全球海平面年际波动与陆地水储量异常的时空关联
Spatial and Temporal Association between Interannual Fluctuations of Global Sea Level and Anomalies in Terrestrial Water Storage
,
,
研究全球平均海平面(GMSL)上升过程中的年际波动有助于深入了解GMSL变化特征.主要分析GMSL在2005—2016年期间经历的两次显著年际波动及其成因,定量分析全球各大洲陆地水储量(TWS)异常的空间分布及其对GMSL年际波动的贡献,并探讨各大洲TWS变化与厄尔尼诺-南方涛动(ENSO)之间的相关性.结果表明在GMSL年际波动中与海水质量变化相关的重力海平面(BSL)变化贡献占80%,与海水温盐度变化相关的比容海平面变化的贡献约为20%,格陵兰岛和南极洲冰盖消融主要影响BSL的长期变化趋势,各大洲TWS异常变化则主导了BSL的年际变化,其中南美洲贡献最大,其次是北美洲、亚洲和大洋洲,欧洲TWS贡献最小.南美洲TWS异常变化与ENSO关联性最强,相关系数为-0.76,并存在超前7个月相位差,北美洲关联性最弱,超前5个月时相位差时达到最大值-0.25.
Studying the interannual fluctuations during the rise of Global Mean Sea Level (GMSL) helps us to gain a deeper understanding of the changes in GMSL. This work mainly studies the two significant interannual fluctuations and their causes experienced by GMSL between 2005 and 2016, quantitatively estimates the spital distribution and contribution of terrestrial water storage (TWS) anomaly to GMSL changes in different global continent and analyzes the correlation between abnormal TWS changes in different continents and El Niño southern oscillation (ENSO). The results show that in the interannual fluctuations of GMSL, the contribution of gravity sea level (BSL) changes related to oceanic mass changes is 80%, and the contribution of steric sea level changes related to changes in seawater temperature and salinity is about 20%. The melting of ice sheets in Greenland and Antarctica mainly affects the long-term trend of BSL. TWS anomaly change in different continents affects the interannual changes of BSL differently, with South America contributing the most, followed by North America, Asia, and Oceania, the TWS contribution from Europe is the smallest. The correlation between TWS anomaly change in South America and ENSO is the strongest, with a correlation coefficient of -0.76 and a phase lead of 7 months. The correlation is the weakest in North America, reaching its maximum value of -0.25 at a phase lead of 5 months.
海平面变化 / 年际波动 / 陆地水储量异常 / 厄尔尼诺-南方涛动 / 大地测量学.
sea level change / interannual fluctuation / terrestrial water storage anomaly / El Niño southern oscillation / geodesy
| [1] |
Allan, R. J., Nicholls, N., Jones, P. D., et al., 1991. A Further Extension of the Tahiti-Darwin SOI, Early ENSO Events and Darwin Pressure. Journal of Climate, 4(7): 743-749. https://doi.org/10.1175/1520-0442(1991)0040743: afeott>2.0.co;2 |
| [2] |
Barnoud, A., Pfeffer, J., Cazenave, A., et al., 2023. Revisiting the Global Mean Ocean Mass Budget over 2005—2020. Ocean Science, 19(2): 321-334. https://doi.org/10.5194/os-19-321-2023 |
| [3] |
Barnoud, A., Pfeffer, J., Guérou, A., et al., 2021. Contributions of Altimetry and Argo to Non-Closure of the Global Mean Sea Level Budget since 2016. Geophysical Research Letters, 48(14): e2021GL092824. https://doi.org/10.1029/2021GL092824 |
| [4] |
Bettadpur, S., 2018. Level-2 Gravity Field Product User Handbook. Grace Project, 4: 21. |
| [5] |
Boening, C., Willis, J. K., Landerer, F. W., et al., 2012. The 2011 La Niña: So Strong, the Oceans Fell. Geophysical Research Letters, 39(19): L19602. https://doi.org/10.1029/2012GL053055 |
| [6] |
Cazenave, A., Moreira, L., 2022. Contemporary Sea-Level Changes from Global to Local Scales: A Review. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 478(2261): 20220049. https://doi.org/10.1098/rspa.2022.0049 |
| [7] |
Chao, B. F., Wu, Y. H., Li, Y. S., 2008. Impact of Artificial Reservoir Water Impoundment on Global Sea Level. Science, 320(5873): 212-214. https://doi.org/10.1126/science.1154580 |
| [8] |
Chen, J. L., Tapley, B., Wilson, C., et al., 2020. Global Ocean Mass Change from GRACE and GRACE Follow-on and Altimeter and Argo Measurements. Geophysical Research Letters, 47(22): e2020GL090656. https://doi.org/10.1029/2020GL090656 |
| [9] |
Chen, J. L., Wilson, C. R., Li, J., et al., 2015. Reducing Leakage Error in GRACE-Observed Long-Term Ice Mass Change: A Case Study in West Antarctica. Journal of Geodesy, 89(9): 925-940. https://doi.org/10.1007/s00190-015-0824-2 |
| [10] |
Dahle, C., Flechtner, F., Murböck, M., et al., 2018. GRACE 327-743 (Gravity Recovery and Climate Experiment): GFZ Level-2 Processing Standards Document for Level-2 Product Release 06 (Rev. 1.0, October 26, 2018)[R/PDF]//Scientific Technical Report-Data; 18/04; ISSN 1610-0956. GFZ German Research Centre for Geosciences: 513 kB[2021-11-10]. https://gfzpublic.gfz-potsdam.de/pubman/item/item_3489896. https://doi.org/10.2312/GFZ.B103-18048 |
| [11] |
Dahle, C., Murböck, M., Flechtner, F., et al., 2019. The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing Details and Quality Assessment. Remote Sensing, 11(18): 2116. https://doi.org/10.3390/rs11182116 |
| [12] |
Good, S. A., Martin, M. J., Rayner, N. A., 2013. EN4: Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates. Journal of Geophysical Research (Oceans), 118(12): 6704-6716. https://doi.org/10.1002/2013JC009067 |
| [13] |
Gregory, J. M., Griffies, S. M., Hughes, C. W., et al., 2019. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 40(6): 1251-1289. https://doi.org/10.1007/s10712-019-09525-z |
| [14] |
Hamlington, B. D., Gardner, A. S., Ivins, E., et al., 2020. Understanding of Contemporary Regional Sea-Level Change and the Implications for the Future. Reviews of Geophysics, 58(3): e2019RG000672. https://doi.org/10.1029/2019RG000672 |
| [15] |
Hosoda, S., 2007. Grid Point Value of the Monthly Objective Analysis Using the Argo Data. JAMSTEC[2023-01-11]. https://www.jamstec.go.jp/datadoi/doi/10.17596/0000102.html. https://doi.org/10.17596/0000102 |
| [16] |
Jayne, S. R., Wahr, J. M., Bryan, F. O., 2003. Observing Ocean Heat Content Using Satellite Gravity and Altimetry. Journal of Geophysical Research: Oceans, 108(C2): 3031. https://doi.org/10.1029/2002JC001619 |
| [17] |
Kuo, Y. N., Lo, M. H., Liang, Y. C., et al., 2021. Terrestrial Water Storage Anomalies Emphasize Interannual Variations in Global Mean Sea Level during 1997—1998 and 2015—2016 El Niño Events. Geophysical Research Letters, 48(18): e2021GL094104. https://doi.org/10.1029/2021GL094104 |
| [18] |
Leuliette, E., Willis, J., 2011. Balancing the Sea Level Budget. Oceanography, 24(2): 122-129. https://doi.org/10.5670/oceanog.2011.32 |
| [19] |
Llovel, W., Balem, K., Tajouri, S., et al., 2023. Cause of Substantial Global Mean Sea Level Rise over 2014—2016. Geophysical Research Letters, 50(19): e2023GL104709. https://doi.org/10.1029/2023GL104709 |
| [20] |
Llovel, W., Becker, M., Cazenave, A., et al., 2011. Terrestrial Waters and Sea Level Variations on Interannual Time Scale. Global and Planetary Change, 75(1-2): 76-82. https://doi.org/10.1016/j.gloplacha.2010.10.008 |
| [21] |
Loomis, B. D., Rachlin, K. E., Luthcke, S. B., 2019. Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise. Geophysical Research Letters, 46(12): 6910-6917. https://doi.org/10.1029/2019GL082929 |
| [22] |
Loomis, B. D., Rachlin, K. E., Wiese, D. N., et al., 2020. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophysical Research Letters, 47(3): e2019GL085488. https://doi.org/10.1029/2019GL085488 |
| [23] |
Mu, D.P., Yan, H.M., 2018. The Instantaneous Rate of Global Mean Sea Level Rise. Chinese Journal of Geophysics, 61(12): 4758-4766 (in Chinese with English abstract). |
| [24] |
Peltier, W. R., 2009. Closure of the Budget of Global Sea Level Rise over the GRACE Era: The Importance and Magnitudes of the Required Corrections for Global Glacial Isostatic Adjustment. Quaternary Science Reviews, 28(17-18): 1658-1674. https://doi.org/10.1016/j.quascirev.2009.04.004 |
| [25] |
Peltier, W. R., Argus, D. F., Drummond, R., 2015. Space Geodesy Constrains Ice Age Terminal Deglaciation: The Global ICE-6G_C (VM5a) Model. Journal of Geophysical Research: Solid Earth, 120(1): 450-487. https://doi.org/10.1002/2014JB011176 |
| [26] |
Roemmich, D., Gilson, J., 2009. The 2004–2008 Mean and Annual Cycle of Temperature, Salinity, and Steric Height in the Global Ocean from the Argo Program. Progress in Oceanography, 82(2): 81-100. https://doi.org/10.1016/j.pocean.2009.03.004 |
| [27] |
Save, H., Bettadpur, S., Tapley, B. D., 2016. High-Resolution CSR GRACE RL05 Mascons. Journal of Geophysical Research: Solid Earth, 121(10): 7547-7569. https://doi.org/10.1002/2016jb013007 |
| [28] |
Sun, Y., Riva, R., Ditmar, P., 2016. Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models. Journal of Geophysical Research: Solid Earth, 121(11): 8352-8370. https://doi.org/10.1002/2016JB013073 |
| [29] |
Swenson, S., Chambers, D., Wahr, J., 2008. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. Journal of Geophysical Research: Solid Earth, 113(B8): B08410. https://doi.org/10.1029/2007JB005338 |
| [30] |
Swenson, S., Wahr, J., 2006. Post-Processing Removal of Correlated Errors in GRACE Data. Geophysical Research Letters, 33(8): L08402. https://doi.org/10.1029/2005GL025285 |
| [31] |
Tang, L., Li, J., Chen, J. L., et al., 2020. Seismic Impact of Large Earthquakes on Estimating Global Mean Ocean Mass Change from GRACE. Remote Sensing, 12(6): 935. https://doi.org/10.3390/rs12060935 |
| [32] |
van der Ent, R. J., Tuinenburg, O. A., 2017. The Residence Time of Water in the Atmosphere Revisited. Hydrology and Earth System Sciences, 21(2): 779-790. https://doi.org/10.5194/hess-21-779-2017 |
| [33] |
Wahr, J., Molenaar, M., Bryan, F., 1998. Time Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. Journal of Geophysical Research: Solid Earth, 103(B12): 30205-30229. https://doi.org/10.1029/98JB02844 |
| [34] |
Wang, L. S., Chen, C., Du, J. S., et al., 2014. Impact of Water Impoundment of Large Reservoirs on Spatial Variation of Coastal Relative Sea Level in China. Earth Science, 39(11): 1707-1716 (in Chinese with English abstract). |
| [35] |
Watkins, M. M., Wiese, D. N., Yuan, D. N., et al., 2015. Improved Methods for Observing Earth’s Time Variable Mass Distribution with GRACE Using Spherical Cap Mascons. Journal of Geophysical Research: Solid Earth, 120(4): 2648-2671. https://doi.org/10.1002/2014JB011547 |
| [36] |
WCRP, 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018 |
| [37] |
Wong, A., Keeley, R., Carval, T., et al., 2021. Argo Quality Control Manual for CTD and Trajectory Data. Ifremer[2021-11-17]. https://archimer.ifremer.fr/doc/00228/33951/. https://doi.org/10.13155/33951 |
| [38] |
Xu, C. Y., Li, J., 2022. Seismic Contributions to Secular Changes in Global Geodynamic Parameters. Journal of Geophysical Research: Solid Earth, 127(8): e2022JB024590. https://doi.org/10.1029/2022JB024590 |
| [39] |
Yang, Y. Y., Feng, W., Zhong, M., et al., 2022. Basin-Scale Sea Level Budget from Satellite Altimetry, Satellite Gravimetry, and Argo Data over 2005 to 2019. Remote Sensing, 14(18): 4637. https://doi.org/10.3390/rs14184637 |
| [40] |
Zhang, Z. Z., Chao, B. F., Chen, J. L., et al., 2015. Terrestrial Water Storage Anomalies of Yangtze River Basin Droughts Observed by GRACE and Connections with ENSO. Global and Planetary Change, 126: 35-45. https://doi.org/10.1016/j.gloplacha.2015.01.002 |
国家自然科学基金项目(42174042)
国家自然科学基金项目(42174100)
国家自然科学基金项目(42074094)
湖北珞珈实验室开放基金项目(220100044)
泰山学者工程专项经费资助项目(tsqnz20230617)
/
| 〈 |
|
〉 |