新疆西准噶尔地区苏云河超大型斑岩钼矿成矿岩体成因及其对区域构造演化过程的启示

游军 ,  吴楚 ,  洪涛 ,  焦鹏利 ,  徐兴旺

地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1284 -1304.

PDF (14292KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1284 -1304. DOI: 10.3799/dqkx.2024.091

新疆西准噶尔地区苏云河超大型斑岩钼矿成矿岩体成因及其对区域构造演化过程的启示

作者信息 +

Petrogenesis of Suyunhe Super Large Porphyry Mo Deposit in Western Junggar, Xinjiang, and Implications for Regional Tectonic Evolution

Author information +
文章历史 +
PDF (14634K)

摘要

苏云河钼矿是中亚造山带内西准噶尔地区的超大型斑岩型钼矿床,赋矿岩体为侵入至中泥盆统巴尔鲁克组火山碎屑岩的二长花岗斑岩和花岗斑岩.围绕苏云河钼矿含矿岩体开展了详细的岩石学、地球化学、同位素与年代学研究,发现:(1)苏云河二长花岗斑岩、花岗斑岩与花岗闪长斑岩的形成时代为294~302 Ma,矿区斑岩的形成与后续矿化可能是连续的岩浆-热液演化过程;(2)苏云河二长花岗斑岩、花岗斑岩与花岗闪长斑岩可能是同源岩浆不同程度结晶分异的结果,主微量元素均显示出相关性耦合变化,且具有一致的Sr-Nd-Hf同位素组成;(3)矿区岩体富集Rb、U、Th、Nd和Hf,亏损Ba、Nb、Ti和P,显示出后碰撞花岗岩的地球化学特征;(4)较高的Sr含量(平均为202.41×10-6)与Sr/Y比值(平均为14.97)、中等的ɛNdt)值(+3.8~+6.0),以及较高的锆石ɛHft)值(+9.7~+15.6)指示苏云河矿区岩体岩浆主要源于新生幔源物质与少量古老地壳物质的熔融混合.

Abstract

The Suyunhe molybdenum deposit is a super large porphyry deposit located in the western Junggar region within the Central Asian Orogenic Belt. The mineralized rocks are monzogranite porphyry and granodiorite porphyry that intruded into the volcaniclastic rock of the Devonian Barluk Formation. In this paper, it reports a detailed study on the petrography, elemental and isotope geochemistry, and geochronology of mineralized rocks from the Suyunhe molybdenum deposit. The results reveal follows. (1) The monzogranite porphyry, granite porphyry, and granodiorite porphyry formed between 294 and 302 Ma as a result of prolonged magmatic-hydrothermal evolution that resulted in mineralization. (2) The monzogranite porphyry, granite porphyry, and granodiorite porphyry are thought to have originated from a common magma source, undergoing varying degrees of crystallization differentiation. This is evidenced by the correlated variations in their major and trace element contents, as well as their uniform Sr-Nd-Hf isotopic signatures. (3) These granitoids are enriched in Rb, U, Th, Nd, and Hf and depleted in Ba, Nb, Ti, and P, exhibiting geochemical characteristics of granites in a post-collisional setting. (4) Elevated Sr content (averaging 202.41×10-6) along with a high Sr/Y ratio (averaging 14.97), moderate εNd(t) values (+3.8 to +6.0), and high zircon εHf(t) values (+9.7 to +15.6) suggest that the magma from the Suyunhe mineral district primarily originated from the melting and mixing of juvenile mantle materials with a minor proportion of ancient crustal materials.

Graphical abstract

关键词

苏云河斑岩Mo矿 / Sr-Nd-Hf同位素 / SIMS锆石U-Pb年龄 / 构造演化 / 巴尔鲁克 / 构造地质学.

Key words

Suyunhe porphyry molybdenum deposit / Sr-Nd-Hf isotope / SIMS zircon U-Pb dating / tectonic evolution / Barluk / structural geology

引用本文

引用格式 ▾
游军,吴楚,洪涛,焦鹏利,徐兴旺. 新疆西准噶尔地区苏云河超大型斑岩钼矿成矿岩体成因及其对区域构造演化过程的启示[J]. 地球科学, 2025, 50(04): 1284-1304 DOI:10.3799/dqkx.2024.091

登录浏览全文

4963

注册一个新账户 忘记密码

0 引 言

世界三大斑岩成矿带之一的中亚斑岩成矿带形成于多洋盆、多洋岛和多陆块的拼贴与碰撞的增生构造背景,其矿床特征、形成时代、空间分布、构造背景和矿化类型有别于特提斯斑岩成矿带和环太平洋斑岩成矿带(侯增谦,2004;Gao et al.,2018).研究中亚斑岩Cu-Mo-Au成矿带内典型矿床特征及其形成机制既有助于揭示斑岩矿床的成因演化,也可以推导了解矿床形成的构造环境.新疆西准噶尔地区位于中亚斑岩成矿带西部的核心腹地,区内构造发育,岩浆活动强烈,是重要的斑岩Cu-Mo成矿区域(Chen et al.,2014Shen et al.,2017).近年来在西准噶尔地区发现了一系列斑岩矿床,如:包古图Cu-Au矿、加曼铁列克德Cu矿、宏远Mo-Cu矿、苏云河Mo矿等.前人开展的勘查和研究工作大多围绕以Cu为主斑岩矿床开展(宋会侠等,2007;唐功建等,2009),对区内斑岩Mo矿的研究,特别是对斑岩Mo赋矿岩体及形成环境的研究相对薄弱,亟需加强总结区内斑岩Mo矿的成矿环境与成矿规律.

苏云河斑岩Mo矿是新疆西准噶尔地区近年来发现的超大型斑岩钼矿床,已探明钼金属储量约57万吨(Cao et al.,2020),填补了西准噶尔西南部无大型斑岩型矿床的空白.矿区内地层简单,裂隙发育,酸性斑岩岩体出露情况良好,为Mo的富集成矿提供了优越的地质条件(钟世华等,2015a,2015b).然而,矿区成矿岩体主要受古亚洲洋向南俯冲过程控制,涉及准噶尔地块与洋内俯冲、以及地块与岩浆弧之间的碰撞与拼贴过程(Xu et al.,2013Xiao and Santosh,2014Shen et al.,2017),成矿背景还不清晰,亟需进一步梳理成岩-成矿时代.

本次研究通过对苏云河Mo矿区成矿岩体进行详细的岩石学、地球化学以及年代学研究,结合区域构造研究,探讨苏云河地区成岩环境以及区域构造演化过程,旨在为总结区域构造演化与斑岩Mo矿成矿规律提供新的依据.

1 区域地质

西准噶尔地区位于中亚造山带西段的核心位置(图1a),处于哈萨克斯坦板块、西伯利亚板块的结合部西侧(Windley et al.,2007).区内发育泥盆系-石炭系火山沉积地层(Xiao et al.,2009Zhong et al.,2017)与晚石炭世-早二叠世中酸性侵入岩.区域构造受北东向和北西向为主的复式褶皱和断裂带控制,包括:达拉布特、巴尔鲁克、谢米斯台等深大断裂(Cao et al.,2020;罗群等,2023;图1b).区域内岩浆活动强烈,发育早二叠世铁厂沟、哈图、阿克巴斯套、庙尔沟、红山和克拉玛依岩体等巨大的花岗岩岩基,以及在包古图地区、巴尔鲁克-谢米斯台地区、玛依勒-唐巴勒地区广泛分布的晚石炭世中酸性小岩体(徐盛林等,2022).中酸性岩体以二长岩、花岗闪长岩为主,呈岩株或岩脉状,常与区域内斑岩Cu、Mo、Au等矿化密切相关(Shen et al.,2010,2012;吴楚等,2015;钟世华等,2015a,2015b).

苏云河Mo矿位于西准噶尔西部的巴尔鲁克地区.该地区被认为是晚古生代由准噶尔洋俯冲作用形成的陆缘弧.其西北侧为哈萨克斯坦地体,东南侧发育以巴尔鲁克-玛依勒-唐巴勒-达拉布特(BMTD)蛇绿岩带为代表的早古生代准噶尔洋残余洋壳(Wu et al.,2018图1b).这些洋壳的残余片断主要出露于晚石炭世地层,内部发育大量强褶皱变形,并被后期中酸性侵入岩切穿(Chen and Jahn,2004Chen and Arakawa,2005Xu et al.,2015).巴尔鲁克地区主要出露地层为泥盆系,包括:(1)下-中泥盆统库鲁木迪组(D1-2k),主要由火山碎屑和陆源碎屑沉积岩夹杂少量火山熔岩组成;(2)中泥盆统巴尔鲁克组(D2b),主体为一套陆源碎屑岩、火山碎屑沉积岩以及硅质岩,局部夹杂沉积火山碎屑岩和灰岩,岩性主要包括晶岩屑凝灰岩、粗砂岩、岩屑砂岩、粉砂岩夹硅质岩(Shen et al.,2013Xiao and Santosh,2014Zhong et al.,2017).在苏云河矿区南侧的加曼与也节拜地区也发现了少量蛇绿岩与相关超基性-基性侵入岩(Shen et al.,2013),其可能为巴尔鲁克蛇绿岩带的西延出露.

2 矿床地质

2.1 地层与构造

苏云河斑岩Mo矿区出露地层为中泥盆统的巴尔鲁克组第1(D2b1)、第2及(D2b2)第3岩性段(D2b3)凝灰岩、安山质凝灰岩和安山质含角砾凝灰岩(图2).矿区内发育北东向断裂构造,控制了矿区内主要脉岩以及节理产状.矿区内还普遍存在稍晚期的“X”型共轭断裂:北东40°~60°和北西300°~330°,倾角为60°~80°.断裂整体平直且多填充有石英脉体(Xiao et al.,2009;吴楚等,2015;Cao et al.,2020).

2.2 侵入岩

矿区自南西向北东依次出露Ⅰ、Ⅱ、Ⅲ号斑岩岩体(蒋忠祥等,2022),呈岩株状侵入至中泥盆统巴尔鲁克组(D2b)地层中,面积分别为0.06 km2、0.07 km2和0.03 km2(钟世华等,2015a,2015b;图2).3个岩体于地表出露部分岩性主要为二长花岗斑岩.经钻孔验证,岩体深部岩性逐渐过渡至花岗斑岩(图3).Ⅰ、Ⅱ号岩体与矿区的Mo矿化关系密切,矿体主要分布在Ⅰ号、Ⅱ号岩体顶部及围岩地层中.此外,矿区大量展布北东向-北北东向岩脉(或岩墙),包括霏细岩、花岗闪长斑岩、闪长岩和闪长玢岩等(钟世华等,2015a,2015b;Cao et al.,2020).矿区岩体及岩脉的详细介绍如下.

二长花岗斑岩(图4a和4b)为粉红色至肉色,块状构造,似斑状-斑状结构,斑晶主要由斜长石、黑云母、石英、钾长石组成.其中,其中斜长石含量20%,为更长石,呈半自形-自形板柱状,长2~4 mm;黑云母含量15%,呈半自形片状,长2~3 mm;石英含量10%,呈半自形-自形粒状,粒径2~3 mm;钾长石含量5%,为条纹长石,呈半自形板条状、它形粒状,粒径1~2 mm;基质矿物有隐晶-细晶质石英、钾长石、斜长石,以及黄铁矿、磷灰石、锆石等副矿物.

花岗斑岩(图4c和4d)为深肉红色,块状构造,似斑状-斑状结构,斑晶主要由15%的半自形-自形粒状石英(粒径2~3 mm)、15%的半自形板条状、他形粒状钾长石(主要为条纹长石,粒径~3 mm),以及15%的半自形-自形板柱状斜长石(主要为更长石,粒径2~3 mm)组成.基质矿物主要为隐晶-细晶质钾长石、斜长石、石英、黑云母等,以及少量的磷灰石、锆石等副矿物.

霏细岩(图4e和4f)为灰白色,块状构造.主要呈霏细结构,少部分为斑状结构.发育约10%的半自形-自形板柱状长石斑晶(主要为斜长石和钾长石).基质为石英、钾长石、斜长石、黑云母和黄铁矿等,含有少量磷灰石、锆石等副矿物.

花岗闪长斑岩(图4g和4h)为灰黑色,块状构造,斑状结构,斑晶主要由斜长石(20%,呈半自形-自形板柱状,长2~4 mm),角闪石(10%,自形-半自形长柱状或针柱状,长3~5 mm),石英(10%,半自形-自形粒状,长2~3 mm),以及黑云母(5%,半自形片状,长1.0~1.5 mm)组成.基质矿物有他形斜长石、角闪石、石英、黑云母和磁铁矿,以及少量磷灰石等副矿物.

闪长岩(图4i和4j)为灰绿色,斑状结构,块状构造.主要由50%半自形板柱状、长2~4 mm斜长石,30%自形-半自形长柱状或针柱状、长3~5 mm角闪石,以及10%呈半自形-他形粒状、粒径1~3 mm的石英组成.

闪长玢岩(图4k和4l)岩为灰绿色,斑状结构,块状构造.岩石由斑晶与基质组成.斑晶矿物以斜长石、角闪石为主:其中斜长石含量20%,呈半自形-它形板柱状,长2~5 mm;角闪石含量10%,自形-半自形长柱状或针柱状,长3~5 mm.基质矿物主要有微细粒斜长石、角闪石、石英和磁铁矿、磷灰石等副矿物.

2.3 矿化与蚀变

苏云河钼矿床中的矿石矿物主要为辉钼矿和黄铁矿,以及少量的黄铜矿.辉钼矿作为主要的硫化物主要呈浸染状、网脉状和网脉浸染状分布(钟世华等,2015b;游军,2016;Cao et al.,2020).岩体中辉钼矿多呈片状、鳞片状、束状、花瓣状自形晶结构,或花瓣状集合体于造岩矿物晶间发育(图5a~5d).脉体中辉钼矿呈薄脉状分布于含矿岩石的裂隙面或者石英脉中(图5e~5i).赋矿岩体均发育明显的钾化蚀变,Ⅰ号和Ⅱ号岩体还发育不同程度的青磐岩化与绢英岩化,出现白云母、绢云母、绿帘石、绿泥石、方解石、黄铁矿等蚀变特征矿物.可以识别出钾长石-石英蚀变带、白云母-绢云母-石英-碳酸盐蚀变带,以及碳酸盐、绿帘石、绿泥石、高岭土蚀变带(钟世华等,2015a,2015b;王雅美等,2021;图2).

前人基于该矿床矿物共生顺序、矿体位置以及矿脉相互关系,将矿床的成矿作用划分为:斑岩岩浆-热液成矿期和表生氧化成矿期.在斑岩岩浆-热液成矿期中,可进一步细分为早、中、晚3个成矿阶段.其中,早阶段可分为浸染状辉钼矿亚阶段和钾长石脉亚阶段;中阶段包括钾长石-石英脉亚阶段、石英-辉钼矿亚阶段等(游军,2016);晚阶段成矿主要是细脉状石英-辉钼矿阶段.矿区经历了广泛的热液蚀变,沿着矿化脉体或在岩石中形成钾长石化、硅化、白云母化与云英岩化、绢云母化与绢英岩化、绿帘石化与绿泥石化等的面状蚀变(钟世华等,2015b;游军,2016;Cao et al.,2020图2).

3 样品及测试方法

3.1 全岩主量、微量

本文对矿区内不同类型的新鲜花岗质岩石样品进行了主量和微量元素的分析测试,包括8个来自矿区岩体地表及钻孔的二长花岗斑岩样品,15个来自矿区钻孔的花岗斑岩样品,以及2个来自矿区花岗闪长斑岩岩脉的样品(样品采样位置见图3).样品主量元素分析测试工作在中国科学院矿产资源研究重点实验室完成.主量元素的测定采用X-射线荧光光谱法(XRF):首先称取0.5 g样品放入坩埚,然后加入适量硼酸高温熔融成玻璃片,最后在日本岛津公司的顺序式X射线荧光光谱仪(XRF-1500)上采用外标法测定氧化物含量,分析误差小于5%.微量元素分析测试工作在中国科学院矿产资源研究重点实验室完成.微量元素的测定采用ICP-MS法,称取40 mg样品用酸溶法制成溶液,然后在ICP-MS Element Ⅱ上进行测定,其精度为:元素含量大于10×10-6的误差小于5%,而小于10×10-6的误差小于10%.主量元素分析结果见附表1,微量元素分析结果见附表2.

3.2 锆石U-Pb测试

针对锆石U-Pb测年的6个样品,分别采自KT00、KT52、KT60号勘探线钻孔以及地表较新鲜的岩石:二长花岗斑岩3件(13SYH03、13SYH28、13SYH18)、花岗斑岩2件(样品编号13SYH08、13SYH10)和花岗闪长斑岩1件(13SYH01).在这些岩石样品中选取的锆石颗粒以及锆石标样(Sláma et al.,2008)和Qinghu(Li et al.,2009)被粘贴在环氧树脂靶上,并通过抛光使其一半晶面暴露.随后,对锆石进行透射光和反射光显微照相以及阴极发光图象分析,以检查锆石的内部结构,以帮助选择适宜的测试点位.样品靶在真空下进行金镀以备分析.本次锆石U-Pb定年采用SIMS方法,U、Th、Pb的测定在中国科学院地质与地球物理研究所CAMECA SIMS-1280二次离子质谱仪(SIMS)上进行,具体分析方法可参照文献(Li et al.,2009).锆石标样与锆石样品以1︰3比例交替测定,U-Th-Pb同位素比值采用标准锆石Plésovice(337 Ma,Sláma et al.,2008)进行校正,U含量采用标准锆石91500(81×10-6Wiedenbeck et al.,1995)进行校正.为了保证数据精确性,使用长期监测标准样品获得的标准偏差(1SD=1.5%)和单点测试内部精度来计算样品单点误差.同时,采用标准样品Qinghu(159.5 Ma,Li et al.,2009)监测数据的精确度.普通Pb校正采用实测204Pb值.最后,使用ISOPLOT软件(Ludwig et al.,2003)进行数据结果处理,详细结果见附表3.

3.3 全岩Sr-Nd同位素

对应全岩主微量元素测定,笔者选择其中4个二长花岗斑岩、6个花岗斑岩,以及2个花岗闪长斑岩进行的全岩Sr-Nd同位素测量.全岩Rb-Sr、Sm-Nd样品的前处理工作由中国科学院地质与地球物理研究所的超净实验室完成,同位素比值测量在中国科学院地质与地球物理研究所固体同位素地球化学实验室的MAT-262型热电离质谱仪上完成.具体的Rb-Sr、Sm-Nd同位素测定流程遵照Yang et al.(2010)Li et al.(2012a,2012b).全岩Sr、Nd同位素分析结果见附表4.

3.4 锆石Hf同位素

对5个开展SIMS 锆石U-Pb年代学测试的二长花岗斑岩(13SYH03、13SYH28、13SYH18)和花岗斑岩(13SYH08、13SYH10)样品同时进行了锆石Hf同位素测量.锆石Hf同位素测量采用中国科学院地质与地球物理研究所引进的Neptune多接收电感耦合等离子体质谱仪(MC-ICPMS)和193 nm激光取样系统进行.分析时,激光束斑直径为45 μm,使用了8 Hz的激光重复率和75 mJ的能量.技术细节见Wu et al.(2006)Zhu et al.(2022).在分析过程中,标准锆石91500的176Hf/177Hf和176Lu/177Hf比率分别为0.282289 ± 15(2σ)和0.000 29,与使用溶液法(Goolaerts et al.,2004Woodhead et al.,2004)测量的公认176Hf/177Hf比率0.282 284±3(1σ)相似.初始的εHft)值和相应的亏损地幔模型年龄{TDM2(Hf)}是根据它们对应的锆石206Pb/238U年龄计算的.锆石Hf同位素测量分析测试结果见附表5.

4 测试结果

4.1 主量元素

在野外采样和实验样品挑选中笔者均选择了未蚀变的新鲜样品.本文实验结果也显示样品的灼烧失重(LOI)值在0.20%~2.18%之间,且LOI与K2O或K2O+Na2O之间没有正相关关系,说明样品是新鲜、未发生明显蚀变的样品.苏云河矿区主要侵入岩的主量元素分析结果及相关参数见附表1.在侵入岩TAS分类命名图解中(图6a),二长花岗斑岩与花岗斑岩样品位于花岗岩区域,花岗闪长斑岩样品位于石英闪长岩区域.在岩石Q-A-P图解中(图6b),二长花岗斑岩样品落入二长花岗岩与正长花岗岩区域,花岗斑岩样品落入正长花岗岩与碱长正长花岗岩区域,花岗闪长斑岩样品落入花岗闪长岩区域.二长花岗斑岩和花岗闪长斑岩特征相似:SiO2含量在68.11%~75.33%之间,Al2O3含量较低,在12.50%~15.44%之间.二长花岗斑岩样品的Na2O+K2O和K2O/Na2O值(Na2O+K2O=6.16%~7.10%、K2O/Na2O为0.51~0.86)比花岗闪长斑岩样品(Na2O+K2O=5.45%~5.52%、K2O/Na2O为0.35~0.38)稍高,A/CNK比值(1.046~1.167)>1,属弱过铝质-过铝质钙碱性系列(图6c和图6d).花岗斑岩样品的SiO2含量高,为73.21%~83.30%;Al2O3含量较低,为8.77%~13.24%;K2O+Na2O为5.95%~8.53%,K2O/Na2O为1.13~2.04,明显偏高;A/CNK比值为0.848~0.987,小于1,属准铝质高钾钙碱性系列(图6c和图6d).

4.2 微量元素

从微量元素地幔标准化蛛网图(图7a)中可看出:二长花岗岩、花岗斑岩以及花岗闪长斑岩的微量元素分配模式均为右倾模式,富集Rb、U、Th、K、Pb、Nd和Hf,亏损Ba、Nb、Ta、P、Zr和Ti元素.并且由花岗闪长斑岩到二长花岗岩、再到花岗斑岩,Ba、P、Zr、Ti元素的亏损程度逐渐增大,Sr元素由富集再到亏损,而U元素的富集程度逐渐增大.稀土元素配分模式也存在差异,二长花岗斑岩和花岗闪长斑岩,具有轻稀土元素富集、明显的右倾趋势、弱至中等程度的负Eu异常(图7b);花岗岩表现为轻稀土元素富集、轻稀土右倾、重稀土缓左倾,具有强烈的负Eu异常(图7b).

4.3 锆石U-Pb

样品锆石的CL图像显示出明显的环带结构(图8a~8f),呈半自形-自形柱状、不规则六边形或八边形,具有典型岩浆锆石特征(Wu et al.,2023).锆石长度约70~280 μm,宽度约30~130 μm,长宽比介于1︰1~4︰1.

二长花岗斑岩样品13SYH03锆石U、Th和Pb分别为138×10-6~1 529×10-6、63×10-6~555×10-6、8.0×10-6~86×10-6,Th/U比值0.250~0.647.所测12个锆石206Pb/238U年龄在282.9~305.3 Ma之间,加权平均年龄为296.3±3.6 Ma,207Pb/235U~206Pb/238U的谐和年龄为296.1±3.3 Ma(图9a).样品13SYH28中锆石U含量、Th含量和Pb含量分别为158×10-6~1 482×10-6、59×10-6~521×10-6、9.0×10-6~78×10-6,Th/U比值为0.245~0.469.所测8个锆石206Pb/238U年龄在293.1~299.1 Ma之间,加权平均年龄为295.8±3.0 Ma,207Pb/235U~206Pb/238U的谐和年龄为296.1±1.5 Ma(图9b).样品13SYH18中锆石U含量、Th含量和Pb含量分别为125×10-6~736×10-6、51×10-6~507×10-6、7.0×10-6~43×10-6,Th/U比值为0.211~0.702.所测12个锆石206Pb/238U年龄在288.6~304.6 Ma之间,加权平均年龄为(294.3±2.5) Ma,207Pb/235U~206Pb/238U的谐和年龄为294.4±1.3 Ma(图9c).

花岗斑岩样品13SYH08中锆石U含量、Th含量和Pb含量分别为285×10-6~6 310×10-6、61×10-6~2 661×10-6、15×10-6~350×10-6,Th/U比值0.212~0.537.所测11个锆石206Pb/238U年龄在289.1~307.3 Ma之间,加权平均年龄为296.0±3.9 Ma,207Pb/235U~206Pb/238U的谐和年龄为296.1±1.3 Ma(图9d).花岗斑岩样品13SYH10中锆石U含量、Th含量和Pb含量分别为55×10-6~5 712×10-6、125×10-6~2 993×10-6、15×10-6~340×10-6,Th/U比值为0.244~0.630.锆石中U、Th含量较高,因而CL图偏灰黑色,整体呈岩浆锆石特征.所测9个锆石206Pb/238U年龄在297.3~307.5 Ma之间,加权平均年龄为301.4±2.9 Ma,207Pb/235U~206Pb/238U的谐和年龄为302.0±3.9 Ma(图9e).

花岗闪长斑岩样品13SYH01中锆石U含量、Th含量和Pb含量分别为237×10-6~1 694×10-6,80×10-6~1 151×10-6、13×10-6~91×10-6,Th/U比值0.171~0.833.所测15个锆石206Pb/238U年龄在289.3~302.5 Ma之间,加权平均年龄为295.1±2.3 Ma,207Pb/235U~206Pb/238U的谐和年龄为295.0±1.1 Ma(图9f).

4.4 Sr-Nd同位素

二长花岗岩、花岗斑岩和花岗闪长斑岩样品的147Sm/144Nd值在0.111 9~0.176 6之间.其中,大多数二长花岗斑岩与花岗闪长斑岩的147Sm/144Nd为0.111 9~0.121 8,明显低于花岗斑岩.所测试的岩石样品(87Sr/86Sr)i值变化范围较小,在0.703 63~0.704 40之间,指示幔源特征(幔源火成岩(87Sr/86Sr)i值变化范围介于0.702 00~0.706 00;蔡剑辉等,2005).样品的(143Nd/144Nd)i值变化范围同样比较小,在0.512 449~0.512 557之间,对应的εNdt)值在+3.8~+6.0之间.结合样品所测年龄数据,投入侵入年龄-εNdt)图解,显示苏云河二长花岗岩、花岗斑岩和花岗闪长斑岩来源于新生物质与老地壳混合(图10).此外,所测试岩石的一阶段地幔模式年龄介于572~1 206 Ma.

4.5 锆石Hf同位素

锆石的Hf同位素测试结果显示66个锆石的测点εHft)值较高,位于+9.7~+15.6之间,平均+12.4±0.8,此外176Hf/177Hf 值亦较高,为0.282 869~0.283 045(图11a).样品在206Pb/238U年龄-εHft)相关性图解均显示在亏损地幔线的下方,并且与准噶尔地区花岗岩的εHft)值相似(图11b, 11c).样品中锆石Hf模式年龄TDM2在307~696 Ma之间,与该地区也节拜蛇绿岩的年龄相仿(502 Ma;张练练等,2013, L44E013018、L44E014018、老裕民幅L44E012019、塔斯提幅L44E013019、新林场幅L44E014019、铁列克提幅L44E015018、向阳幅L44E015019 1/5万区域地质调查报告).

5 讨论

5.1 源区性质

苏云河钼矿二长花岗岩、花岗斑岩和花岗闪长斑岩具有Sr含量(介于18.72×10-6~550.34×10-6,平均为202.41×10-6)和Sr/Y比值(比值介于0.92~45.14,平均值为14.97)(附表2,Defant and Drummond,1990;Martin,1999)的埃达克质特征.埃达克质岩浆可由底侵的镁铁质下地壳或先前俯冲的洋壳经欠饱和水部分熔融形成(Defant and Drummond,1990Peacock et al.,1994).同时,这些斑岩的同位素组成相似:(1)(87Sr/86Sr)i值变化范围较小,为0.703 63~0.704 40,与幔源火成岩(87Sr/86Sr)i范围(0.702 00~0.706 00,蔡剑辉等,2005)一致;(2)(143Nd/144Nd)i变化范围也较小,在0.512 449~0.512 557之间,对应计算的ɛNdt)值为+3.8~+6.0,低于前人根据巴尔鲁克-玛依勒-唐巴勒-达拉布特蛇绿岩带研究推测的西准噶尔地区古生代时期亏损地幔ɛNdt)值(+6.5~+10.0;韩宝福等,2006);(3)Nd的一阶段地幔模式年龄(TDM)在572~1 206 Ma间,明显大于西准噶尔地区最古老的蛇绿岩年龄(唐巴勒蛇绿岩,531 Ma,Jian et al.,2005).因此,苏云河钼矿岩体具有埃达克岩特征的岩浆可能镁铁质下地壳或先前俯冲的洋壳,同时,低的ɛNdt)值和老的TDM说明岩浆在演化过程中受到了地壳物质的混染.此外,锆石Hf同位素特征也反映出岩浆源区新生地幔物质的加入:二长花岗岩、花岗斑岩和花岗闪长斑岩均具有较高的176Hf/177Hf值(0.282 869~0.283 045)和较高的ɛHft)值(+9.7~+15.6,平均12.4±0.8).投点均虽落在亏损地幔线下方,但非常靠近亏损地幔线(图11a).

5.2 岩浆演化过程

在主量元素的哈克图解中,花岗闪长斑岩、二长花岗斑岩与花岗斑岩呈现出K2O与SiO2含量的正相关性,Al2O3、CaO、Na2O、FeO、MgO、TiO2、P2O5与SiO2含量的负相关性(图12).在岩石化学成分上呈相互过渡趋势,说明岩浆中的磷灰石、斜长石及镁铁矿物等分离结晶作用对矿区岩石系列演化有重要影响.此外,岩石的演化从钙碱性到高钾钙碱性系列(图6c);由铝质岩石到准铝质岩石系列(图6d);Ba、P、Zr、Ti元素的亏损程度增大,Sr元素由富集再到亏损,而U元素的富集程度逐渐增大(图7a),这些趋势都说明苏云河矿区岩浆活动逐步结晶分异过程.

根据样品的地球化学特征分析,苏云河花岗斑岩具有高Si、碱性、强烈的负Eu异常.在10 000 Ga/Al-(Na2O+K2O)/CaO图解(图13a)及SiO2-Zr图解(图13b)中,花岗斑岩样品大多落入A型花岗岩范围.在手标本与镜下研究中,花岗斑岩样品仅见少量的暗色矿物.此外,苏云河二长花岗斑岩与闪长花岗斑岩的投点均在I型花岗岩范围内(图13a, 13b),样品没有出现明显的负Eu异常.如前文所述,苏云河矿区闪长花岗斑岩、二长花岗斑岩与花岗斑岩呈依次结晶分异特征,在花岗岩类型判别图解中,其也出现了线性关系.前人研究认为,高分异的I型花岗岩可以形成A型花岗岩(Jiang et al.,2009).苏云河北侧的谢米斯台弧中也发育同源壳幔混合岩浆结晶分异形成的Ⅰ型花岗岩和A2型花岗岩(杨钢等,2015).苏云河矿区闪长花岗斑岩与二长花岗斑岩可能继承了源区I型花岗质岩浆的特征,经过强烈结晶分异的花岗斑岩出现了A型花岗岩特征.这些具有A型花岗岩特征的花岗斑岩样品在R1-R2图解(图13c)和Nb-Y-3Ga图解(图13d)中投点大多落在A2型(造山后A型花岗岩)区域,指示其形成于后碰撞环境.

矿区二长花岗斑岩、花岗闪长斑岩和二长花岗岩样品在岩石Rb-(Yb+Ta)图解(图14a)和Rb/30-Hf-3Ta图解(图14b)中的投点多落入后碰撞区域.韩宝福等(2007)指出具有埃达克质岩石的地球化学特征的弧I型或A型花岗岩常产出与后碰撞环境.因此,苏云河矿区岩体可能形成于后碰撞环境.也就是说,基本排除了岩浆源于先前俯冲的洋壳的可能.笔者认为强烈的Sr同位素亏损(<0.704 40)与较高的ɛNdt)和ɛHft)值指示苏云河矿区岩体岩浆主要源于底侵的镁铁质下地壳与新生地幔物质的熔融混合.同时,ɛNdt)和ɛHft)值的投点虽然非常靠近亏损地幔线(图1011a),但是均位于亏损地幔线下方,处于新老物质混合的位置,结合老的TDM(>572 Ma)说明岩浆在侵位过程中可能受到少量古老地壳物质的混染.

5.3 成岩背景及区域构造演化

西准噶尔地区广泛分布着晚古生代的岩浆岩,先前的研究对这些岩体进行了详细的年代学调查.本文对准噶尔北部地区的主要岩体进行了锆石U-Pb年龄的统计分析(图15a),结果表明该地区的岩浆岩形成时代主要集中在晚志留世至早二叠纪,尤其是早石炭世至早二叠世这一时期,是岩石成岩的高峰期,并且在320 Ma进入后碰撞阶段.至于准噶尔洋的构造演化,多数学者认为在石炭纪晚期,准噶尔洋经历了洋内俯冲的过程,形成了岛弧、多岛弧,或者是不成熟岛弧(Shen et al.,2004,20102013).吴楚等(2016)基于巴尔鲁克蛇绿混杂岩带的特征、巴尔鲁克-托里-库鲁木迪地区沉积相的研究以及火山岩的地球化学特征,将巴尔鲁克构造单元划分为与谢米尔斯台相衔接、呈北东向延伸的安第斯型大陆边缘火山弧.本次研究区花岗质岩体的形成时代为294~302 Ma.结合岩石的主、微量元素测试结果与构造环境分析,可以揭示苏云河矿区整体形成于晚古生代后碰撞环境,整个西准噶尔区域在320 Ma进入后碰撞阶段(韩宝福等,2006;Zhou et al.,2008).据此,巴尔鲁克陆缘弧的形成演化如下:

俯冲时期(420~320 Ma):晚志留世开始,准噶尔洋在达拉布特地区经历了从西南向东北逐渐扩张的过程,并向北西侧的塔城微陆块发生俯冲.在洋壳俯冲过程中,释放出的流体与上覆的楔形地幔发生交代作用,导致上覆地幔发生部分熔融,形成了玄武质岩浆.这些玄武质岩浆从下地壳底部侵位上升,同时引发了下地壳的部分熔融,形成了英安质岩浆.玄武质岩浆与英安质岩浆的混合作用形成了安山质岩浆.这些岩浆通过上升冷凝结晶,形成了闪长岩、花岗闪长岩以及喷发到地表的安山岩、英安岩.这一系列的岩浆活动促使了巴尔鲁克陆缘弧的形成,并且在该地区发育了广泛的岩浆活动(图15b).

后碰撞阶段(320~280 Ma):在晚石炭世至早二叠世,西准噶尔北部地区的古亚洲洋完全闭合,形成了谢米尔斯台陆缘弧.同时,萨吾尔岛弧及其北侧的阿尔泰造山带与谢米尔斯台陆缘弧发生碰撞,区域进入后碰撞造山阶段.在这个过程中,西准噶尔地区整体的构造演化发生了重大变化.与此同时,西准噶尔南部地区的准噶尔洋受到地壳抬升的影响,洋盆闭合.石炭纪的火山岩和沉积岩不整合地覆盖在古洋壳上,标志着该地区进入了地壳伸展阶段.这一阶段的地质作用导致了西准噶尔地区的地壳结构发生了显著变化.在巴尔鲁克陆缘弧地区,区域应力转变为伸展状态,岩石圈地幔发生减薄.这种减薄导致软流圈上涌,从而引发了铁镁质下地壳的部分熔融,形成了Sr-Nd-Hf同位素亏损、具有埃达克岩特征的玄武质岩浆.同时,这些研究中可能混合了少量来自软流圈或者地幔的新生物质.在岩浆上升过程或岩浆房中,部分古老地壳物质和沉积物加入岩浆发生混合,形成了花岗闪长质岩浆.在苏云河矿区,这种岩浆经过充分的结晶分异,形成了二长花岗斑岩、花岗斑岩和花岗闪长斑岩等多种岩石(图15c).

苏云河钼矿床成矿相关的岩浆活动为294~310 Ma,成矿时代约为299 Ma(辉钼矿Re-Os,杨猛等,2015;游军,2016),晚于巴尔喀什斑岩Cu成矿带与斑岩型矿床有关的岩浆活动时代和成矿时代(316~327 Ma,钟世华等,2015a),说明苏云河斑岩Mo矿与巴尔喀什斑岩Cu成矿带整体呈现“早铜晚钼”的差异性成矿,造成差异的原因还有待于进一步研究.

6 结论

(1)SIMS锆石U-Pb定年结果显示苏云河矿区含矿斑岩的成岩年龄为294~302 Ma,形成于晚石炭世-早二叠世,与矿区Mo成矿时代相近.

(2)苏云河矿区岩体富集Rb、U、Th、Nd和Hf,相对亏损Ba、Nb、Ti、P,显示出后碰撞环境花岗岩的地球化学特征.二长花岗斑岩、花岗斑岩与花岗闪长斑岩具有明显的主微量地球化学元素协同变化特征,可能是同源岩浆不同阶段结晶分异的结果.

(3)全岩较高的Sr含量(平均为202.41×10-6)与Sr/Y比值(平均为14.97)、中等的ɛNdt)值(+3.8~+6.0),以及较高的锆石ɛHft)值(+9.7~+15.6)指示苏云河矿区岩体岩浆主要源于新生幔源物质与少量古老地壳物质的熔融混合.

参考文献

[1]

Batchelor, R. A., Bowden, P., 1985. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 48(1-4): 43-55. https://doi.org/10.1016/0009-2541(85)90034-8

[2]

Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12): 2067-2091. https://doi.org/10.1016/S0016-7037(00)00352-5

[3]

Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson.,ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. https://doi.org/10.1016/b978-0-444-42148-7.50008-3

[4]

Cai, J.H., Yan, G.H., Mu, B.L., et al., 2005. Zircon U-Pb Age, Sr-Nd-Pb Isotopic Compositions and Trace Element of Fangshan Complex in Beijing and Their Petrogenesis Significance. Acta Petrologica Sinica, 21(3): 776-788 (in Chinese with English abstract).

[5]

Cao, C., Shen, P., Pan, H. D., et al., 2020. The Formation Mechanism of Reduced Porphyry Mo Deposits in the West Junggar Region, Xinjiang: The Suyunhe Example. Ore Geology Reviews, 117: 103286. https://doi.org/10.1016/j.oregeorev.2019.103286

[6]

Chen, B., Arakawa, Y., 2005. Elemental and Nd-Sr Isotopic Geochemistry of Granitoids from the West Junggar Foldbelt (NW China), with Implications for Phanerozoic Continental Growth. Geochimica et Cosmochimica Acta, 69(5): 1307-1320. https://doi.org/10.1016/j.gca.2004.09.019

[7]

Chen, B., Jahn, B. M., 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/S1367-9120(03)00118-4

[8]

Chen, J. F., Han, B. F., Ji, J. Q., et al., 2010. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China. Lithos, 115(1-4): 137-152. https://doi.org/10.1016/j.lithos.2009.11.014

[9]

Chen, J.F., Han, B.F., Zhang, L., 2010. Geochemistry, Sr-Nd Isotopes and Tectonic Implications of Two Generations of Late Paleozoic Plutons in Northern West Junggar, Northwest China. Acta Petrologica Sinica, 26(8): 2317-2335 (in Chinese with English abstract).

[10]

Chen, X. H., Seitmuratova, E., Wang, Z. H., et al., 2014. SHRIMP U-Pb and Ar-Ar Geochronology of Major Porphyry and Skarn Cu Deposits in the Balkhash Metallogenic Belt, Central Asia, and Geological Implications. Journal of Asian Earth Sciences, 79: 723-740. https://doi.org/10.1016/j.jseaes.2013.06.011

[11]

Chen, Y., Sun, M.X., Zhang, X.L., 2006. SHRIMP U-Pb Dating of Zircons from Quartz Diorite at the Southeast Side of the Ba’erluke Fault, Western Junggar, Xinjiang, China. Geological Bulletin of China, 25(8): 992-994 (in Chinese with English abstract).

[12]

Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895

[13]

Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0

[14]

Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)0200641: csotat>2.3.co;2

[15]

Fan, Y., Zhou, T.F., Yuan, F., et al., 2007. LA-ICP MS Zircon Age of Tasite Pluton in Sawuer Region of West Junggar, Xinjiang. Acta Petrologica Sinica, 23(8): 1901-1908 (in Chinese with English abstract).

[16]

Feng, Q.W., Li, J.Y., Liu, J.F., et al., 2012. Ages and Geological Significance of the Dark Dykes Emplaced in the Karamay Pluton and Adjacent Area, in Western Junggar, Xinjiang, NW China: Evidence Form LA-ICP-MS Zircon Chronology and Ar-Ar Amphibole Chronology. Acta Petrologica Sinica, 28(7): 2158-2170 (in Chinese with English abstract).

[17]

Gao, J., Klemd, R., Zhu, M. T., et al., 2018. Large-Scale Porphyry-Type Mineralization in the Central Asian Metallogenic Domain: A Review. Journal of Asian Earth Sciences, 165: 7-36. https://doi.org/10.1016/j.jseaes.2017.10.002

[18]

Gao, S.L., He, Z.L., Zhou, Z.Y., 2006. Geochemical Characteristics of the Karamay Granitoids and Their Significance in West Junggar, Xinjiang. Xinjiang Geology, 24(2): 125-130 (in Chinese with English abstract).

[19]

Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001

[20]

Geng, H. Y., Sun, M., Yuan, C., et al., 2011. Geochemical and Geochronological Study of Early Carboniferous Volcanic Rocks from the West Junggar: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 42(5): 854-866. https://doi.org/10.1016/j.jseaes.2011.01.006

[21]

Goldstein, S. L., O’Nions, R. K., Hamilton, P. J., 1984. A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems. Earth and Planetary Science Letters, 70(2): 221-236. https://doi.org/10.1016/0012-821X(84)90007-4

[22]

Goolaerts, A., Mattielli, N., de Jong, J., et al., 2004. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chemical Geology, 206(1-2): 1-9. https://doi.org/10.1016/j.chemgeo.2004.01.008

[23]

Han, B.F., 2007. Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination. Earth Science Frontiers, 14(3): 64-72 (in Chinese with English abstract).

[24]

Han, B.F., He, G.Q., Wang, S.G., 1999. Post-Collision Mantle-Derived Magmatism, Bedding and the Nature of Basement in Junggar Basin. Scientia Sinica (Terrae), 29(1): 16-21 (in Chinese).

[25]

Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (PartⅠ): Timing of Post-Collisionai Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract).

[26]

Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. https://doi.org/10.1144/gsl.sp.1986.019.01.04

[27]

Hou, Z.Q., 2004. Porphyry Cu-Mo-Au Deposits: Some New Insights and Advances. Earth Science Frontiers, 11(1): 131-144 (in Chinese with English abstract).

[28]

Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. https://doi.org/10.1016/S0040-1951(00)00176-1

[29]

Jian, P., Liu, D.Y., Shi, Y.R., et al., 2005. SHRIMP Dating of SSZ Ophiolites from Northern Xinjiang Province, China: Implications for Generation of Oceanic Crust in the Central Asian Orogenic Belt. In: Sklyarov, E.V., ed., Structural and Tectonic Correlation across the Central Asia Orogenic Collage: North-Eastern Segment. Guidebook and Abstract Volume of the Siberian Workshop IGCP-480. IEC SB RAS, Irkutsk, 246-251.

[30]

Jiang, N., Zhang, S. Q., Zhou, W. G., et al., 2009. Origin of a Mesozoic Granite with A-Type Characteristics from the North China Craton: Highly Fractionated from I-Type Magmas? Contributions to Mineralogy and Petrology, 158(1): 113-130. https://doi.org/10.1007/s00410-008-0373-2

[31]

Jiang, Z.X., He, Y., Qu, L.H., et al., 2022. Gravity Anomalies of Ore-Bearing Rock Masses in the Suyunhe Molybdenum Deposit of West Junggar, Xinjiang and Their Geological Significance. Geology and Exploration, 58(5): 965-974 (in Chinese with English abstract).

[32]

Kang, L., Li, Y.J., Zhang, B., et al., 2009. Petrographic Evidence for Magma Mixing of Xiaerpu Granite in West Junggar, Xinjiang. Acta Petrologica et Mineralogica, 28(5): 423-432 (in Chinese with English abstract).

[33]

Kwon, S. T., Tilton, G. R., Coleman, R. G., et al., 1989. Isotopic Studies Bearing on the Tectonics of the West Junggar Region, Xinjiang, China. Tectonics, 8(4): 719-727. https://doi.org/10.1029/tc008i004p00719

[34]

Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. https://doi.org/10.1093/petrology/27.3.745

[35]

Li, C. F., Li, X. H., Li, Q. L., et al., 2012a. Rapid and Precise Determination of Sr and Nd Isotopic Ratios in Geological Samples from the Same Filament Loading by Thermal Ionization Mass Spectrometry Employing a Single-Step Separation Scheme. Analytica Chimica Acta, 727: 54-60. https://doi.org/10.1016/j.aca.2012.03.040

[36]

Li, C. F., Li, X. H., Li, Q. L., et al., 2012b. Simultaneous Determination of 143Nd/144Nd and 147Sm/144Nd Ratios and Sm-Nd Contents from the Same Filament Loaded with Purified Sm-Nd Aliquot from Geological Samples by Isotope Dilution Thermal Ionization Mass Spectrometry. Analytical Chemistry, 84(14): 6040-6047. https://doi.org/10.1021/ac300786x

[37]

Li, G. M., Cao, M. J., Qin, K. Z., et al., 2014. Thermal-Tectonic History of the Baogutu Porphyry Cu Deposit, West Junggar as Constrained from Zircon U-Pb, Biotite Ar/Ar and Zircon/Apatite (U-Th)/He Dating. Journal of Asian Earth Sciences, 79: 741-758. https://doi.org/10.1016/j.jseaes.2013.05.026

[38]

Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009GC002400

[39]

Liu, Z.Q., Han, B.F., Ji, J.Q., et al., 2005. Ages and Geochemistry of the Post-Collisional Granitic Rocks from Eastern Alataw Mountains, Xinjiang, and Implications for Vertical Crustal Growth. Acta Petrologica Sinica, 21(3): 623-639 (in Chinese with English abstract).

[40]

Ludwig, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. BGC Special Publication, Berkeley, (4): 70.

[41]

Luo, Q., Wang, Q.J., Yang, W., et al., 2023. Internal Structural Units, Differential Characteristics of Permeability and Their Transport, Shielding and Reservoir Control Modes of Strike-Slip Faults. Earth Science, 48(6): 2342-2360 (in Chinese with English abstract).

[42]

Lyu, C., Gao, J.F., Qi, L., et al., 2023. Analytical Methods and Application of Sulfide Re-Os Isotope Dating of Mineral Deposits: Research Progress and Problems. Earth Science, 48(12): 4387-4403 (in Chinese with English abstract).

[43]

Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2

[44]

Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0

[45]

Middlemost, E.A.K., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman Group, London and New York, 1-266. https://doi.org/10.1180/minmag.1986.050.355.34

[46]

Peacock, S. M., Rushmer, T., Thompson, A. B., 1994. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 121(1-2): 227-244. https://doi.org/10.1016/0012-821X(94)90042-6

[47]

Pearce, J., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005

[48]

Shen, P., Pan, H. D., Cao, C., et al., 2017. The Formation of the Suyunhe Large Porphyry Mo Deposit in the West Junggar Terrain, NW China: Zircon U-Pb Age, Geochemistry and Sr-Nd-Hf Isotopic Results. Ore Geology Reviews, 81: 808-828. https://doi.org/10.1016/j.oregeorev.2016.02.015

[49]

Shen, P., Pan, H. D., Xiao, W. J., et al., 2013. Early Carboniferous Intra-Oceanic Arc and Back-Arc Basin System in the West Junggar, NW China. International Geology Review, 55(16): 1991-2007. https://doi.org/10.1080/00206814.2013.810385

[50]

Shen, P., Shen, Y. C., Pan, H. D., et al., 2012. Geochronology and Isotope Geochemistry of the Baogutu Porphyry Copper Deposit in the West Junggar Region, Xinjiang, China. Journal of Asian Earth Sciences, 49: 99-115. https://doi.org/10.1016/j.jseaes.2011.11.025

[51]

Shen, P., Shen, Y. C., Zeng, Q. D., et al., 2004. Helium and Argon Isotope Trace in Ore-Forming Fluid of Sawuer Gold Belt in Xinjiang, China. Chinese Science Bulletin, 49(13): 1408-1414. https://doi.org/10.1360/03wd0620

[52]

Shen, P., Shen, Y.C., Pan, H.D., et al., 2010. Baogutu Porphyry Cu-Mo-Au Deposit, West Junggar, Northwest China: Petrology, Alteration, and Mineralization. Economic Geology, 105(5): 947-970. https://doi.org/10.2113/econgeo.105.5.947

[53]

Sláma, J.K., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon—A New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1/2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005

[54]

Song, H.X., Liu, Y.L., Qu, W.J., et al., 2007. Geological Characters of Baogutu Porphyry Copper Deposit in Xinjiang, NW China. Acta Petrologica Sinica, 23(8): 1981-1988 (in Chinese with English abstract).

[55]

Su, Y.P., Tang, H.F., Hou, G.S., et al., 2006. Geochemistry of Aluminous A-Type Granites along Darabut Tectonic Belt in West Junggar, Xinjiang. Geochimica, 35(1): 55-67 (in Chinese with English abstract).

[56]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19

[57]

Tang, G. J., Wang, Q., Wyman, D. A., et al., 2010. Ridge Subduction and Crustal Growth in the Central Asian Orogenic Belt: Evidence from Late Carboniferous Adakites and High-Mg Diorites in the Western Junggar Region, Northern Xinjiang (West China). Chemical Geology, 277(3/4): 281-300. https://doi.org/10.1016/j.chemgeo.2010.08.012

[58]

Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Recycling Oceanic Crust for Continental Crustal Growth: Sr-Nd-Hf Isotope Evidence from Granitoids in the Western Junggar Region, NW China. Lithos, 128: 73-83. https://doi.org/10.1016/j.lithos.2011.11.003

[59]

Tang, G.J., Wang, Q., Zhao, Z.H., et al., 2009. Geochronology and Geochemistry of the Ore-Bearing Porphyries in the Baogutu Area (Western Junggar): Petrogenesis and Their Implications for Tectonics and Cu-Au Mineralization. Earth Science, 34(1): 56-74 (in Chinese with English abstract).

[60]

Tang, H.F., Zhao, Z.Q., Huang, R.S., et al., 2008. Primary Hf Isotopic Study on Zircons from the A-Type Granites in Eastern Junggar of Xinjiang, Northwest China. Acta Mineralogica Sinica, 28(4): 335-342 (in Chinese with English abstract).

[61]

Wang, Y.M., Yin, J.Y., Yuan, C., et al., 2021. Exhumation and Preservation Conditions of Suyunhe Porphyry Molybdenum Deposit in the West Junggar, Xinjiang(NW China): Constraints from the Fission Track and (U-Th)/He Thermochronology. Acta Petrologica Sinica, 37(8): 2547-2561 (in Chinese with English abstract).

[62]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[63]

Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

[64]

Wilson, M., 1989. Igneous Petrogenesis. Allen and Unwin, London.

[65]

Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022

[66]

Woodhead, J., Hergt, J., Shelley, M., et al., 2004. Zircon Hf-Isotope Analysis with an Excimer Laser, Depth Profiling, Ablation of Complex Geometries, and Concomitant Age Estimation. Chemical Geology, 209(1-2): 121-135. https://doi.org/10.1016/j.chemgeo.2004.04.026

[67]

Wu, C., Dong, L.H., Zhou, G., et al., 2016. Paleozoic Tectonic Units and Evolution of West Junggar, CAOB. Xinjiang Geology, 34(3): 302-311 (in Chinese with English abstract).

[68]

Wu, C., Hong, T., Xu, X. W., et al., 2018. Tectonic Evolution of the Paleozoic Barluk Continental Arc, West Junggar, NW China. Journal of Asian Earth Sciences, 160: 48-66. https://doi.org/10.1016/j.jseaes.2018.04.008

[69]

Wu, C., Hong, T., Xu, X. W., et al., 2023. Report of 2.7 Ga Zircon U-Pb Age of Orthogneiss in the Wenquan Metamorphic Complex, West Tianshan, China. China Geology, 6(1): 168-170. https://doi.org/10.31035/cg2021071

[70]

Wu, C., Liu, Y., Cao, M.J., et al., 2015. Characteristics and Formation Mechanism of Reduced Porphyry Cu and Mo-Cu Deposits. Acta Petrologica Sinica, 31(2): 617-638 (in Chinese with English abstract).

[71]

Wu, F. Y., Yang, Y. H., Xie, L. W., et al., 2006. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology. Chemical Geology, 234(1-2): 105-126. https://doi.org/10.1016/j.chemgeo.2006.05.003

[72]

Xiao, W. J., Kröner, A., Windley, B.F., 2009. Geodynamic Evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences, 98(6): 1185-1188. https://doi.org/10.1007/s00531-009-0418-4

[73]

Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008

[74]

Xu, S.L., Ding, W.C., Chen, X.H., et al., 2022. Late Paleozoic Crustal Composition and Growth in West Junggar: Evidence from Sr-Nd-Pb Isotopic Mapping. Earth Science Frontiers, 29(2): 261-280 (in Chinese with English abstract).

[75]

Xu, X. W., Jiang, N., Li, X. H., et al., 2015. Spatial-Temporal Framework for the Closure of the Junggar Ocean in Central Asia: New SIMS Zircon U-Pb Ages of the Ophiolitic Mélange and Collisional Igneous Rocks in the Zhifang Area, East Junggar. Journal of Asian Earth Sciences, 111: 470-491. https://doi.org/10.1016/j.jseaes.2015.06.017

[76]

Xu, Z., Han, B. F., Ren, R., et al., 2012. Ultramafic-Mafic Mélange, Island Arc and Post-Collisional Intrusions in the Mayile Mountain, West Junggar, China: Implications for Paleozoic Intra-Oceanic Subduction-Accretion Process. Lithos, 132: 141-161. https://doi.org/10.1016/j.lithos.2011.11.016

[77]

Xu, Z., Han, B. F., Ren, R., et al., 2013. Palaeozoic Multiphase Magmatism at Barleik Mountain, Southern West Junggar, Northwest China: Implications for Tectonic Evolution of the West Junggar. International Geology Review, 55(5): 633-656. https://doi.org/10.1080/00206814.2012.741315

[78]

Yang, G., Xiao, L., Wang, G.C., et al., 2015. Geochronology, Geochemistry and Zircon Lu-Hf Study of Granites in Western Section of Xiemisitai Area, Western Junggar. Earth Science, 40(3): 548-562 (in Chinese with English abstract).

[79]

Yang, M., Wang, J.L., Wang, J.Q., et al., 2015. Late Carboniferous Intra-Oceanic Subduction and Mineralization in Western Junggar: Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of Ⅰ# Ore-Bearing Granite Body in Suyunhe Molybdenite Orefield, Xinjiang. Acta Petrologica Sinica, 31(2): 523-533 (in Chinese with English abstract).

[80]

Yang, Y. H., Zhang, H. F., Chu, Z. Y., et al., 2010. Combined Chemical Separation of Lu, Hf, Rb, Sr, Sm and Nd from a Single Rock Digest and Precise and Accurate Isotope Determinations of Lu-Hf, Rb-Sr and Sm-Nd Isotope Systems Using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290(2-3): 120-126. https://doi.org/10.1016/j.ijms.2009.12.011

[81]

You, J., 2016. Ore-Forming Mechanism and Tectonic Setting of Porphyry Mo Deposits in the North-Western Margin of Junggar Area (Dissertation). University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).

[82]

Zhang, L.C., Feng, J., Li, P., et al., 2022. Tectonic Evolution and Metallogenic Regularity of Dominant Deposits in the Western Tianshan. Earth Science, 47(9): 3127-3146 (in Chinese with English abstract).

[83]

Zhong, S. H., Seltmann, R., Shen, P., 2017. Two Different Types of Granitoids in the Suyunhe Large Porphyry Mo Deposit, NW China and Their Genetic Relationships with Molybdenum Mineralization. Ore Geology Reviews, 88: 116-139. https://doi.org/10.1016/j.oregeorev.2017.04.012

[84]

Zhong, S.H., Shen, P., Pan, H.D., et al., 2015a. Geochemistry and Geochronology of Ore-Bearing Granites in Suyunhe Mo Deposit, West Junggar, Xinjiang. Mineral Deposits, 34(1): 39-62(in Chinese with English abstract).

[85]

Zhong, S.H., Shen, P., Pan, H.D., et al., 2015b. The Ore-Forming Fluid and Geochronology of the Suyunhe Mo Deposit, West Junggar, Xinjiang. Acta Petrologica Sinica, 31(2): 449-464(in Chinese with English abstract).

[86]

Zhou, T. F., Yuan, F., Fan, Y., et al., 2008. Granites in the Sawuer Region of the West Junggar, Xinjiang Province, China: Geochronological and Geochemical Characteristics and Their Geodynamic Significance. Lithos, 106(3-4): 191-206. https://doi.org/10.1016/j.lithos.2008.06.014

[87]

Zhu, X. K., Wang, Z. C., Chen, H. Y., 2022. Advances in Isotope Geochronology and Isotope Geochemistry: A Preface. Journal of Earth Science, 33(1): 1-4. https://doi.org/10.1007/s12583-021-1605-x

基金资助

国家自然科学基金面上项目(42272075)

国家自然科学基金青年项目(42302083)

第二次青藏高原综合科学考察研究(2019QZKK0806)

国家自然科学基金原创探索项目(42250202)

广东省引进人才创新创业团队项目(2021ZT09H399)

自然科学基金重大研究计划集成课题(92162323)

AI Summary AI Mindmap
PDF (14292KB)

122

访问

0

被引

详细

导航
相关文章

AI思维导图

/