
| [31] |
Wang, G., Wang, E.Q., 2005. Extensional Structures within the Compressional Orogenic Belt and Its Mechanism: A Case Study for the Late Cenozoic Deformation in Central Yunnan. Seismology and Geology, 27(2):188-199 (in Chinese with English abstract). |
| [32] |
Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo⁃Asian Collision Zone. Earth and Planetary Science Letters, 188(1-2): 123-133. https://doi.org/10.1016/S0012⁃821X(01)00315⁃6 |
| [33] |
Wang, Y. Z., Zhang, H. P., Zheng, D. W., et al., 2014. Controls on Decadal Erosion Rates in Qilian Shan: Re⁃Evaluation and New Insights into Landscape Evolution in North⁃East Tibet. Geomorphology, 223: 117-128. https://doi.org/10.1016/j.geomorph.2014.07.002 |
| [34] |
Wang, Y.Z., Zheng, D.W., Zhang, H.P., et al., 2020. Activity Characteristics of the Huashan Piedmont Normal Fault: Insights from Fluvial Geomorphic Parameters. Seismology and Geology, 42(2):382-398 (in Chinese with English abstract). |
| [35] |
Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream⁃Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. https://doi.org/10.1029/1999jb900120 |
| [36] |
Willett, S. D., 1999. Orogeny and Orography: The Effects of Erosion on the Structure of Mountain Belts. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. https://doi.org/10.1029/1999jb900248 |
| [37] |
Wu, K., Dong, Y. P., Duan, J. X., et al., 2020. Cenozoic Uplift of the Central Yunnan Fragment, Southwestern China, Revealed by Apatite (U⁃Th)/He Dating. Journal of Earth Science, 31(4): 735-742. https://doi.org/10.1007/s12583⁃020⁃1328⁃4 |
| [38] |
Yu, W.X., Xie, Y.Q., Zhang, J.G., et al., 2004. Age Studies of Major Active Faults around Kunming Basin. Journal of Seismological Research, 27(4):357-362 (in Chinese with English abstract). |
| [39] |
Zhang, P.Z., 2008. Current Tectonic Deformation, Strain Distribution and Deep Dynamic Process in Western Sichuan on the Eastern Margin of Qinghai⁃Tibet Plateau. Scientia Sinica Terrae, 38(9): 1041-1056 (in Chinese). |
| [40] |
Zhang, P.Z., Deng, Q.D., Zhang, Z.Q., et al., 2013. Active Faults, Earthquake Disasters and Their Dynamic Processes in Chinese Mainland. Scientia Sinica Terrae, 43(10): 1607-1620 (in Chinese). |
| [41] |
Zhu, T., Zhou, J.G., Shen, K., et al., 2012. Application of Electrical Resistivity Tomography to the Detection of Pudu River Fault in Yuxi Basin. Seismology and Geology, 34(3):467-476 (in Chinese with English abstract). |
云南省企业基础研究应用基础研究联合专项(202101BC070001⁃003)
云南省“兴滇英才支持计划”青年人才项目(KKXX202421007)
/
| 〈 |
|
〉 |