滇中普渡河断裂相对构造活动性特征

余华玉 ,  董有浦 ,  于良 ,  张东越 ,  王丹 ,  段佳鑫 ,  任洋洋 ,  李江涛

地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 336 -348.

PDF (13567KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (01) : 336 -348. DOI: 10.3799/dqkx.2022.172

滇中普渡河断裂相对构造活动性特征

作者信息 +

Relative Tectonic Activity of Puduhe Fault in Central Yunnan

Author information +
文章历史 +
PDF (13892K)

摘要

鲜水河‒小江断裂带在滇中发散成数条SN向分支断裂,其中的普渡河断裂多次引发5级以上的地震,但其构造活动性的空间分布特征并不清晰.地貌指数对构造活动非常敏感,可以很好地指示构造活动性分布特征.利用30 m分辨率的数字高程模型(DEM)提取了普渡河断裂区域41个流域盆地,并将流域划分为北段(撒营盘‒富民段)、中段(富民‒晋宁段)、南段(晋宁‒峨山段)三段,通过分析获得了面积高程积分(HI)、流域盆地不对称度(AF)、流域形状指数(BS)、谷底宽高比(VF)、标准化河流阶梯指数(SLK)、山前曲折度(Smf)、河流陡峭指数(Ksn)这7种地貌指数来揭示研究区的相对构造活动分布规律.结果表明普渡河断裂的各地貌指数的空间变化特征不受非构造因素(降水和岩性)的影响,而表现为主要受构造活动影响.普渡河断裂相对构造活动性呈现出由北向南逐渐减弱趋势,且断裂东侧的构造活动性略弱于西侧.普渡河断裂构造活动性弱于小江断裂,表明川滇地块在挤出过程中,活动性强的区域主要集中在边界断裂带.

Abstract

The Xianshuihe-Xiaojiang fault zone diverges into several SN-trending branch faults in central Yunnan, among which the Puduhe fault has triggered earthquakes of magnitude more than 5 for many times, but its spatial distribution characteristics of tectonic activity are not clear. Because geomorphic index is very sensitive to tectonic activity, it can well indicate the distribution characteristics of tectonic activity. In order to study the distribution characteristics of tectonic activity of the Purduhe fault, 41 basins in the Purduhe fault region were extracted by using digital elevation model (DEM) with a resolution of 30 m. The basin is divided into three sections: north section (Sayingpan-Fumin Section), middle section (Fumin-Jinning Section) and south section (Jinning-Eshan Section). Seven geomorphic indices including hypsometric curve and hypsometric integral (HI), asymmetric factor (AF), basin shape index (BS), the ratio of valley floor width to valley height (VF), normalized stream-length gradient (SLK), sinuosity of the mountain front (Smf) and the steepness index(Ksn)were obtained through analysis. The results show that the spatial variation characteristics of geomorphic indices of the Puduhe fault are not affected by non-structural factors (precipitation and lithology), but they are mainly affected by tectonic activities. The relative tectonic activity of the Puduhe fault gradually decreases from north to south, and the tectonic activity of the east side of the fault is slightly weaker than that of the west side. The structural activity of the Puduhe fault is weaker than that of the Xiaojiang fault, indicating that during the extrusion process of the Sichuan-Yunnan block, the highly active area is mainly concentrated in the boundary fault zone.

Graphical abstract

关键词

滇中地块 / 普渡河断裂 / 构造地貌参数 / 相对构造活动性 / 工程地质学.

Key words

Central Yunnan block / Puduhe fault / tectonic geomorphic parameter / relative tectonic activity / engineering geology

引用本文

引用格式 ▾
余华玉,董有浦,于良,张东越,王丹,段佳鑫,任洋洋,李江涛. 滇中普渡河断裂相对构造活动性特征[J]. 地球科学, 2025, 50(01): 336-348 DOI:10.3799/dqkx.2022.172

登录浏览全文

4963

注册一个新账户 忘记密码

位于青藏高原东南缘的川滇地块在晚新生代沿着鲜水河‒小江断裂带和红河断裂带发生南东向的逃逸(Burchfiel et al., 2003).其中,鲜水河‒小江断裂带在滇中地块发散成彼此平行的数条SN向分支断裂(图1),沿断裂形成滇池、玉溪、抚仙湖、通海、元谋等第四纪走滑拉分盆地(王刚和王二七,2005).断裂带中的普渡河断裂多次引发5级以上的地震(俞维贤等,2004),根据地震局统计结果,地震主要分布在断裂北段(图2),普渡河断裂中‒南部的昆明、玉溪为云南省人口聚集的主要城市,断裂的活动将影响着城市的发展.前人通过地震反射法及电阻率层析成像法,对普渡河断裂隐伏断层的几何特征进行了研究(朱涛等,2012;何正勤等,2013),但对其整体构造活动性空间分布规律尚未开展系统的研究.由于地貌指数对构造活动非常敏感,可以很好地指示构造活动性分布特征(Figueroa and Knott, 2010Sağlam Selçuk, 2016).本文获得了普渡河断裂区域内的面积高程积分(HI)、流域盆地不对称度(AF)、流域形状指数(BS)、谷底宽度与谷间高度比(VF)、标准化河流阶梯指数(SLK)、山前曲折度(Smf)、河流陡峭指数(Ksn)7种地貌指数(El Hamdouni et al.,2008Figueroa and Knott, 2010Cheng et al., 2018),并由此分析普渡河断裂的构造活动性空间分布规律.

1 区域地质背景

滇中地块归属扬子地块西缘,丽江‒小金河断裂带、安宁河‒则木河‒小江断裂带和红河断裂带为其边界断裂带(图1)(Wang et al., 1998Li et al., 2020Wu et al., 2020).研究表明,丽江‒小金河断裂晚第四纪以来以左行走滑为主,平均走滑速率为(3.6±0.2) mm/a左右;红河断裂带由北西向的剪切带组成,左行走滑剪切作用在32 Ma沿着红河‒哀牢山断裂带发育(Gilley et al., 2003),5 Ma由左旋走滑开始转变为右旋张扭走滑性质(Wang and Burchfiel, 1997),也有研究表明右旋张扭走滑于16 Ma 开始(Wang et al., 2001).年代学证据表明安宁河‒则木河‒小江断裂带自12~17 Ma开始发育,左行走滑运动开始于4~5 Ma,走滑量为 60 km (Wang et al., 1998).地块内部还发育有普渡河断裂、易门断裂、绿汁江断裂等近南北向左旋走滑断裂,在地块南部发育的楚雄断裂、建水断裂、曲江‒峨山断裂等与红河断裂近乎平行(王刚和王二七,2005).

滇中地块以绿汁江断裂为界可分为两部分,东部主要出露薄沉积盖层的中元古界昆阳群复理石、钠质火山岩,震旦纪至晚三叠世的海陆交互相碎屑岩、碳酸盐、基性火山岩.晚古近纪以来,该地区形成一系列小型山间盆地,为内陆碎屑含煤建造.西部属于楚雄盆地,主要发育山岭,主要出露中生代‒古近纪的紫红色陆相碎屑沉积(王刚和王二七,2005).

2 研究方法

本文基于地理信息系统(GIS)和30 m分辨率的DEM提取了研究区内41个流域盆地(图2),并将研究区划分为3段,北段为撒营盘‒富民段、中段为富民‒晋宁段、南段为晋宁‒峨山段,获得了HIBSAFSLKVFSmfKsn七个地貌指数.在研究走滑断裂构造活动性时,通常运用相对构造活动性(Iat),它由前5个地貌参数的算数平均值得到(Figueroa and Knott, 2010),山前曲折度(Smf)可以用来表征相对隆升程度(Sağlam Selçuk, 2016),Ksn可以用来反映基岩隆升速率与河流侵蚀速率之间的关系(王一舟等, 2020).

2.1 面积高程积分(HI

HI值可以反映流域发育中侵蚀与隆升之间的关系(Strahler,1952),计算公式为:

           HI=(Haver-Hmin)/(Hmax-Hmin)

其中,HminHmaxHaver分别为流域最小高程、流域最大高程以及流域平均高程(表1).积分值高表明地形处于受构造活动影响强的幼年期,低积分值则相反.根据El Hamdouni(2008)提出的分级方法,将HI值分为3个等级:HI>0.5(构造活动性强);0.4≤HI≤0.5(构造活动性中等);HI<0.4(构造活动性弱).

2.2 流域盆地不对称度(AF

是否发生构造倾斜可以通过AF值来判断(Hack,1973).计算公式为:

           AF=100 (Ar/At)

其中,Ar为流域右侧面积,At为流域总面积(表1).AF受构造影响大,对称性流域的AF值接近50,处于稳定状态;向左倾斜的流域盆地,AF值远大于50;AF值远小于50的流域盆地向右倾斜.AF值可划分为3个等级:|AF-50| ≥15(构造活动性强);7≤ |AF-50|<15(构造活动性中等);|AF-50|<7(构造活动性弱)(Figueroa and Knott, 2010; Cheng et al., 2018).

2.3 流域形状指数(BS

在构造活动强烈的地区,河流形状一般呈线状,当活动减弱或受侧向侵蚀影响时,会逐渐趋于圆形(Figueroa and Knott,2010).BS是河流发源地至出水口的直线距离与垂直于该直线的流域最大宽度的比值,公式为:

           BS=BI/BW 

其中,BI表示发源地至出水口的直线距离,BW表示垂直于BI的最大宽度(表1).构造活动强的区域BS值较大,随着构造活动的减弱,BS值逐渐降低.BS值有3个等级,分别为:BS>2.3(强);1.5≤BS≤2.3(中等);BS<1.5(弱)(Figueroa and Knott,2010Cheng et al., 2018).

2.4 谷底宽度与谷间高度比(VF

VF值是谷底的宽度和河谷的高度之间的比值(Bull and McFadden,1977),公式为:

VF=2Vfw/[(Eld-Esc )+(Erd-Esc )] 

其中,Vfw为谷底宽度,EldErd分别为河谷左右两侧分水岭的高程,Esc为谷底平均高程(表1).VF值可以用来反映抬升速率和构造活动,低VF值对应较高的抬升速率,河流深切,呈“V”字形,构造活动较强;较高的VF值则反之.VF可分为3个等级:VF<0.5(构造活动性强);0.5≤VF<1.0(构造活动性中等);VF≥2.5(构造活动性弱)(Figueroa and Knott,2010; Cheng et al., 2018).

2.5 标准化河流阶梯指数(SLK

为定量反映河流纵剖面坡度变化和侵蚀沉降过程,Hack(1973)定义了坡降指数(SL)来分析坡度变化,它是单位距离的坡度与源头距离的乘积.公式为:

           SL=(ΔH/ΔL)×L

其中,△H、△L分别为高程差和水平距离,△H/△L为单位距离的坡度(表1).利用均衡值KSL值进行标准化而得到SLK指数,可以用来对比不同长度河道,公式为:

           K=Htotal/ln(Ltotal )
           SLK=SL/K

其中HtotalLtotal分别为河流源头与出口的高差和总长度(表1).

SLK值可以分为3个等级:SLK≥3.7(构造活动性强);2.5≤SLK<3.7(构造活动性中等);SLK<2.5(构造活动性弱)(Figueroa and Knott, 2010; Cheng et al., 2018).

2.6 山前曲折度(Smf

山前曲折度(Smf)用来区分构造活动性中侵蚀与构造活动的关系,其值取决于隆升速率,公式为:

           Smf=Lmf/Ls 

其中,Ls是山前带的直线距离,Lmf为沿着山脉到山麓带坡度变化的山前带的长度.将断裂沿着等高线选取合适Lmf,分为合适的分段进行计算.受活动断层限制的活动性山前具有较低的曲折度(Smf<1.4),而较高的曲折度(Smf>3.0)表明活动性较弱(Bull, 2009).

2.7 归一化河流陡峭指数(Ksn

河流陡峭指数可以反映基岩隆升速率的空间分布特征.在构造隆升地区,由于河流纵剖面高程变化通常是河道隆升与下切之间相互竞争的结果,河道某点在一定时间(dt)内的高程变化(dz)是由岩石隆升速率(U)和侵蚀速率(E)共同决定的(Goren et al.,2014):

           dz/dt=U-E

河道侵蚀速率(E)可以表示为流域面积(A)与局部坡度(S)的函数:

E=KAmSn

式中,K为侵蚀系数(由气候和岩石性质决定)(Willett, 1999);mn是描述河道侵蚀率对流域面积和河道坡度相关性的正指数(Whipple and Tucker, 1999).当岩石隆升速率等于侵蚀速率时,河道的高程不随时间变化,因此,河道坡度为:

           S=U/K1/nA-m/n

沿着统一的岩性、隆升速率和气候的均衡基岩河流纵剖面,其坡度(S)与流域面积(A)呈幂律关系:

           S=KsA-θ

其中Ks是河道陡峭指数,θ是河道凹度指数.当隆升与侵蚀处于平衡(稳态)时,凹度指数(θ)在0.3~0.6之间,不随隆升速率发生系统变化,归一化河流陡峭指数为KsnWhipple and Tucker, 1999).

2.8 构造活动相对强度(Iat

Iat指数被用来表征走滑断裂的相对构造活动强度,El Hamdouni et al.(2008)Faghih et al.(2016)等都先后在研究中运用.计算方法为:

           Iat=S/n,

式中,Sn分别是各地貌参数等级总和与种类数(表1).根据前人的分级方法(El Hamdouni et al., 2008Figueroa and Knott, 2010Faghih et al., 2016),将Iat值分为四级:第一级(活动程度高)1.0≤Iat<1.5;第二级(较高)1.5≤Iat<2.0;第三级(中等)2.0≤Iat<2.5;第四级(低)2.5≤Iat<3.0.

3 结果

3.1 面积高程积分(HI

HI值由北向南逐渐减小,高值区主要分布在断裂北段撒营盘‒富民段和南段晋宁‒峨山段.断裂西侧HI值普遍高于断裂东侧.面积高程积分值的范围为0.21~0.56,最高值0.56出现在北段转龙镇北侧流域2,最低值0.21出现在断裂中段东侧昆明盆地附近的流域23,以及断裂中段西侧的流域24(图3a).流域2、4、14、16、17、33、34、36、37处于河流发育的幼年期,流域1、3、7、8、9、10、15、18、20、35、38、40、41处于河流发育的成熟期,其余流域处于老年期(附录表1).

3.2 流域不对称度(AF

本文统计了41个流域的AF值,南北向趋势并不明显,高值区主要集中在断裂西侧北段撒营盘‒富民段以及南段晋宁‒峨山段,中段富民‒晋宁段分布较少.最低值0.95出现在断裂东侧南段的玉溪盆地附近的流域34,最高值23.79出现在断裂西侧北段富民西侧的流域9(图3b).

3.3 流域形状指数(BS)

本文统计了41个流域的BS值,范围为0.51~3.29,平均值为1.49(附录表1),且BS值由北向南逐渐降低.高值区主要分布在断裂北段撒营盘‒富民段、中段富民‒晋宁段(图3c),表明断裂北段、中段流域的形状相较于南段流域更为狭长.

3.4 谷底宽高比(VF)

本文统计了普渡河断裂附近流域内的VF值,由北向南逐渐增大,低值区主要分布在断裂北段撒营盘‒富民段.最高值38.13出现在断裂西侧中段晋宁区西侧的流域30(附录表1),最低值0.18出现在断裂北段寻甸县倘甸镇和柯渡镇之间的流域6(图3d).综合VF值来看,研究区内大部分流域为“U”型河谷,且高值区主要分布在断裂西侧.

3.5 标准化河流梯度指数(SLK)

研究区内SLK值的范围为0.24~6.75,由北向南逐渐降低(图3e).高值区主要分布在断裂北段撒营盘‒富民段,最低值0.24出现在断裂西侧中段的流域25,最高值6.75为断裂西侧中段安宁市北侧的流域17(附录表1).研究区内流域的SLK值普遍较低.

3.6 构造活动相对强度(Iat)

研究区内Iat值的范围为1.0~2.8,平均值为2.22.Iat整体趋势由北向南逐渐增加(图3g),且断裂东侧低于西侧.高值区主要分布在断裂东侧北段撒营盘‒富民段.低值1.0、1.4出现在断裂西侧北段团街镇的流域4和富民县附近的流域14、流域17(附录表1).根据Iat值分级特征,研究区内有19.5%的小流域为1级和2级,46.3%的为3级,34.2%的为4级(图3g).

3.7 山前曲折度(Smf)

断裂西侧的Smf值范围为1.52~3.73,最低值为最北段S1,为1.52;最高值为断裂南段的S4,为3.73;由北向南Smf值逐渐增大.断裂东侧的Smf值范围为1.64~7.29,最低值为最北段S1,为1.64;最高值出现在S2(附录表2),为7.29.综合来看,同段断裂东侧的Smf值高于或等于西侧对应段的值.

Smf值与VF值比较得到断裂西侧北段S1、S2的隆升速率较高,在0.5~0.05 mm/a之间,S5的隆升速率最低,小于0.05 mm/a,隆升速率由北向南逐渐减弱(图4b).断裂东侧北段的S1、S2、S3、S4的隆升速率较高,为0.5~0.05 mm/a,S5的隆升速率最低,小于0.05 mm/a;隆升速率由北向南逐渐减弱(图4a).比较断裂东西两侧隆升速率可以看出,断裂东侧隆升速率低于西侧.

3.8 归一化河流陡峭指数(Ksn)

普渡河断裂流域内归一化河流陡峭指数(Ksn)的范围为0~10 825 m0.9,整体上由北向南逐渐减小.高值区主要分布在断裂北段撒营盘‒富民段,在中段富民‒晋宁段昆明盆地、南段晋宁‒峨山段玉溪盆地等地Ksn值较低,出现大量Ksn<65的低值区,在断裂南段与曲江‒峨山断裂交汇处出现了一部分高值.整体来看,普渡河断裂流域的Ksn值偏低.

4 讨论

4.1 降雨

降雨量的增多会导致河流流量增加,改变河道和流域形态(Wang et al., 2014;王一舟等,2020),从而使HIAFBSSLKVF值发生改变,影响该地区的Iat值.本文统计了中国气象数据网采集的气象站逐月降水数据(1970-2020年,数据下载地址:http://data.cma.cn),研究区内北段撒营盘‒富民段平均降水为953 mm/a,中段富民‒晋宁段平均降水为900 mm/a,南段晋宁‒峨山段平均降水为925 mm/a.可以看出,研究区内年降水并无太大的差异,但区域内的Iat值呈现北高南低的趋势,这与平均降水分布不相符合,由此认为降雨不是影响Iat值分布的主要因素.

4.2 岩性

岩性在裂点迁移中起着重要的作用(Howard and Kerby,1983),岩性抗侵蚀能力较强的区域通常河道较陡且水系密度低(Marshall and Roering, 2014).提取了研究区内全部支流的河道纵剖面,其中有7条支流未发育裂点,剩余34条支流发育有40个裂点,但仅有3个裂点出现在岩性分界线附近,其余37个裂点均不在岩性分界线附近(附录表3),如流域7和40所示,流域7岩性以新近系泥岩、砂岩和寒武系页岩、白云岩为主,局部分布侏罗系砂岩、泥岩和元古宇页岩、片岩、片麻岩,裂点明显未出现在岩性分界线上(图6a);流域40以泥盆系石灰岩、白云岩和元古宇页岩、片岩、片麻岩为主,局部分布有三叠系砂岩、泥岩、灰岩,裂点也未出现在岩性分界线上(图6b).因此,本文认为岩性不是影响Iat值分布的主要因素.

4.3 构造变形的影响

普渡河断裂走滑速率由北向南逐渐减弱(张培震等,2013),在中、南段逐渐演变为伸展变形(乔学军等,2004).在断裂东侧的中段和南段发育昆明、玉溪两个断陷盆地(Wang et al.,1998),昆明盆地附近热释光测年表明断裂在中晚更新世后未发生活动(安晓文等,2018).断裂最终在南段峨山被曲江‒峨山断裂所截止(王二七等,1995).与此对应,普渡河断裂流域盆地内的HI 值由北向南逐渐减小,在断裂东侧的两个断陷盆地值较低,断裂西侧HI值高于东侧;AF值南北向趋势不明显,但高值区主要分布在断裂西侧,表现出较高的活动性;BS值由北向南逐渐降低,高值区主要分布在断裂北、中段;VF值由北向南逐渐增加,低值区主要分布在断裂北段,高值区主要分布在断裂西侧;北段的SLK值较高,向南逐渐降低;Iat值由北向南逐渐增加,高值出现在北段,且断裂东侧低于西侧(图4).Ksn值由北向南逐渐降低,高值区分布在断裂北段.东西侧的Smf整体由北向南逐渐增高,隆升速率降低,昆明、玉溪盆地对应的东侧S3、S4、S5,相较于西侧的对应段隆升速率同样较慢.以上地貌参数得到的结果与断裂自身性质、热释光测年得到的结果相吻合,因此,本文认为构造变形对Iat值分布起主导作用.由Iat值得到的普渡河断裂构造活动性呈现北强南弱的趋势,且整体处于活动性较弱的3、4级.

青藏高原东南缘的川滇地块在晚新生代沿着鲜水河‒小江断裂带和红河断裂带发生南东向的逃逸和顺时针旋转(Burchfiel and Wang, 2003).其中的边界断裂带——小江断裂带至今仍处于较活跃的左行走滑运动,兼局部挤压、拉张,平均走滑速率为8~10 mm/a(Allen et al., 1984; 虢顺民,2001),断裂活动量向南逐渐减小、活动强度逐渐变弱(何宏林等,1993),地貌研究表明小江断裂处于活动性较强的1、2级(王丹等,2021).普渡河断裂作为小江断裂系中的分支,其活动趋势虽与小江断裂相似,都为由南向北逐渐减弱,但总体活动强度弱于小江断裂,这表明川滇地块在挤出的过程中,活动性较强的区域主要集中分布在边界断裂带上.

5 结论

(1)普渡河断裂的Iat低值区主要集中在北部,HIBSAFVFSLKKsn值都表明断裂构造活动性呈现北强南弱的趋势,且断裂西侧构造活动性和隆升速率强于东侧.降水和岩性对普渡河断裂区域各个地貌参数的空间分布无整体性影响,主要是构造因素对断裂活动性产生影响.

(2)普渡河断裂的活动性有80.5%的区域集中在3、4级,由活动性及测年数据表明新生代以来,普渡河断裂在中晚更新世后未活动,断裂附近无明显的切错.

(3)普渡河断裂的活动性弱于小江断裂,表明川滇地块在挤出过程中,活动性强的区域集中在边界断裂带上.

附录表见 https://doi.org/10.3799/dqkx.2022.172.

参考文献

[1]

Allen, C. R., Gillespie, A. R., Han, Y. A., et al., 1984. Red River and Associated Faults, Yunnan Province, China: Quaternary Geology, Slip Rates, and Seismic Hazard. Geological Society of America Bulletin, 95(6): 686. https://doi.org/10.1130/0016⁃7606(1984)95686: rraafy>2.0.co;2

[2]

An, X.W., Chang, Z.F., Chen,N.J.,et al.,2018. Quaternary Active Faults in Yunnan and Distribution Map of Quaternary Active Faults in Yunnan. Seismological Press, Beijing (in Chinese).

[3]

Bull, W. B., 2009. Tectonic Geomorphology of Mountains: A New Approach to Paleoseismology. In: Ravazzi, C., Orombelli, G., Donegana, M., et al., eds., Quaternary Research in the Southern Alps of Italy. Quaternary International, 204(1-2): 105-106. https://doi.org/10.1016/j.quaint.2009.03.001

[4]

Bull, W. B., McFadden, L. D., 1977. Tectonic Geomorphology North and South of the Garlock Fault, California. Synthetic Metals, 14(8):115-136. https://doi.org/10.1016/S0379⁃6779(00)01411⁃9

[5]

Burchfiel, B. C., Wang, E., 2003. Northwest⁃Trending, Middle Cenozoic, Left⁃Lateral Faults in Southern Yunnan, China, and Their Tectonic Significance. Journal of Structural Geology, 25(5): 781-792. https://doi.org/10.1016/S0191⁃8141(02)00065⁃2

[6]

Cao, K., Leloup, P. H., Wang, G. C., et al., 2021. Thrusting, Exhumation, and Basin Fill on the Western Margin of the South China Block during the India⁃Asia Collision. GSA Bulletin, 133(1-2): 74-90. https://doi.org/10.1130/b35349.1

[7]

Cheng, Y. L., He, C. Q., Rao, G., et al., 2018. Geomorphological and Structural Characterization of the Southern Weihe Graben, Central China: Implications for Fault Segmentation. Tectonophysics, 722: 11-24. https://doi.org/10.1016/j.tecto.2017.10.024

[8]

El Hamdouni, R., Irigaray, C., Fernández, T., et al., 2008. Assessment of Relative Active Tectonics, Southwest Border of the Sierra Nevada (Southern Spain). Geomorphology, 96(1-2): 150-173. https://doi.org/10.1016/j.geomorph.2007.08.004

[9]

Faghih, A., Nezamzadeh, I., Kusky, T. M., 2016. Geomorphometric Evidence of an Active Pop⁃up Structure along the Sabzpushan Fault Zone, Zagros Mountains, SW Iran. Journal of Earth Science, 27(6): 945-954. https://doi.org/10.1007/s12583⁃016⁃0663⁃y

[10]

Figueroa, A. M., Knott, J. R., 2010. Tectonic Geomorphology of the Southern Sierra Nevada Mountains (California): Evidence for Uplift and Basin Formation. Geomorphology, 123(1-2): 34-45. https://doi.org/10.1016/j.geomorph.2010.06.009

[11]

Gilley, L. D., Harrison, T. M., Leloup, P. H., et al., 2003. Direct Dating of Left⁃Lateral Deformation along the Red River Shear Zone, China and Vietnam. Journal of Geophysical Research: Solid Earth, 108(B2): 2127. https://doi.org/10.1029/2001jb001726

[12]

Goren, L., Fox, M., Willett, S. D., 2014. Tectonics from Fluvial Topography Using Formal Linear Inversion: Theory and Applications to the Inyo Mountains, California. Journal of Geophysical Research: Earth Surface, 119(8): 1651-1681. https://doi.org/10.1002/2014jf003079

[13]

Guo, S.M., 2001. Red River Active Fault Zone: A Special Study on Active Faults in China. Ocean Press, Beijing (in Chinese).

[14]

Hack, J. T., 1973. Stream⁃Profile Analysis and Stream⁃ Gradient Index. Journal of Research of the U.S. Geological Survey, 1(4):421-429.

[15]

He, H.L., Fang,Z.J.,Li, P., 1993. A Preliminary Approach to the Fault Activity of Southern Segment on Xiaojiang West Branch Fault. Journal of Seismological Research, 16(3): 291-298 (in Chinese with English abstract).

[16]

He, Z.Q., An, H.S., Shen, K., et al., 2013. Detection of Puduhe Fault in Yuxi Basin of Yunnan by Seismic Reflection Method. Acta Seismologica Sinica, 35(6): 836-847 (in Chinese with English abstract).

[17]

Howard, A. D., Kerby, G., 1983. Channel Changes in Badlands. Geological Society of America Bulletin, 94(6): 739-752. https://doi.org/10.1130/0016⁃7606(1983)94739: ccib>2.0.co;2

[18]

Kirby, E., Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44: 54-75. https://doi.org/10.1016/j.jsg.2012.07.009

[19]

Leloup, P. H., Lacassin, R., Tapponnier, P., et al., 1995. The Ailao Shan⁃Red River Shear Zone (Yunnan, China), Tertiary Transform Boundary of Indochina. Tectonophysics, 251(1-4): 3-10, 13-84. https://doi.org/10.1016/0040⁃1951(95)00070⁃4

[20]

Li, S. H., Su, T., Spicer, R. A., et al., 2020. Oligocene Deformation of the Chuandian Terrane in the SE Margin of the Tibetan Plateau Related to the Extrusion of Indochina. Tectonics, 39(7): e2019TC005974. https://doi.org/10.1029/2019tc005974

[21]

Marshall, J. A., Roering, J. J., 2014. Diagenetic Variation in the Oregon Coast Range: Implications for Rock Strength, Soil Production, Hillslope Form, and Landscape Evolution. Journal of Geophysical Research: Earth Surface, 119(6): 1395-1417. https://doi.org/10.1002/2013jf003004

[22]

Qiao, X.J., Wang, Q., Du, R.L., 2004. Characteristics of Current Crustal Deformation of Active Blocks in the Sichuan⁃Yunnan Region. Chinese Journal of Geophysics, 47(5):806-812 (in Chinese with English abstract).

[23]

Replumaz, A., Lacassin, R., Tapponnier, P., et al., 2001. Large River Offsets and Plio⁃Quaternary Dextral Slip Rate on the Red River Fault (Yunnan, China). Journal of Geophysical Research: Solid Earth, 106(B1): 819-836. https://doi.org/10.1029/2000jb900135

[24]

Sağlam Selçuk, A., 2016. Evaluation of the Relative Tectonic Activity in the Eastern Lake Van Basin, East Turkey. Geomorphology, 270: 9-21. https://doi.org/10.1016/j.geomorph.2016.07.009

[25]

Strahler, A. N., 1952. Hypsometric (Area⁃Altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 63(11): 1117-1142. https://doi.org/10.1130/0016⁃7606(1952)63[1117: HAAOET]2.0.CO;2

[26]

Su, Q., Yuan, D.Y., Xie, H., et al., 2016. Geomorphic Features of the Shule River Drainage Basin in Qilianshan and Its Insight into Tectonic Implications. Seismology and Geology, 38(2): 240-258 (in Chinese with English abstract).

[27]

Wang, D., Dong, Y.P., Jiao, Q.Q., et al., 2021. The Mechanism of Tectonic Deformation of the Central Yunnan Terrane in the Late Cenozoic Based on Tectonic Geomorphology. Earth Science, 47(8): 3016-3028 (in Chinese with English abstract).

[28]

Wang, E., Burchfiel, B. C., 1997. Interpretation of Cenozoic Tectonics in the Right⁃Lateral Accommodation Zone between the Ailao Shan Shear Zone and the Eastern Himalayan Syntaxis. International Geology Review, 39(3): 191-219. https://doi.org/10.1080/00206819709465267

[29]

Wang, E., Burchfiel, B. C., Royden, L. H., et al., 1998. Late Cenozoic Xianshuihe⁃Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China. Special Paper of the Geological Society of America, 327:1-108.

[30]

Wang, E.Q., Burchfiel, B. C., Royden, L. H., et al., 1995. Late Cenozoic Compressional Deformations and Their Origin along the Xiaojiang Strike⁃Slip Fault System in Central Yunnan China. Chinese Journal of Geology (Scientia Geologica Sinica), 30(3): 209-219 (in Chinese with English abstract).

[31]

Wang, G., Wang, E.Q., 2005. Extensional Structures within the Compressional Orogenic Belt and Its Mechanism: A Case Study for the Late Cenozoic Deformation in Central Yunnan. Seismology and Geology, 27(2):188-199 (in Chinese with English abstract).

[32]

Wang, J. H., Yin, A., Harrison, T. M., et al., 2001. A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo⁃Asian Collision Zone. Earth and Planetary Science Letters, 188(1-2): 123-133. https://doi.org/10.1016/S0012⁃821X(01)00315⁃6

[33]

Wang, Y. Z., Zhang, H. P., Zheng, D. W., et al., 2014. Controls on Decadal Erosion Rates in Qilian Shan: Re⁃Evaluation and New Insights into Landscape Evolution in North⁃East Tibet. Geomorphology, 223: 117-128. https://doi.org/10.1016/j.geomorph.2014.07.002

[34]

Wang, Y.Z., Zheng, D.W., Zhang, H.P., et al., 2020. Activity Characteristics of the Huashan Piedmont Normal Fault: Insights from Fluvial Geomorphic Parameters. Seismology and Geology, 42(2):382-398 (in Chinese with English abstract).

[35]

Whipple, K. X., Tucker, G. E., 1999. Dynamics of the Stream⁃Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 104(B8): 17661-17674. https://doi.org/10.1029/1999jb900120

[36]

Willett, S. D., 1999. Orogeny and Orography: The Effects of Erosion on the Structure of Mountain Belts. Journal of Geophysical Research: Solid Earth, 104(B12): 28957-28981. https://doi.org/10.1029/1999jb900248

[37]

Wu, K., Dong, Y. P., Duan, J. X., et al., 2020. Cenozoic Uplift of the Central Yunnan Fragment, Southwestern China, Revealed by Apatite (U⁃Th)/He Dating. Journal of Earth Science, 31(4): 735-742. https://doi.org/10.1007/s12583⁃020⁃1328⁃4

[38]

Yu, W.X., Xie, Y.Q., Zhang, J.G., et al., 2004. Age Studies of Major Active Faults around Kunming Basin. Journal of Seismological Research, 27(4):357-362 (in Chinese with English abstract).

[39]

Zhang, P.Z., 2008. Current Tectonic Deformation, Strain Distribution and Deep Dynamic Process in Western Sichuan on the Eastern Margin of Qinghai⁃Tibet Plateau. Scientia Sinica Terrae, 38(9): 1041-1056 (in Chinese).

[40]

Zhang, P.Z., Deng, Q.D., Zhang, Z.Q., et al., 2013. Active Faults, Earthquake Disasters and Their Dynamic Processes in Chinese Mainland. Scientia Sinica Terrae, 43(10): 1607-1620 (in Chinese).

[41]

Zhu, T., Zhou, J.G., Shen, K., et al., 2012. Application of Electrical Resistivity Tomography to the Detection of Pudu River Fault in Yuxi Basin. Seismology and Geology, 34(3):467-476 (in Chinese with English abstract).

基金资助

云南省企业基础研究应用基础研究联合专项(202101BC070001⁃003)

云南省“兴滇英才支持计划”青年人才项目(KKXX202421007)

AI Summary AI Mindmap
PDF (13567KB)

100

访问

0

被引

详细

导航
相关文章

AI思维导图

/