新疆西准噶尔地区苏云河超大型斑岩钼矿成矿岩体成因及其对区域构造演化过程的启示
游军 , 吴楚 , 洪涛 , 焦鹏利 , 徐兴旺
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1284 -1304.
新疆西准噶尔地区苏云河超大型斑岩钼矿成矿岩体成因及其对区域构造演化过程的启示
Petrogenesis of Suyunhe Super Large Porphyry Mo Deposit in Western Junggar, Xinjiang, and Implications for Regional Tectonic Evolution
,
苏云河钼矿是中亚造山带内西准噶尔地区的超大型斑岩型钼矿床,赋矿岩体为侵入至中泥盆统巴尔鲁克组火山碎屑岩的二长花岗斑岩和花岗斑岩.围绕苏云河钼矿含矿岩体开展了详细的岩石学、地球化学、同位素与年代学研究,发现:(1)苏云河二长花岗斑岩、花岗斑岩与花岗闪长斑岩的形成时代为294~302 Ma,矿区斑岩的形成与后续矿化可能是连续的岩浆-热液演化过程;(2)苏云河二长花岗斑岩、花岗斑岩与花岗闪长斑岩可能是同源岩浆不同程度结晶分异的结果,主微量元素均显示出相关性耦合变化,且具有一致的Sr-Nd-Hf同位素组成;(3)矿区岩体富集Rb、U、Th、Nd和Hf,亏损Ba、Nb、Ti和P,显示出后碰撞花岗岩的地球化学特征;(4)较高的Sr含量(平均为202.41×10-6)与Sr/Y比值(平均为14.97)、中等的ɛNd(t)值(+3.8~+6.0),以及较高的锆石ɛHf(t)值(+9.7~+15.6)指示苏云河矿区岩体岩浆主要源于新生幔源物质与少量古老地壳物质的熔融混合.
The Suyunhe molybdenum deposit is a super large porphyry deposit located in the western Junggar region within the Central Asian Orogenic Belt. The mineralized rocks are monzogranite porphyry and granodiorite porphyry that intruded into the volcaniclastic rock of the Devonian Barluk Formation. In this paper, it reports a detailed study on the petrography, elemental and isotope geochemistry, and geochronology of mineralized rocks from the Suyunhe molybdenum deposit. The results reveal follows. (1) The monzogranite porphyry, granite porphyry, and granodiorite porphyry formed between 294 and 302 Ma as a result of prolonged magmatic-hydrothermal evolution that resulted in mineralization. (2) The monzogranite porphyry, granite porphyry, and granodiorite porphyry are thought to have originated from a common magma source, undergoing varying degrees of crystallization differentiation. This is evidenced by the correlated variations in their major and trace element contents, as well as their uniform Sr-Nd-Hf isotopic signatures. (3) These granitoids are enriched in Rb, U, Th, Nd, and Hf and depleted in Ba, Nb, Ti, and P, exhibiting geochemical characteristics of granites in a post-collisional setting. (4) Elevated Sr content (averaging 202.41×10-6) along with a high Sr/Y ratio (averaging 14.97), moderate εNd(t) values (+3.8 to +6.0), and high zircon εHf(t) values (+9.7 to +15.6) suggest that the magma from the Suyunhe mineral district primarily originated from the melting and mixing of juvenile mantle materials with a minor proportion of ancient crustal materials.
苏云河斑岩Mo矿 / Sr-Nd-Hf同位素 / SIMS锆石U-Pb年龄 / 构造演化 / 巴尔鲁克 / 构造地质学.
Suyunhe porphyry molybdenum deposit / Sr-Nd-Hf isotope / SIMS zircon U-Pb dating / tectonic evolution / Barluk / structural geology
| [1] |
Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8 |
| [2] |
Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12): 2067-2091. https://doi.org/10.1016/S0016-7037(00)00352-5 |
| [3] |
Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson.,ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3 |
| [4] |
Cai, J.H., Yan, G.H., Mu, B.L., et al., 2005. Zircon U-Pb Age, Sr-Nd-Pb Isotopic Compositions and Trace Element of Fangshan Complex in Beijing and Their Petrogenesis Significance. Acta Petrologica Sinica, 21(3): 776-788 (in Chinese with English abstract). |
| [5] |
Cao, C., Shen, P., Pan, H. D., et al., 2020. The Formation Mechanism of Reduced Porphyry Mo Deposits in the West Junggar Region, Xinjiang: The Suyunhe Example. Ore Geology Reviews, 117: 103286. https://doi.org/10.1016/j.oregeorev.2019.103286 |
| [6] |
Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019 |
| [7] |
Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/S1367-9120(03)00118-4 |
| [8] |
Chen, J. F., Han, B. F., Ji, J. Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137-152. https://doi.org/10.1016/j.lithos.2009.11.014 |
| [9] |
Chen, J.F., Han, B.F., Zhang, L., 2010. Geochemistry, Sr-Nd Isotopes and Tectonic Implications of Two Generations of Late Paleozoic Plutons in Northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317-2335 (in Chinese with English abstract). |
| [10] |
Chen, X. H., Seitmuratova, E., Wang, Z. H., et al., 2014. SHRIMP U-Pb and Ar-Ar Geochronology of Major Porphyry and Skarn Cu Deposits in the Balkhash Metallogenic Belt, Central Asia, and Geological Implications. Journal of Asian Earth Sciences, 79: 723-740. https://doi.org/10.1016/j.jseaes.2013.06.011 |
| [11] |
Chen, Y., Sun, M.X., Zhang, X.L., 2006. SHRIMP U-Pb Dating of Zircons from Quartz Diorite at the Southeast Side of the Ba’erluke Fault, Western Junggar, Xinjiang, China. Geological Bulletin of China, 25(8): 992-994 (in Chinese with English abstract). |
| [12] |
Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895 |
| [13] |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0 |
| [14] |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641: csotat>2.3.co;2 |
| [15] |
Fan, Y., Zhou, T.F., Yuan, F., et al., 2007. LA-ICP MS Zircon Age of Tasite Pluton in Sawuer Region of West Junggar, Xinjiang. Acta Petrologica Sinica, 23(8): 1901-1908 (in Chinese with English abstract). |
| [16] |
Feng, Q.W., Li, J.Y., Liu, J.F., et al., 2012. Ages and Geological Significance of the Dark Dykes Emplaced in the Karamay Pluton and Adjacent Area, in Western Junggar, Xinjiang, NW China: Evidence Form LA-ICP-MS Zircon Chronology and Ar-Ar Amphibole Chronology. Acta Petrologica Sinica, 28(7): 2158-2170 (in Chinese with English abstract). |
| [17] |
Gao, J., Klemd, R., Zhu, M. T., et al., 2018. Large-Scale Porphyry-Type Mineralization in the Central Asian Metallogenic Domain: A Review. Journal of Asian Earth Sciences, 165: 7-36. https://doi.org/10.1016/j.jseaes.2017.10.002 |
| [18] |
Gao, S.L., He, Z.L., Zhou, Z.Y., 2006. Geochemical Characteristics of the Karamay Granitoids and Their Significance in West Junggar, Xinjiang. Xinjiang Geology, 24(2): 125-130 (in Chinese with English abstract). |
| [19] |
Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001 |
| [20] |
Geng, H. Y., Sun, M., Yuan, C., et al., 2011. Geochemical and Geochronological Study of Early Carboniferous Volcanic Rocks from the West Junggar: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 42(5): 854-866. https://doi.org/10.1016/j.jseaes.2011.01.006 |
| [21] |
Goldstein, S. L., O’Nions, R. K., Hamilton, P. J., 1984. A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems. Earth and Planetary Science Letters, 70(2): 221-236. https://doi.org/10.1016/0012-821X(84)90007-4 |
| [22] |
Goolaerts, A., Mattielli, N., de Jong, J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206(1-2): 1-9. https://doi.org/10.1016/j.chemgeo.2004.01.008 |
| [23] |
Han, B.F., 2007. Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination. Earth Science Frontiers, 14(3): 64-72 (in Chinese with English abstract). |
| [24] |
Han, B.F., He, G.Q., Wang, S.G., 1999. Post-Collision Mantle-Derived Magmatism, Bedding and the Nature of Basement in Junggar Basin. Scientia Sinica (Terrae), 29(1): 16-21 (in Chinese). |
| [25] |
Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (PartⅠ): Timing of Post-Collisionai Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract). |
| [26] |
Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04 |
| [27] |
Hou, Z.Q., 2004. Porphyry Cu-Mo-Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract). |
| [28] |
Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. https://doi.org/10.1016/S0040-1951(00)00176-1 |
| [29] |
Jian, P., Liu, D.Y., Shi, Y.R., et al., 2005. SHRIMP Dating of SSZ Ophiolites from Northern Xinjiang Province, China: Implications for Generation of Oceanic Crust in the Central Asian Orogenic Belt. In: Sklyarov, E.V., ed., Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP-480. IEC SB RAS, Irkutsk, 246-251. |
| [30] |
Jiang, N., Zhang, S. Q., Zhou, W. G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. https://doi.org/10.1007/s00410-008-0373-2 |
| [31] |
Jiang, Z.X., He, Y., Qu, L.H., et al., 2022. Gravity Anomalies of Ore-Bearing Rock Masses in the Suyunhe Molybdenum Deposit of West Junggar, Xinjiang and Their Geological Significance. Geology and Exploration, 58(5): 965-974 (in Chinese with English abstract). |
| [32] |
Kang, L., Li, Y.J., Zhang, B., et al., 2009. Petrographic Evidence for Magma Mixing of Xiaerpu Granite in West Junggar, Xinjiang. Acta Petrologica et Mineralogica, 28(5): 423-432 (in Chinese with English abstract). |
| [33] |
Kwon, S. T., Tilton, G. R., Coleman, R. G., et al., 1989. Isotopic Studies Bearing on the Tectonics of the West Junggar Region, Xinjiang, China. Tectonics, 8(4): 719-727. https://doi.org/10.1029/tc008i004p00719 |
| [34] |
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745 |
| [35] |
Li, C. F., Li, X. H., Li, Q. L., et al., 2012a. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727: 54-60. https://doi.org/10.1016/j.aca.2012.03.040 |
| [36] |
Li, C. F., Li, X. H., Li, Q. L., et al., 2012b. Simultaneous Determination of 143Nd/144Nd and 147Sm/144Nd Ratios and Sm-Nd Contents from the Same Filament Loaded with Purified Sm-Nd Aliquot from Geological Samples by Isotope Dilution Thermal Ionization Mass Spectrometry. Analytical Chemistry, 84(14): 6040-6047. https://doi.org/10.1021/ac300786x |
| [37] |
Li, G. M., Cao, M. J., Qin, K. Z., et al., 2014. Thermal-Tectonic History of the Baogutu Porphyry Cu Deposit, West Junggar as Constrained from Zircon U-Pb, Biotite Ar/Ar and Zircon/Apatite (U-Th)/He Dating. Journal of Asian Earth Sciences, 79: 741-758. https://doi.org/10.1016/j.jseaes.2013.05.026 |
| [38] |
Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009GC002400 |
| [39] |
Liu, Z.Q., Han, B.F., Ji, J.Q., et al., 2005. Ages and Geochemistry of the Post-Collisional Granitic Rocks from Eastern Alataw Mountains, Xinjiang, and Implications for Vertical Crustal Growth. Acta Petrologica Sinica, 21(3): 623-639 (in Chinese with English abstract). |
| [40] |
Ludwig, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. BGC Special Publication, Berkeley, (4): 70. |
| [41] |
Luo, Q., Wang, Q.J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360 (in Chinese with English abstract). |
| [42] |
Lyu, C., Gao, J.F., Qi, L., et al., 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403 (in Chinese with English abstract). |
| [43] |
Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 |
| [44] |
Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0 |
| [45] |
Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman Group, London and New York, 1-266. https://doi.org/10.1180/minmag.1986.050.355.34 |
| [46] |
Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1-2): 227-244. https://doi.org/10.1016/0012-821X(94)90042-6 |
| [47] |
Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 |
| [48] |
Shen, P., Pan, H. D., Cao, C., et al., 2017. The Formation of the Suyunhe Large Porphyry Mo Deposit in the West Junggar Terrain, NW China: Zircon U-Pb Age, Geochemistry and Sr-Nd-Hf Isotopic Results. Ore Geology Reviews, 81: 808-828. https://doi.org/10.1016/j.oregeorev.2016.02.015 |
| [49] |
Shen, P., Pan, H. D., Xiao, W. J., et al., 2013. Early Carboniferous Intra-Oceanic Arc and Back-Arc Basin System in the West Junggar, NW China. International Geology Review, 55(16): 1991-2007. https://doi.org/10.1080/00206814.2013.810385 |
| [50] |
Shen, P., Shen, Y. C., Pan, H. D., et al., 2012. Geochronology and Isotope Geochemistry of the Baogutu Porphyry Copper Deposit in the West Junggar Region, Xinjiang, China. Journal of Asian Earth Sciences, 49: 99-115. https://doi.org/10.1016/j.jseaes.2011.11.025 |
| [51] |
Shen, P., Shen, Y. C., Zeng, Q. D., et al., 2004. Helium and Argon Isotope Trace in Ore-Forming Fluid of Sawuer Gold Belt in Xinjiang, China. Chinese Science Bulletin, 49(13): 1408-1414. https://doi.org/10.1360/03wd0620 |
| [52] |
Shen, P., Shen, Y.C., Pan, H.D., et al., 2010. Baogutu Porphyry Cu-Mo-Au Deposit, West Junggar, Northwest China: Petrology, Alteration, and Mineralization. Economic Geology, 105(5): 947-970. https://doi.org/10.2113/econgeo.105.5.947 |
| [53] |
Sláma, J.K., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 |
| [54] |
Song, H.X., Liu, Y.L., Qu, W.J., et al., 2007. Geological Characters of Baogutu Porphyry Copper Deposit in Xinjiang, NW China. Acta Petrologica Sinica, 23(8): 1981-1988 (in Chinese with English abstract). |
| [55] |
Su, Y.P., Tang, H.F., Hou, G.S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in West Junggar, Xinjiang. Geochimica, 35(1): 55-67 (in Chinese with English abstract). |
| [56] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [57] |
Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3/4): 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012 |
| [58] |
Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Recycling Oceanic Crust for Continental Crustal Growth: Sr-Nd-Hf Isotope Evidence from Granitoids in the Western Junggar Region, NW China. Lithos, 128: 73-83. https://doi.org/10.1016/j.lithos.2011.11.003 |
| [59] |
Tang, G.J., Wang, Q., Zhao, Z.H., et al., 2009. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization. Earth Science, 34(1): 56-74 (in Chinese with English abstract). |
| [60] |
Tang, H.F., Zhao, Z.Q., Huang, R.S., et al., 2008. Primary Hf Isotopic Study on Zircons from the A-Type Granites in Eastern Junggar of Xinjiang, Northwest China. Acta Mineralogica Sinica, 28(4): 335-342 (in Chinese with English abstract). |
| [61] |
Wang, Y.M., Yin, J.Y., Yuan, C., et al., 2021. Exhumation and Preservation Conditions of Suyunhe Porphyry Molybdenum Deposit in the West Junggar, Xinjiang(NW China): Constraints from the Fission Track and (U-Th)/He Thermochronology. Acta Petrologica Sinica, 37(8): 2547-2561 (in Chinese with English abstract). |
| [62] |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 |
| [63] |
Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x |
| [64] |
Wilson, M., 1989. Igneous Petrogenesis. Allen and Unwin, London. |
| [65] |
Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 |
| [66] |
Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1-2): 121-135. https://doi.org/10.1016/j.chemgeo.2004.04.026 |
| [67] |
Wu, C., Dong, L.H., Zhou, G., et al., 2016. Paleozoic Tectonic Units and Evolution of West Junggar, CAOB. Xinjiang Geology, 34(3): 302-311 (in Chinese with English abstract). |
| [68] |
Wu, C., Hong, T., Xu, X. W., et al., 2018. Tectonic Evolution of the Paleozoic Barluk Continental Arc, West Junggar, NW China. Journal of Asian Earth Sciences, 160: 48-66. https://doi.org/10.1016/j.jseaes.2018.04.008 |
| [69] |
Wu, C., Hong, T., Xu, X. W., et al., 2023. Report of 2.7 Ga Zircon U-Pb Age of Orthogneiss in the Wenquan Metamorphic Complex, West Tianshan, China. China Geology, 6(1): 168-170. https://doi.org/10.31035/cg2021071 |
| [70] |
Wu, C., Liu, Y., Cao, M.J., et al., 2015. Characteristics and Formation Mechanism of Reduced Porphyry Cu and Mo-Cu Deposits. Acta Petrologica Sinica, 31(2): 617-638 (in Chinese with English abstract). |
| [71] |
Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003 |
| [72] |
Xiao, W. J., Kröner, A., Windley, B.F., 2009. Geodynamic Evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98(6): 1185-1188. https://doi.org/10.1007/s00531-009-0418-4 |
| [73] |
Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008 |
| [74] |
Xu, S.L., Ding, W.C., Chen, X.H., et al., 2022. Late Paleozoic Crustal Composition and Growth in West Junggar: Evidence from Sr-Nd-Pb Isotopic Mapping. Earth Science Frontiers, 29(2): 261-280 (in Chinese with English abstract). |
| [75] |
Xu, X. W., Jiang, N., Li, X. H., et al., 2015. Spatial-Temporal Framework for the Closure of the Junggar Ocean in Central Asia: New SIMS Zircon U-Pb Ages of the Ophiolitic Mélange and Collisional Igneous Rocks in the Zhifang Area, East Junggar. Journal of Asian Earth Sciences, 111: 470-491. https://doi.org/10.1016/j.jseaes.2015.06.017 |
| [76] |
Xu, Z., Han, B. F., Ren, R., et al., 2012. Ultramafic-Mafic Mélange, Island Arc and Post-Collisional Intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic Intra-Oceanic Subduction-Accretion Process. Lithos, 132: 141-161. https://doi.org/10.1016/j.lithos.2011.11.016 |
| [77] |
Xu, Z., Han, B. F., Ren, R., et al., 2013. Palaeozoic Multiphase Magmatism at Barleik Mountain, Southern West Junggar, Northwest China: Implications for Tectonic Evolution of the West Junggar. International Geology Review, 55(5): 633-656. https://doi.org/10.1080/00206814.2012.741315 |
| [78] |
Yang, G., Xiao, L., Wang, G.C., et al., 2015. Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar. Earth Science, 40(3): 548-562 (in Chinese with English abstract). |
| [79] |
Yang, M., Wang, J.L., Wang, J.Q., et al., 2015. Late Carboniferous Intra-Oceanic Subduction and Mineralization in Western Junggar: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of Ⅰ# Ore-Bearing Granite Body in Suyunhe Molybdenite Orefield, Xinjiang. Acta Petrologica Sinica, 31(2): 523-533 (in Chinese with English abstract). |
| [80] |
Yang, Y. H., Zhang, H. F., Chu, Z. Y., et al., 2010. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2-3): 120-126. https://doi.org/10.1016/j.ijms.2009.12.011 |
| [81] |
You, J., 2016. Ore-Forming Mechanism and Tectonic Setting of Porphyry Mo Deposits in the North-Western Margin of Junggar Area (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract). |
| [82] |
Zhang, L.C., Feng, J., Li, P., et al., 2022. Tectonic Evolution and Metallogenic Regularity of Dominant Deposits in the Western Tianshan. Earth Science, 47(9): 3127-3146 (in Chinese with English abstract). |
| [83] |
Zhong, S. H., Seltmann, R., Shen, P., 2017. Two Different Types of Granitoids in the Suyunhe Large Porphyry Mo Deposit, NW China and Their Genetic Relationships with Molybdenum Mineralization. Ore Geology Reviews, 88: 116-139. https://doi.org/10.1016/j.oregeorev.2017.04.012 |
| [84] |
Zhong, S.H., Shen, P., Pan, H.D., et al., 2015a. Geochemistry and Geochronology of Ore-Bearing Granites in Suyunhe Mo Deposit, West Junggar, Xinjiang. Mineral Deposits, 34(1): 39-62(in Chinese with English abstract). |
| [85] |
Zhong, S.H., Shen, P., Pan, H.D., et al., 2015b. The Ore-Forming Fluid and Geochronology of the Suyunhe Mo Deposit, West Junggar, Xinjiang. Acta Petrologica Sinica, 31(2): 449-464(in Chinese with English abstract). |
| [86] |
Zhou, T. F., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance. Lithos, 106(3-4): 191-206. https://doi.org/10.1016/j.lithos.2008.06.014 |
| [87] |
Zhu, X. K., Wang, Z. C., Chen, H. Y., 2022. Advances in Isotope Geochronology and Isotope Geochemistry: A Preface. Journal of Earth Science, 33(1): 1-4. https://doi.org/10.1007/s12583-021-1605-x |
国家自然科学基金面上项目(42272075)
国家自然科学基金青年项目(42302083)
第二次青藏高原综合科学考察研究(2019QZKK0806)
国家自然科学基金原创探索项目(42250202)
广东省引进人才创新创业团队项目(2021ZT09H399)
自然科学基金重大研究计划集成课题(92162323)
/
| 〈 |
|
〉 |