会泽铅锌矿区摆佐组地层白云石类型、特征及成因
赵思博 , 刘英超 , 岳龙龙 , 马旺 , 郑宁 , 唐波浪
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1353 -1379.
会泽铅锌矿区摆佐组地层白云石类型、特征及成因
Types, Characteristics, and Genesis of Lower Carboniferous Baizuo Formation Dolomite in Super-Large Huize Pb-Zn Orefield
,
白云岩赋矿的密西西比河谷型(Mississippi valley-type, MVT)铅锌矿床中,白云石的成因长期存在争议,川滇黔地区会泽超大型铅锌矿床为典型的白云岩和白云质灰岩赋矿的MVT矿床,是回答这一问题的有利对象. 选择会泽矿区远矿端摆佐组地层中浸染状、条带状、块状白云石(岩),通过详细的矿相学和阴极发光(CL)镜下观察,结合主量元素、LA-ICP-MS原位成分和碳、氧、锶同位素分析,系统研究了其成因. 结果发现,摆佐组地层中的白云石分3个阶段产出. 其中,第1阶段交代型粉晶白云石(Dol 1)见选择性和组构保留交代,CL呈蓝紫色,MgO/CaO平均值0.68,Fe,Mn含量较低,具有LREE弱亏损,Eu、Ce负异常和La正异常;第2阶段交代型细-粗晶白云石(Dol 2)见组构保留交代和重结晶现象,CL呈紫红色、暗红到橙红色,MgO/CaO平均值0.71,Fe、Mn含量较第1阶段升高,显示轻微LREE亏损,Eu负异常,Ce负异常-轻微正异常,C-O、Sr同位素均在同期早石炭世海水范围之内;第3阶段孔隙充填型白云石胶结物(Dol 3),CL为暗红色和亮红色两种环带交替,MgO/CaO平均值为0.68,具有较高的Fe、Mn含量,显示MREE富集,Eu负异常、Ce无异常. 这些特征表明,第1阶段白云石化流体为局限的氧化海水,第2阶段为氧化到弱氧化的浅部孔隙海水,第3阶段可能为还原环境下的富锰深部孔隙海水或残余海水. 基于此,建立了会泽铅锌矿区摆佐组地层大范围白云石化的形成过程:(1)近地表-浅埋藏环境中渗透回流模式形成Dol 1和Dol 2,(2)埋藏环境发生重结晶作用对白云石进行改造,形成粗晶白云岩,(3)成岩后深埋藏阶段粗晶白云岩的孔隙中沉淀Dol 3. 因而,近矿端与远矿端白云石具有相似的特征和成因机制,局部近矿端白云石可能经历了热液流体的改造.
The origin of dolomite in dolostone-hosted Mississippi valley-type (MVT) lead-zinc deposits has long been controversial. The Huize super-large lead-zinc deposit, situated in the Sichuan-Yunnan-Guizhou adjacent region, exemplifies a typical MVT deposit hosted within dolostones and dolomitized limestones, making it an ideal object for addressing the aforementioned issue. This study focuses on disseminated, banded, and blocky distal dolomite from the Lower Carboniferous Baizuo Formation of the Huize orefield. Through comprehensive petrographic analysis and cathodoluminescence (CL) microscopy, coupled with the examination of major elements, LA-ICP-MS in-situ compositional data, and carbon, oxygen, and strontium isotopic analyses, it systematically investigates the genesis of these dolomites. These characteristics indicate that the dolomite in the Baizuo Formation underwent formation through three distinct stages. The first stage—replacement powdered dolomite (Dol 1)—exhibits selective and fabric-retentive replacement, characterized by a blue-purple CL, a MgO/CaO ratio of 0.68, low iron (Fe) and manganese (Mn) contents, weak light rare earth element (LREE) depletion, negative europium (Eu) and cerium (Ce) anomalies, and a positive lanthanum (La) anomaly. The second stage—replacement fine-coarse crystalline dolomite (Dol 2)—shows fabric-retentive replacement and recrystallization, displaying a dark red-orange CL, a MgO/CaO ratio of 0.71, higher Fe and Mn contents compared to the first stage, slight LREE depletion, a negative Eu anomaly, and slightly negative to positive Ce anomalies. C-O and Sr isotopes fall within the range of Early Carboniferous seawater. The third stage—coarse crystalline dolomite cement (Dol 3)—fills cavities in dolostone, exhibiting alternating dark red and bright red CL bands, an average MgO/CaO ratio of 0.68, higher Fe and Mn contents, enriched middle rare earth elements (MREE), negative Eu anomalies, and no Ce anomalies. The results indicate that dolomitizing fluid in the first stage originated from localized oxidizing seawater. In the second stage, the dolomitization fluid comprised oxidizing to weakly oxidizing, saline shallow-burial pore waters. The third stage dolomitizing fluid is suggested to be Mn-rich deep-burial pore waters or residual seawater in a reducing environment. Based on the findings, in this paper it establishes the formation process of widespread dolomitization in the Baizuo Formation of the Huize Pb-Zn orefield. (1) The seepage-reflux dolomitization in near-surface to shallow burial environments lead to the formation of Dol 1 and Dol 2; (2) Recrystallization processes within burial environments alter dolomiteto form coarse crystalline dolostone; (3) During the post-diagenetic deep burial stage, Dol 3 precipitates in the cavities of the coarse crystalline dolostone. Therefore, the dolomite at both the proximal and distal extents exhibit similar characteristics and genetic mechanisms, and the dolomite in proximity to the ore body may have undergone alteration by hydrothermal fluids.
MVT铅锌矿床 / 会泽铅锌矿区 / 摆佐组 / 白云石成因 / 矿床学.
Mississippi valley-type lead-zinc deposit / Huize lead-zinc orefield / Baizuo Formation / dolomite genesis / mineral deposits
| [1] |
Bai, X., Zhong, Y.J., Huang, K.K., et al., 2022. Recrystallization of Dolomite and Its Geological Significance. Acta Petrologica et Mineralogica, 41(4): 804-817 (in Chinese with English abstract). |
| [2] |
Bau, M., Möller, P., Dulski, P., 1997. Yttrium and Lanthanides in Eastern Mediterranean Seawater and Their Fractionation during Redox-Cycling. Marine Chemistry, 56(1-2): 123-131. https://doi.org/10.1016/S0304-4203(96)00091-6 |
| [3] |
Cai, W. K., Liu, J. H., Zhou, C. H., et al., 2021. Structure, Genesis and Resources Efficiency of Dolomite: New Insights and Remaining Enigmas. Chemical Geology, 573: 120191. https://doi.org/10.1016/j.chemgeo.2021.120191 |
| [4] |
Chafetz, H. S., Zhang, J., 1998. Authigenic Euhedral Megaquartz Crystals in a Quaternary Dolomite. Journal of Sedimentary Research, 68(5): 994-1000. https://doi.org/10.2110/jsr.68.994 |
| [5] |
Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013 |
| [6] |
Chen, S.J., Cai, J.F., Wang, Z.J., et al., 1984. Significance of Biostratigraphy to Ore-Controlling of Shanshulin Pb-Zn Deposit. Geology and Prospecting, 20(11): 16-19, 24(in Chinese with English abstract). |
| [7] |
Cui, G.S., Bao, Z.W., Li, Q., 2023. The Origin of Hydrothermal Dolomite in the Huize Giant Pb-Zn Ore-Field in the Yunnan Province and Its Geological Implications. Geotectonica et Metallogenia, 47(2): 361-375 (in Chinese with English abstract). |
| [8] |
Davies, G. R., Smith, L. B. Jr, 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641-1690. https://doi.org/10.1306/05220605164 |
| [9] |
de Oliveira, S. B., Leach, D. L., Juliani, C., et al., 2019. The Zn-Pb Mineralization of Florida Canyon, an Evaporite-Related Mississippi Valley-Type Deposit in the Bongará District, Northern Peru. Economic Geology, 114(8): 1621-1647. https://doi.org/10.5382/econgeo.4690 |
| [10] |
Du, Y., Fan, T. L., Machel, H. G., et al., 2018. Genesis of Upper Cambrian-Lower Ordovician Dolomites in the Tahe Oilfield, Tarim Basin, NW China: Several Limitations from Petrology, Geochemistry, and Fluid Inclusions. Marine and Petroleum Geology, 91: 43-70. https://doi.org/10.1016/j.marpetgeo.2017.12.023 |
| [11] |
Friedman, I., O’Neil, J.R., 1977. Data of Geochemistry: Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. Chapter Kk. US Government Printing Office: 440. |
| [12] |
Guo, C., Chen, D. Z., Qing, H. R., et al., 2020. Early Dolomitization and Recrystallization of the Lower-Middle Ordovician Carbonates in Western Tarim Basin (NW China). Marine and Petroleum Geology, 111: 332-349. https://doi.org/10.1016/j.marpetgeo.2019.08.017 |
| [13] |
Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012 |
| [14] |
Han, R. S., Liu, C. Q., Huang, Z. L., et al., 2007. Geological Features and Origin of the Huize Carbonate-Hosted Zn-Pb-(Ag) District, Yunnan, South China. Ore Geology Reviews, 31(1-4): 360-383. https://doi.org/10.1016/j.oregeorev.2006.03.003 |
| [15] |
Harper, D. D., Borrok, D. M., 2007. Dolomite Fronts and Associated Zinc-Lead Mineralization, USA. Economic Geology, 102(7): 1345-1352. https://doi.org/10.2113/gsecongeo.102.7.1345 |
| [16] |
Heijlen, W., Muchez, P., Banks, D. A., et al., 2003. Carbonate-Hosted Zn-Pb Deposits in Upper Silesia, Poland: Origin and Evolution of Mineralizing Fluids and Constraints on Genetic Models. Economic Geology, 98(5): 911-932. https://doi.org/10.2113/gsecongeo.98.5.911 |
| [17] |
Hodson, K. R., Crider, J. G., Huntington, K. W., 2016. Temperature and Composition of Carbonate Cements Record Early Structural Control on Cementation in a Nascent Deformation Band Fault Zone: Moab Fault, Utah, USA. Tectonophysics, 690: 240-252. https://doi.org/10.1016/j.tecto.2016.04.032 |
| [18] |
Hou, Y., Azmy, K., Berra, F., et al., 2016. Origin of the Breno and Esino Dolomites in the Western Southern Alps (Italy): Implications for a Volcanic Influence. Marine and Petroleum Geology, 69: 38-52. https://doi.org/10.1016/j.marpetgeo.2015.10.010 |
| [19] |
Hu, R. Z., Zhou, M. F., 2012. Multiple Mesozoic Mineralization Events in South China: An Introduction to the Thematic Issue. Mineralium Deposita, 47(6): 579-588. https://doi.org/10.1007/s00126-012-0431-6 |
| [20] |
Hu, Y.G., 2000. Occurrence, Source of Ore-Forming Materials and Metallogenic Mechanism of Silver in Yinchangpo Silver Polymetallic Deposit, Guizhou Province (Dissertation). Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract). |
| [21] |
Huang, H.X., Wen, H.G., Wen, L., et al., 2023. Multistage Dolomitization of Deeply Buried Dolomite in the Lower Cambrian Canglangpu Formation, Central and Northern Sichuan Basin. Marine and Petroleum Geology, 152: 106261. http://doi.org /10.1016/j.marpetgeo.2023.106261 |
| [22] |
Huang, Z.L., Li, W.B., Chen, J., et al., 2004. Carbon and Oxygen Isotope Geochemistry of the Huize Superlarge Pb-Zn Ore Deposits in Yunnan Province. Geotectonica et Metallogenia, 28(1): 53-59 (in Chinese with English abstract). |
| [23] |
Kaczmarek, S. E., Sibley, D. F., 2014. Direct Physical Evidence of Dolomite Recrystallization. Sedimentology, 61(6): 1862-1882. https://doi.org/10.1111/sed.12119 |
| [24] |
Kaczmarek, S. E., Thornton, B. P., 2017. The Effect of Temperature on Stoichiometry, Cation Ordering, and Reaction Rate in High-Temperature Dolomitization Experiments. Chemical Geology, 468: 32-41. https://doi.org/10.1016/j.chemgeo.2017.08.004 |
| [25] |
Leach, D. L., Sangster, D. F., Kelley, K. D., et al., 2005. Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., et al.,eds., One Hundredth Anniversary Volume. Society of Economic Geologists: 1905-2005. https://doi.org/10.5382/av100.18 |
| [26] |
Leach, D. L., Song, Y. C., 2019. Chapter 9 Sediment-Hosted Zinc-Lead and Copper Deposits in China. In: Chang, Z.S., Goldfarb, R.J., eds., Mineral Deposits of China. Society of Economic Geologists: 325-409. https://doi.org/10.5382/sp.22.09 |
| [27] |
Li, W. B., Huang, Z. L., Yin, M. D., 2007. Isotope Geochemistry of the Huize Zn-Pb Ore Field, Yunnan Province, Southwestern China: Implication for the Sources of Ore Fluid and Metals. Geochemical Journal, 41(1): 65-81. https://doi.org/10.2343/geochemj.41.65 |
| [28] |
Li, W.Q., Liu, H.C., Li, P.P., et al., 2023. Diverse Fluids in Dolomitization and Petrogenesis of the Dengying Formation Dolomite in the Sichuan Basin, SW China. Earth Science, 48(9): 3360-3377 (in Chinese with English abstract). |
| [29] |
Li, Y. L., Xu, W., Fu, M. Y., et al., 2021. Dolomitization Controlled by Paleogeomorphology in the Epicontinental Sea Environment: A Case Study of the 5th Sub-Member in 5 Member of the Ordovician Majiagou Formation in Daniudi Gas Field, Ordos Basin. Minerals, 11(8): 827. https://doi.org/10.3390/min11080827 |
| [30] |
Li, Z.T., Han, R.S., Yan, Q.W., 2017. Mineralization-Alteration Zoning Regularity and Structural Ore-Controlling Role in the Huize Super-Large Sized Ge-Ag-Rich Pb-Zn Deposit, Yunnan Province. Geology in China, 44(2): 316-330 (in Chinese with English abstract). |
| [31] |
Liu, H.C., Lin, W.D., 1999. Regularity Research of Ag. Zn. Pb Ore Deposits in Northeast Yunnan Province. Yunnan University Press, Kunming (in Chinese). |
| [32] |
Liu, W. H., Spinks, S. C., Glenn, M., et al., 2021. How Carbonate Dissolution Facilitates Sediment-Hosted Zn-Pb Mineralization. Geology, 49(11): 1363-1368. https://doi.org/10.1130/g49056.1 |
| [33] |
Liu, X. M., Hardisty, D. S., Lyons, T. W., et al., 2019. Evaluating the Fidelity of the Cerium Paleoredox Tracer during Variable Carbonate Diagenesis on the Great Bahamas Bank. Geochimica et Cosmochimica Acta, 248: 25-42. https://doi.org/10.1016/j.gca.2018.12.028 |
| [34] |
Lukoczki, G., Haas, J., Gregg, J. M., et al., 2019. Multi-Phase Dolomitization and Recrystallization of Middle Triassic Shallow Marine-Peritidal Carbonates from the Mecsek MTS. (SW Hungary), as Inferred from Petrography, Carbon, Oxygen, Strontium and Clumped Isotope Data. Marine and Petroleum Geology, 101: 440-458. https://doi.org/10.1016/j.marpetgeo.2018.12.004 |
| [35] |
Ma, H.J., Zhang, S.T., Cheng, X.F., et al., 2014. Geochemical Characteristics and Genetic Analysis of Carboniferous Dolomite in Huize Basin, Yunnan. Acta Sedimentologica Sinica, 32(1): 118-125 (in Chinese with English abstract). |
| [36] |
Machel, H.G., Braithwaite, C.J.R., Rizzi, G., et al., 2004. Concepts and Models of Dolomitization: A Critical Reappraisal. In: The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs, Geological Society of London. http://doi.org/10.1144/gsl.Sp.2004.235.01.02. |
| [37] |
McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): 1021. https://doi.org/10.1029/2000GC000109 |
| [38] |
Mii, H.S., 1996. Late Paleozoic Environments: Carbon and Oxygen Isotope Records and Elemental Concentrations of Brachiopod Shells (Dissertation). Texas A&M University, Texas. |
| [39] |
Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/S0016-7037(03)00422-8 |
| [40] |
Planavsky, N., Bekker, A., Rouxel, O. J., et al., 2010. Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited: New Perspectives on the Significance and Mechanisms of Deposition. Geochimica et Cosmochimica Acta, 74(22): 6387-6405. https://doi.org/10.1016/j.gca.2010.07.021 |
| [41] |
Qiao, Z.F., Zhang, T.F., He, X.Y., et al., 2023. Development and Exploration Direction of Bedded Massive Dolomite Reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin. Earth Science, 48(2): 673-689 (in Chinese with English abstract). |
| [42] |
Rieger, P., Magnall, J. M., Gleeson, S. A., et al., 2022. Differentiating between Hydrothermal and Diagenetic Carbonate Using Rare Earth Element and Yttrium (REE+Y) Geochemistry: A Case Study from the Paleoproterozoic George Fisher Massive Sulfide Zn Deposit, Mount Isa, Australia. Mineralium Deposita, 57(2): 187-206. https://doi.org/10.1007/s00126-021-01056-1 |
| [43] |
Ryan, B. H., Kaczmarek, S. E., Rivers, J. M., 2021. Multi-Episodic Recrystallization and Isotopic Resetting of Early-Diagenetic Dolomites in Near-Surface Settings. Journal of Sedimentary Research, 91(1): 146-166. https://doi.org/10.2110/jsr.2020.056 |
| [44] |
Ryan, B. H., Kaczmarek, S. E., Rivers, J. M., et al., 2022. Extensive Recrystallization of Cenozoic Dolomite during Shallow Burial: A Case Study from the Palaeocene-Eocene Umm Er Radhuma Formation and a Global Meta-Analysis. Sedimentology, 69(5): 2053-2079. https://doi.org/10.1111/sed.12982 |
| [45] |
Shi, X.W., Jia, F.J., Ke, L.Y., et al., 2021. The Geochemical Characteristics of the C-O Isotope of the Huize Mine Area of Yunnan Province, China. Acta Mineralogica Sinica, 41(6): 657-667 (in Chinese with English abstract). |
| [46] |
Stacey, J., Hollis, C., Corlett, H., et al., 2021. Burial Dolomitization Driven by Modified Seawater and Basal Aquifer-Sourced Brines: Insights from the Middle and Upper Devonian of the Western Canadian Sedimentary Basin. Basin Research, 33(1): 648-680. https://doi.org/10.1111/bre.12489 |
| [47] |
Sun, Q.S., 2017. Study on Sequence Stratigraphy and Paleogeographic Evolution of Lower Part of Carboniferous-Permian Zisongdian in Northeast Yunnan and Its Adjacent Areas(Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract). |
| [48] |
Tan, M., Huang, X. W., Wu, P., et al., 2023. Ore-Forming Process of the Huize Super-Large Pb-Zn Deposit, SW China: Constraints from In Situ Elements and S-Pb Isotopes. Ore Geology Reviews, 159: 105580. https://doi.org/10.1016/j.oregeorev.2023.105580 |
| [49] |
Tian, L. D., Song, Y. C., Zhuang, L. L., et al., 2022. Characteristic and Genesis of Dolostone Reservoirs around the Proterozoic/Cambrian Boundary in the Upper Yangtze Block for Mississippi Valley-Type Zn-Pb Ores: A Review. Ore Geology Reviews, 150: 105179. https://doi.org/10.1016/j.oregeorev.2022.105179 |
| [50] |
Veizer, J., Ala, D., Azmy, K., et al., 1999. 87Sr/86Sr, δ13C and δ18O Evolution of Phanerozoic Seawater. Chemical Geology, 161(1-3): 59-88. https://doi.org/10.1016/S0009-2541(99)00081-9 |
| [51] |
Voigt, M., Mavromatis, V., Oelkers, E. H., 2017. The Experimental Determination of REE Partition Coefficients in the Water-Calcite System. Chemical Geology, 462: 30-43. https://doi.org/10.1016/j.chemgeo.2017.04.024 |
| [52] |
Warren, J., 2000. Dolomite: Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/S0012-8252(00)00022-2 |
| [53] |
Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/S0016-7037(99)00400-7 |
| [54] |
Wright, W. R., Johnson, A. W., Shelton, K. L., et al., 2000. Fluid Migration and Rock Interactions during Dolomitisation of the Dinantian Irish Midlands and Dublin Basin. Journal of Geochemical Exploration, 69: 159-164. https://doi.org/10.1016/S0375-6742(00)00019-4 |
| [55] |
Zhang, L., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458: 176-197. https://doi.org/10.1016/j.palaeo.2015.10.049 |
| [56] |
Zhang, Y., Han, R. S., Wei, P.T., et al., 2017. Identification of Two Types of Metallogenic Fluids in the Ultra-Large Huize Pb-Zn Deposit, SW China. Geofluids, 2017: 6345810. https://doi.org/10.1155/2017/6345810 |
| [57] |
Zhao, Y.Y., Li, S.Z., Li, D., et al., 2019. Rare Earth Element Geochemistry of Carbonate and Its Paleoenvironmental Implications. Geotectonica et Metallogenia, 43(1): 141-167 (in Chinese with English abstract). |
| [58] |
Zhou, C.X., 1998. The Source of Mineralizing Metals, Geochemical Characterization of Ore Forming Solution, and Metallogenetic Mechanism of Qilinchang Zn-Pb Deposit, Northeastern Yunnan Province, China. Bulletin of Mineralogy, Petrology and Geochemistry, 17(1): 36-38 (in Chinese with English abstract). |
| [59] |
Zhou, C.X., Wei, C.S., Guo, J.Y., et al., 2001. The Source of Metals in the Qilinchang Zn-Pb Deposit, Northeastern Yunnan, China: Pb-Sr Isotope Constraints. Economic Geology, 96(3): 583-598. https://doi.org/10.2113/gsecongeo.96.3.583 |
| [60] |
Zhou, J. X., Xiang, Z. Z., Zhou, M. F., et al., 2018. The Giant Upper Yangtze Pb–Zn Province in SW China: Reviews, New Advances and a New Genetic Model. Journal of Asian Earth Sciences, 154: 280-315. https://doi.org/10.1016/j.jseaes.2017.12.032 |
| [61] |
Zhuang, L. L., Song, Y. C., Leach, D., et al., 2023. Vanished Evaporites, Halokinetic Structure, and Zn-Pb Mineralization in the World-Class Angouran Deposit, Northwestern Iran. Geological Society of America Bulletin. https://doi.org/10.1130/b36910.1 |
中国地质调查局地质调查项目(DD20230008)
中国地质调查局地质调查项目(DD20243512)
国家重点研发计划项目(2022YFF0800903)
国家自然科学基金项目(92162322)
国家自然科学基金项目(42261144669)
国家自然科学基金项目(42302107)
国家自然科学基金项目(41922022)
国家自然科学基金项目(42003036)
国家资助博士后研究人员计划项目(GZC20232489)
第二次青藏高原科学考察与研究项目(2021QZKK0304)
云南省兴滇英才青年项目(XDYCQNRC-2022-0136)
国际地学对比计划项目(IGCP-662)
/
| 〈 |
|
〉 |