岩浆热源型高温热泉中的微生物群落特征及其主控环境因素辨识
Characteristics of Microbial Communities and Controlling Environmental Factor Identification in Magma-Heated High-Temperature Hot Springs
,
探究微生物群落在岩浆热源型高温热泉的分布特征及其对环境变化响应,选取云南腾冲3处热泉及其流径上的14个样品,对样点进行物化指标测定和16S rRNA基因扩增子测序,并分析微生物群落与环境因子之间的相关性.3处热泉在属水平上具有不同的优势类群,蛤蟆嘴及其流径为Thermus、Hydrogenobacter、Caldimicrobium和Fervidobacterium;朗蒲及其流径为Candidatus_Caldiarchaeum、Ignavibacterium和Thermodesulfovibrio;桥泉及其流径为Candidatus_Nitrosocaldus、Chloroflexus、Meiothermus、Ralstonia和Gemmata.典范对应分析结果表明热泉中基本物化参数(T和S(-II))、主量元素(Mg、Ca和K)和微量元素(W、Al、Ba、Rb、Li和Cs)对微生物群落影响显著(P<0.05,方差分解分析结果表明它们的解释量分别为21.07%、6.69%和6.24%,共同解释量为7.32%,环境因子解释量总计41.32%.云南腾冲岩浆热源型热泉的水化学组成差异在一定程度上驱动了微生物优势类群发生演替.
To study the distribution characteristics of microbial communities in magma-heated high-temperature hot springs and their response to environmental changes, fourteen samples were collected from three hot springs (HMZ, LP01 and QQ) and their flow paths in Tengchong, Yunnan Province. The physical and chemical parameters and amplicon sequencing for 16S rRNA genes were measured, and the relationship between microbial communities and environmental factors was elucidated. The three hot springs had different dominant taxa at genus level: Thermus, Hydrogenobacter, Caldimicrobium,and Fervidobacterium in HMZ and its flow path, Candidatus_Caldiarchaeum, Ignavibacterium,and Thermodesulfovibrio in LP01 and its flow path, and Candidatus_Nitrosocaldus, Chloroflexus, Meiothermus, Ralstonia, and Gemmata in QQ and its flow path. The canonical correspondence analysis results show that the basic physical and chemical parameters (i.e., temperature and sulfide), major elements (i.e., Mg, Ca, and K), and trace elements (i.e., W, Al, Ba, Rb, Li, and Cs) of hot springs were the controlling factors for the microbial communities (P < 0.05). The variance partitioning analysis further demonstrated their interpretational proportions by 21.07%, 6.69%, and 6.24%, respectively with a co-interpretational proportion by 7.32% and a total proportion of environmental factors by 41.32%. The hydrochemical parameters of magma-heated high-temperature hot springs in Tengchong have promoted the succession of dominant microbial taxa to some extent.
微生物群落 / 岩浆热源型热泉 / 环境因子 / 微生物多样性 / 地球化学 / 环境地质学.
microbial community / magma-heated hot spring / environmental factor / microbial diversity / geochemistry / environmental geology
| [1] |
Abby, S. S., Melcher, M., Kerou, M., et al., 2018. Candidatus Nitrosocaldus Cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome. Frontiers in Microbiology, 9: 28. https://doi.org/10.3389/fmicb.2018.00028 |
| [2] |
Alcorta, J., Espinoza, S., Viver, T., et al., 2018. Temperature Modulates Fischerella Thermalis Ecotypes in Porcelana Hot Spring. Systematic and Applied Microbiology, 41(6): 531-543. https://doi.org/10.1016/j.syapm.2018.05.006 |
| [3] |
Appelo, C. A. J., Postma, D., 2004. Geochemistry, Groundwater and Pollution. CRC Press, Boca Raton. https://doi.org/10.1201/9781439833544 |
| [4] |
Colman, D. R., Feyhl-Buska, J., Robinson, K. J., et al., 2016. Ecological Differentiation in Planktonic and Sediment-Associated Chemotrophic Microbial Populations in Yellowstone Hot Springs. FEMS Microbiology Ecology, 92(9): fiw137. https://doi.org/10.1093/femsec/fiw137 |
| [5] |
Edgar, R. C., 2013. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nature Methods, 10(10): 996-998. https://doi.org/10.1038/nmeth.2604 |
| [6] |
Edgar, R. C., Haas, B. J., Clemente, J. C., et al., 2011. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics, 27(16): 2194-2200. https://doi.org/10.1093/bioinformatics/btr381 |
| [7] |
Feng, C., Yang, J., Jiang, H.C., 2018. Community Diversity of Nitrogen-Fixing Bacteria in Two Hot Spring Streams in Tengchong, Yunnan. Earth Science, 43(S1): 10-18(in Chinese with English abstract). |
| [8] |
Fouke, B. W., 2011. Hot-Spring Systems Geobiology: Abiotic and Biotic Influences on Travertine Formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology, 58(1): 170-219. https://doi.org/10.1111/j.1365-3091.2010.01209.x |
| [9] |
Gregory Caporaso, J., Kuczynski, J., Stombaugh, J., et al., 2010. QIIME Allows Analysis of High-Throughput Community Sequencing Data. Nature Methods, 7(5): 335-336. https://doi.org/10.1038/nmeth.f.303 |
| [10] |
Guo, Q. H., Wang, Y. X., 2012. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 215: 61-73. https://doi.org/10.1016/j.jvolgeores.2011.12.003 |
| [11] |
Hamilton, T. L., Vogl, K., Bryant, D. A., et al., 2012. Environmental Constraints Defining the Distribution, Composition, and Evolution of Chlorophototrophs in Thermal Features of Yellowstone National Park. Geobiology, 10(3): 236-249. https://doi.org/10.1111/j.1472-4669.2011.00296.x |
| [12] |
Han, J., Chen, B., Dai, X., et al., 2010. Diversity of Thermoacidophilic Sulfolobus in Hot Springs in Tengchong of Yunnan, China. Chinese Journal of Applied & Environmental Biology, 16(5): 692-696 (in Chinese with English abstract). |
| [13] |
Hedlund, B. P., Murugapiran, S. K., Alba, T. W., et al., 2015. Uncultivated Thermophiles: Current Status and Spotlight on ‘Aigarchaeota’. Current Opinion in Microbiology, 25: 136-145. https://doi.org/10.1016/j.mib.2015.06.008 |
| [14] |
Hou, W. G., Wang, S., Dong, H. L., et al., 2013. A Comprehensive Census of Microbial Diversity in Hot Springs of Tengchong, Yunnan Province China Using 16S rRNA Gene Pyrosequencing. PLoS One, 8(1): e53350. https://doi.org/10.1371/journal.pone.0053350 |
| [15] |
Liu, K.H., Ding, X.W., Zhang, B., et al., 2017. High-Throughput Sequencing to Reveal Fungal Diversity in Hot Springs of Rehai at Tengchong in Yunnan. Acta Microbiologica Sinica, 57(9): 1314-1322 (in Chinese with English abstract). |
| [16] |
Magoč, T., Salzberg, S. L., 2011. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics, 27(21): 2957-2963. https://doi.org/10.1093/bioinformatics/btr507 |
| [17] |
Menzel, P., Gudbergsdóttir, S. R., Rike, A. G., et al., 2015. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs. Microbial Ecology, 70(2): 411-424. https://doi.org/10.1007/s00248-015-0576-9 |
| [18] |
Merino, N., Aronson, H. S., Bojanova, D. P., et al., 2019. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology, 10: 780. https://doi.org/10.3389/fmicb.2019.00780 |
| [19] |
Miller, S. R., Strong, A. L., Jones, K. L., et al., 2009. Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park. Applied and Environmental Microbiology, 75(13): 4565-4572. https://doi.org/10.1128/AEM.02792-08 |
| [20] |
Ming, H., 2015. Exploitation of Thermophilic Prokaryotic Microbial Resources and Screening of Thermophilic Xylanase in Tengchong Hot Spring, Yunnan Province (Dissertation). Yunnan University, Kunming (in Chinese with English abstract). |
| [21] |
Niu, M.M., 2021. Analysis of Microbial Community Structure in Tengchong Hot Springs and Screening of Thermophilic Strains with Xylanase Activity (Dissertation). Henan Normal University, Xinxiang (in Chinese with English abstract). |
| [22] |
Nordstrom, D.K., Ball, J.W., McCleskey, R.B., 2005. Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park. Montana State University, Bozeman, 73-94. |
| [23] |
Perreault, N. N., Greer, C. W., Andersen, D. T., et al., 2008. Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic. Applied and Environmental Microbiology, 74(22): 6898-6907. https://doi.org/10.1128/AEM.00359-08 |
| [24] |
Podar, P. T., Yang, Z., Björnsdóttir, S. H., et al., 2020. Comparative Analysis of Microbial Diversity across Temperature Gradients in Hot Springs from Yellowstone and Iceland. Frontiers in Microbiology, 11: 1625. https://doi.org/10.3389/fmicb.2020.01625 |
| [25] |
Price, R. E., Giovannelli, D., 2017. A Review of the Geochemistry and Microbiology of Marine Shallow-Water Hydrothermal Vents. In:Elias,S.A.,Reference Modulein Earth Systems and Environmental Sciences. Elsevier,Oxford. https://doi.org/10.1016/b978-0-12-409548-9.09523-3 |
| [26] |
Purcell, D., Sompong, U., Yim, L. C., et al., 2007. The Effects of Temperature, pH and Sulphide on the Community Structure of Hyperthermophilic Streamers in Hot Springs of Northern Thailand. FEMS Microbiology Ecology, 60(3): 456-466. https://doi.org/10.1111/j.1574-6941.2007.00302.x |
| [27] |
Qin, Y.L., Liang, Z.L., Song, Y., et al., 2019. Amplicon-Based High-Throughput Sequencing Reveals the Microbial Diversity in Rehai Hot Springs, Tengchong, Yunnan Province. Microbiology China, 46(10): 2482-2493 (in Chinese with English abstract). |
| [28] |
Qing, C., 2023. Microbial Participation in Arsenic-Sulfur Transformation Process and Its Environmental Adaptation Mechanism in High Arsenic Hot Springs in Northeastern Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [29] |
Reysenbach, A. L., Shock, E., 2002. Merging Genomes with Geochemistry in Hydrothermal Ecosystems. Science, 296(5570): 1077-1082. https://doi.org/10.1126/science.1072483 |
| [30] |
Rothschild, L. J., Mancinelli, R. L., 2001. Life in Extreme Environments. Heliyon, 409(6823): 1092-1101.10.1038/35059215 |
| [31] |
Skirnisdottir, S., Hreggvidsson, G. O., Hjörleifsdottir, S., et al., 2000. Influence of Sulfide and Temperature on Species Composition and Community Structure of Hot Spring Microbial Mats. Applied and Environmental Microbiology, 66(7): 2835-2841. https://doi.org/10.1128/AEM.66.7.2835-2841.2000 |
| [32] |
Song, Z.Q., Chen, J.Q., Zhi, X.Y., et al., 2008. Crenarchaeal Diversity and Phylogenetic Analysis of Two Hot Springs in Tengchong. Microbiology, 35(3): 372-377 (in Chinese with English abstract). |
| [33] |
Song, Z.Q., Wang, L., Liu, X.H., et al., 2015. Diversities of Firmicutes in Four Hot Springs in Yunnan and Tibet. Biotechnology, 25(5): 481-486, 436(in Chinese with English abstract). |
| [34] |
Song, Z.Q., Wang, L., Liu, X.H., et al., 2016. The Diversities of Proteobacteria in Four Acidic Hot Springs in Yunnan. Journal of Henan Agricultural University, 50(3): 376-382 (in Chinese with English abstract). |
| [35] |
Stetter, K. O., 1999. Extremophiles and Their Adaptation to Hot Environments. FEBS Letters, 452(1-2): 22-25. https://doi.org/10.1016/S0014-5793(99)00663-8 |
| [36] |
Sun, X. X., Yang, J., Jiang, H. C., et al., 2022. Nitrite- and N2O-Reducing Bacteria Respond Differently to Ecological Factors in Saline Lakes. FEMS Microbiology Ecology, 98(2): fiac007. https://doi.org/10.1093/femsec/fiac007 |
| [37] |
Trivedi, C. B., Stamps, B. W., Lau, G. E., et al., 2020. Microbial Metabolic Redundancy is a Key Mechanism in a Sulfur-Rich Glacial Ecosystem. mSystems, 5(4): e00504-20. https://doi.org/10.1128/mSystems.00504-20 |
| [38] |
Wang, L. P., Shao, Z. Z., 2021. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Frontiers in Microbiology, 12: 652766. https://doi.org/10.3389/fmicb.2021.652766 |
| [39] |
Wang, L. X., Guo, Q. H., Wu, G., et al., 2023. Methanogens-Driven Arsenic Methylation Preceding Formation of Methylated Thioarsenates in Sulfide-Rich Hot Springs. Environmental Science & Technology, 57(19): 7410-7420. https://doi.org/10.1021/acs.est.2c08814 |
| [40] |
Wang, S., Hou, W. G., Dong, H. L., et al., 2013. Control of Temperature on Microbial Community Structure in Hot Springs of the Tibetan Plateau. PLoS One, 8(5): e62901. https://doi.org/10.1371/journal.pone.0062901 |
| [41] |
Wang, Y.X., Wu, M.X.J., Wang, W.Q., et al., 2023. Interaction between Stibnite and Microbial Communities Enriched from Tailings at Xikuangshan Coupling with Bacterial Community Succession. Earth Science, 48(11): 4311-4320 (in Chinese with English abstract). |
| [42] |
Yan, G.S., Ma, L., Wang, L.X., et al., 2022. Diversity of Arsenic-Oxidizing Prokaryotes Containing arxA Gene in Yunnan-Tibet Hot Springs and the Influencing Factors. Acta Microbiologica Sinica, 62(6): 1986-2000 (in Chinese with English abstract). |
| [43] |
Zhang, Y.M., 2018. Study on Microbial Population Composition and Function of Hot Springs in Tibet and the Role of Microorganisms in High Temperature Iron Circulation (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [44] |
Zhao, Z.L., 2019. Study on the Diversity of Prokaryotic Microorganisms and the Exploitation of Cellulase and Xylanase Resources in Ruidian Hot Spring. Henan Normal University, Xinxiang (in Chinese with English abstract). |
国家自然科学基金项目(42277188)
国家自然科学基金项目(42077278)
/
| 〈 |
|
〉 |