福州加良山叶蜡石矿的蚀变矿物分带及其元素地球化学特征对矿床成因的启示
朱律运 , 詹旭焘 , 许文 , 孟桅 , 李玉娟 , 陈润生
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1319 -1334.
福州加良山叶蜡石矿的蚀变矿物分带及其元素地球化学特征对矿床成因的启示
Alteration Zoning and Geochemical Characterization of Elements in Minerals of Jialiangshan Pyrophyllite Deposit, Fuzhou, Southeast China: Implications for Deposit Genesis
,
叶蜡石已成为生产各类新型功能材料的关键原料之一,我国热液成因叶蜡石矿的资源量占比高,因此完善该类叶蜡石矿矿床成因模式的认识有利于相关勘查工作的开展,进而为相关新型材料制造业的稳定发展提供可靠的原料保障.对福州加良山叶蜡石矿进行系统的剖面调查工作,并利用综合矿物分析仪(TIMA)、电子探针X射线显微分析仪(EPMA)和激光剥蚀电感耦合等离子体质谱仪(LA-ICP-MS),对采集样品的蚀变矿物组成及元素含量进行系统的定量分析.基于相关蚀变矿物的生成关系,对福州加良山叶蜡石矿存在的蚀变分带情况进行了分析,明确了不同类型矿石和围岩中存在的蚀变矿物组合、成因和所需条件.并依据蚀变形成的叶蜡石、硬水铝石、绢云母和高岭石矿物中的元素含量特征,探讨了蚀变过程中的部分元素的地球化学迁移行为.系统野外调查和定量测试结果表明:加良山矿区的蚀变组合在空间分布上具一定的分带性,从火山中心向外叶蜡石化逐渐减弱,且矿物组合存在由高温蚀变向低温蚀变转变的趋势.而加良山叶蜡石矿的形成与火山及热液演替活动有关,长期反复的热液活动改造了区域内的高铝火山岩,并让围岩中的矿物发生蚀变、元素发生迁移,最终形成了大规模的工业叶蜡石矿.而矿体中可用于工艺品加工的叶蜡石形成所需条件更加严格,需要蚀变热液的SiO2未饱和,温度保持在合适范围(约273~370 °C),且存在断裂为其提供生长空间.
Currently, pyrophyllite is one of the most important raw materials for a variety of new functional products. In China, hydrothermal pyrophyllite constitutes a significant proportion. Therefore, enhancing the genesis model of hydrothermal pyrophyllite deposit is essential for ensuring a long-term stable supply of industrial raw materials for the manufacturing industry focused on new functional materials. This study involved a systematic profile survey and sampling at the Jialiangshan pyrophyllite deposit. The TESCAN integrated mineral analyzer (TIMA), electron probe micro-analysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were utilized to quantitatively determine the mineral composition and elemental characteristics of alteration minerals. Mineral assemblages in different ores were analyzed to determine their genesis conditions based on the result of alteration zoning results. The elemental composition of clay minerals including pyrophyllite, diaspore, sericite and kaolinite were specifically determined to understand the elemental behavior during the alteration process. Results from field investigation and quantitative analysis indicate that the alteration assemblage within the Jialiangshan pyrophyllite deposit exhibits spatial distribution, characterized by a gradual decrease in alteration temperature from the crater outwards. Our study suggests that the formation of Jaliangshan pyrophyllite deposit is linked to volcanic activity followed by an extended sequence of hydrothermal alteration processes. Following extensive alteration, element migration between surrounding rock and the hydrothermal fluid resulted in large-scale pyrophyllite deposits for industrial raw materials. The conditions necessary for the forming artefact pyrophyllite within the ore-body are more stringent; the hydrothermal fluid should be unsaturated with SiO2 at temperatures maintained between 273 and 370 °C along with fractures providing space for growth.
叶蜡石矿 / 蚀变分带 / 矿物组成 / 地球化学特征 / 成矿模式 / 矿床学.
pyrophyllite deposit / alteration zoning / mineral composition / geochemical characterization / mineral deposits
| [1] |
Bottrill, R. S., 1998. A Corundum-Quartz Assemblage in Altered Volcanic Rocks, Bond Range, Tasmania. Mineralogical Magazine, 62(3): 325-332. https://doi.org/10.1180/002646198547710 |
| [2] |
Brown, A. J., Cudahy, T. J., Walter, M. R., 2006. Hydrothermal Alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia.Precambrian Research, 151(3/4): 211-223. https://doi.org/10.1016/j.precamres.2006.08.014 |
| [3] |
Corbett G.J., Leach T, M., 1998. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration and Mineralization. Special Publications of Society of Economic Geologist, 1-236. |
| [4] |
Chen, H.Y., 2020. Meditations on the Future Development of Ore Deposit Science in China. Earth Science Frontiers, 27(2): 99-105 (in Chinese with English abstract). |
| [5] |
Chen, R.S., Li, Y.J., 2017. Geological Conditions and Genesis of Shoushan Stone Mineralization: Problems and Difficulties Academic Seminar on the Geological Origin and Characteristics of Baoshan Stone in Fujian Province, Fuzhou (in Chinese). |
| [6] |
Chen,J.Y.,Liu,Y.F.,Yan,L.Y.,et al.,2021.Research on Development Trend of Strategic Nonmetallic Minerals Such as Graphite and Fluorite. Acta Geoscientica Sinica, 42(2):287-296 (in Chinese with English abstract). |
| [7] |
Evans, B. W., Guggenheim, S., 1988. Chapter 8. Talc, Pyrophyllite, and Related Minerals. In: Bailey, S. W., ed., Hydrous Phyllosilicates: (Exclusive of Micas). De Gruyter, Berlin, Boston, 225-294. https://doi.org/10.1515/9781501508998-013 |
| [8] |
Fujian Provincial Bureau of Geology and Mineral Resources, 2016. Regional Geology of China—Fujian Annals. Geological Publishing House, Beijing (in Chinese). |
| [9] |
Fujian Provincial Geological and Mineral Exploration and Development Bureau, 1996. Clearing of Rock Strata in Fujian Province.China University of Geosciences Press, Wuhan(in Chinese). |
| [10] |
Gan, Y.X., 2001. Mineralogy, Geochemistry and Genesis of Shoushan Stone Deposit (Dissertation). Peking University, Beijing(in Chinese with English abstract). |
| [11] |
Gao, T.J.,Zhang, Z.L.,Liu, Z.X.,2017. Geological Conditions and Prospecting Prospects of Shoushan Stone Mineralization. Academic Seminar on the Geological Origin and Characteristics of Baoshan Stone in Fujian Province, China, Fuzhou, 90-110(in Chinese). |
| [12] |
Gong, Q. J., Deng, J., Yang, L. Q., et al., 2011. Behavior of Major and Trace Elements during Weathering of Sericite-Quartz Schist. Journal of Asian Earth Sciences, 42(1-2): 1-13. https://doi.org/10.1016/j.jseaes.2011.03.003 |
| [13] |
Hemley, J. J., Jones, W. R., 1964. Chemical Aspects of Hydrothermal Alteration with Emphasis on Hydrogen Metasomatism. Economic Geology, 59(4): 538-569. https://doi.org/10.2113/gsecongeo.59.4.538 |
| [14] |
Hemley, J. J., Montoya, J. W., Marinenko, J. W., et al., 1980. Equilibria in the System Al2O3-SiO2-H2O and Some General Implications for Alteration/Mineralization Processes. Economic Geology, 75(2): 210-228. https://doi.org/10.2113/gsecongeo.75.2.210 |
| [15] |
Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 87(2): 1152-1157. https://doi.org/10.1021/ac503749k |
| [16] |
Johnson, J. W., Oelkers, E. H., Helgeson, H. C., 1992. SUPCRT92: A Software Package for Calculating the Standard Molal Thermodynamic Properties of Minerals, Gases, Aqueous Species, and Reactions from 1 to 5 000 Bar and 0 to 1 000 ℃. Computers & Geosciences,18(7): 899-947. https://doi.org/10.1016/0098-3004(92)90029-Q |
| [17] |
Lai, X.D., Zhang, J.Z., Li, J., et al., 2023. Quantitative Prediction of Big Data of Altered Minerals Based on Short-Wave Infrared Spectroscopy: A Case Study of Zijinshan Gold-Copper Deposit, Shanghang County, Fujian Province. Mineral Deposits, 42(1): 55-65 (in Chinese with English abstract). |
| [18] |
Li, Y. J., Zhu, L. Y., Xu, W., et al., 2022. Stratigraphic Section and Geochronological Studies of the Shoushan Basin, Fujian Province, South China, and Its Implications for the Mineralization of Shoushan Stone. Minerals, 12(12): 1542. https://doi.org/10.3390/min12121542 |
| [19] |
Li, Y.J., Chen, R.S., Yang, Z., et al., 2021. Discussion on Several Problems of Metallogenic Geological Condition and Genesis of Shoushan Stone. Journal of Gems & Gemmology, 23(1): 1-11 (in Chinese with English abstract). |
| [20] |
Lin,M.,1997. The Minerogenic Conditions and Prospects for Mineral Exploration of the Shoushan Stone (Agalmatolite) in Fujian Province,Geology of Fujian, 16(3): 110-131 (in Chinese with English abstract). |
| [21] |
Lin, M., 2017. Study on the Characteristics of Volcanism of Volcanic Eruptive Basins and the Relation to Pyrophyllite Ore in Shoushan Area, Fujian Province. Geology of Fujian, 36(4): 251-261 (in Chinese with English abstract). |
| [22] |
Lin, J., Yang, A., Lin, R., et al., 2023. Review on in situ Isotopic Analysis by LA-MC-ICP-MS. Journal of Earth Science, 2023, 34(6): 1663-1691. https://doi.org/10.1007/s12583-023-2002-4 |
| [23] |
Liu, Q.P., Tang, J.X., Hu, G.Y., et al., 2020. Geological and Mineral Characteristics of the Houkeng Lithocap in the Southeastern Zhejiang. Acta Geologica Sinica, 94(2): 599-614 (in Chinese with English abstract). |
| [24] |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [25] |
Lu, L., 2018. Analysis of Geological Characteristics of Jinghou Pyrophyllite Deposits in Area of Jianou City, Fujian Province. Geology of Fujian, 37(1): 21-30 (in Chinese with English abstract). |
| [26] |
Luo, T., Hu, Z. C., Zhang, W., et al., 2018. Reassessment of the Influence of Carrier Gases He and Ar on Signal Intensities in 193 nm Excimer LA-ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 33(10): 1655-1663. https://doi.org/10.1039/C8JA00163D |
| [27] |
Mao, J. W., Xie, G. Q., Li, X. F., et al., 2006. Mesozoic Large-Scale Mineralization and Multiple Lithospheric Extensions in South China. Acta Geologica Sinica, 80(3): 420-431. https://doi.org/10.1111/j.1755-6724.2006.tb00259.x |
| [28] |
Pal, D. C., Chaudhuri, T., McFarlane, C., et al., 2011. Mineral Chemistry and In Situ Dating of Allanite, and Geochemistry of Its Host Rocks in the Bagjata Uranium Mine, Singhbhum Shear Zone, India: Implications for the Chemical Evolution of REE Mineralization and Mobilization. Economic Geology, 106(7): 1155-1171. https://doi.org/10.2113/econgeo.106.7.1155 |
| [29] |
Seedorff, E., Dilles, J. H., Proffett, J. M., et al., 2005. Porphyry Deposits: Characteristics and Origin of Hypogene Features. Society of Economic Geologists, 251-298.https://doi.org/10.5382/av100.10 |
| [30] |
Su, H.M., Che, Y.Y., Yin, Y.L., et al., 2023. Present Situation and Research Direction of Strategic Critical Mineral Exploration: Taking Qinghai Province as an Example. Earth Science, 48(4): 1543-1550 (in Chinese with English abstract). |
| [31] |
Sun, Q.Y., Deng, H.D., Ji, M., et al., 2024. Characteristics of Multi⁃Phase Fracture Development in Cretaceous Granite from Coastal Region of South China and Its Implications for Buried⁃Hill Exploration. Earth Science, 49(7): 2570-2588 (in Chinese with English abstract). |
| [32] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society,London,Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [33] |
van Dongen, M., Weinberg, R. F., Tomkins, A. G., 2010. REE-Y, Ti, and P Remobilization in Magmatic Rocks by Hydrothermal Alteration during Cu-Au Deposit Formation. Economic Geology, 105(4): 763-776. https://doi.org/10.2113/gsecongeo.105.4.763 |
| [34] |
Wen, H.J., Zhu, C.W., Du, S.J., et al., 2020. Gallium, Germanium, Thallium and Cadmium Resources in China. Chinese Science Bulletin, 65(33): 3688-3699 (in Chinese). |
| [35] |
Xu, Y.X., Wang, C.W., Liu, M.J., et al., 2021. Mineralogical Characteristic of the ‘Taishunshi’ and Their Genetic Significances. Acta Mineralogica Sinica, 41(2): 213-223 (in Chinese with English abstract). |
| [36] |
Yang, J., 2019. Analysis on the Resource Guarantee of Pyrophyllite for Fiberglass in China. Fiber Glass, (6): 5-10(in Chinese with English abstract). |
| [37] |
Yang, S. Y., Jiang, S. Y., Mao, Q., et al., 2022. Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances. Atomic Spectroscopy, 43(1): 186-200. https://doi.org/10.46770/as.2021.912 |
| [38] |
Ye, K.K., 2022. Geological Characteristics and Prospecting Direction of Pyrophyllite Deposits in Zhenghe to Jian’ou, Fujian Province. China Non-metallic Minerals Industry, (6): 46-50(in Chinese with English abstract). |
| [39] |
Ye, Z.F., Ye, F., Miao, R.G., et al., 2022. Ore Genesis of Pyrophyllite Deposit in Zhejiang-Fujian Area. Mineral Deposits, 41(6): 1258-1273 (in Chinese with English abstract). |
| [40] |
Zhan, Y.K., 2021. Analysis of the Geological Characteristics and Mining Mode of Shoushan Rock Mineral Resources in Fujian Provinc.Geology of Fujian, 40(2): 98-109 (in Chinese with English abstract). |
| [41] |
Zhang, L.L., Lin, F., Lü, Z., et al., 2014. Research and Development of Pyrophylite and Its Current Application Status in China. Superhard Material Engineering, 26(4): 43-46 (in Chinese with English abstract). |
| [42] |
Zhang, W., 2016. Progress on Utilization of Pyrophyllite. Journal of Mineralogy and Petrology, 36(3): 15-28 (in Chinese with English abstract). |
| [43] |
Zhao, X., 2022. Mineralogy and Water-Rock Reaction Mechanism of VMS Deposit in Brother Volcano, New Zealand (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). |
| [44] |
Zheng, Y., Yu, P. P., Li, Z. K., et al., 2023. Critical Metals Ga, Ge and in in the Global Pb-Zn Deposits: Current Understanding, Challenges and Perspectives. Journal of Earth Science, 34(4): 1308-1311. https://doi.org/10.1007/s12583-023-1909-0 |
| [45] |
Zhou, X. M., Sun, T., Shen, W. Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 |
| [46] |
Zhu, L. Y., Liu, Y. S., Hu, Z. C., et al., 2013. Simultaneous Determination of Major and Trace Elements in Fused Volcanic Rock Powders Using a Hermetic Vessel Heater and LA-ICP-MS. Geostandards and Geoanalytical Research, 37(2): 207-229. https://doi.org/10.1111/j.1751-908X.2012.00181.x |
| [47] |
Zhu, L.Y., Meng, W., Yang, Z., et al., 2024. Fluid Inclusions and H-O Isotopic Characterization of Shoushan Stone Deposits in Fuzhou and Its Significance for the Genesis of the Deposits. Earth Science (in Chinese with English abstract) (in Press). |
国家自然科学基金面上项目(42273033)
福建省地质勘查和灾害防治专项资金项目(GY20240601)
福建省科技计划项目(引导性项目)(2024Y0002)
/
| 〈 |
|
〉 |