三峡库区万州区滑坡易发性演化规律
Evolution Patterns of Landslide Susceptibility in Three Gorges Reservoir Areas
,
为探究库区滑坡易发性演化规律,以三峡库区万州区多时序滑坡为研究对象,利用频率比法分析滑坡空间分布时变规律,通过机器学习算法建立多时序下的滑坡易发性模型并分析模型时效性及易发性演化规律,采用标准差椭圆刻画不同时序下高易发区的分布趋势.结果表明:各孕灾因子对滑坡的贡献度随时间变化;易发性模型的建模精度随滑坡编录数据时间跨度的增加而降低;按照时间顺序采样的滑坡易发性模型建模精度高、预测精度低,且预测性能随时间推移而降低;不同时序下高易发区的标准差椭圆分布存在显著差异且与人类工程活动相关.研究揭示了滑坡易发性的时变性和演化规律,未来应从滑坡发育的时间视角出发,探索具有时效性的易发性评价方法.
To understand the evolution of landslide susceptibility in reservoir areas, in this research it focuses on multi-temporal landslides in the Wanzhou district of the Three Gorges Reservoir area. The spatial distribution of landslides and their temporal variations were analyzed using the frequency ratio method. Machine learning algorithms are employed to construct landslide susceptibility models for different time sequences, investigating the models' temporal effectiveness and the evolution of susceptibility. The distribution trends of areas with high susceptibility in various time sequences are depicted using standard deviation ellipses. Results show that the impact of different predisposing factors on landslides changes over time. As the time span of landslide inventory data increases, the accuracy of the susceptibility models decreases. Models based on chronologically ordered data have high modeling accuracy but low predictive precision, and their predictive performance diminishes over time. The standard deviation ellipses for high-susceptibility areas differ significantly across time sequences and correlate with human engineering activities. The study highlights the temporal variability and evolving patterns of landslide susceptibility, underscoring the need for future landslide susceptibility assessments to consider the temporal aspect of landslide development.
滑坡易发性 / 多时序数据 / 时空分布 / 机器学习 / 演化规律 / 工程地质学.
landslide susceptibility / multi-temporal landslide inventories / spatial and temporal distribution / machine learning / evolution law / engineering geology
| [1] |
Bradley, A. P., 1997. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognition, 30(7): 1145-1159. https://doi.org/10.1016/S0031-3203(96)00142-2 |
| [2] |
Breiman, L., 2001. Random Forests. Machine Learning, 45(1): 5–32. https://doi.org/10.1023/A: 1010933404324 |
| [3] |
Chen, J., Li, X., Yang, Z.F., 2005. On the Distribution and Mechanism of Landslides in the Three Gorges Reservoir Area. Journal of Engineering Geology, 13(3): 305-309 (in Chinese with English abstract). |
| [4] |
Chen, T. Q., Guestrin, C., Chen, T. Q., et al., 2016. XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. August 13 - 17, 2016, San Francisco, California, USA. ACM: 785-794. https://doi.org/10.1145/2939672.2939785 |
| [5] |
Chen, W., Pourghasemi, H. R., Panahi, M., et al., 2017. Spatial Prediction of Landslide Susceptibility Using an Adaptive Neuro-Fuzzy Inference System Combined with Frequency Ratio, Generalized Additive Model, and Support Vector Machine Techniques. Geomorphology, 297: 69-85. https://doi.org/10.1016/j.geomorph.2017.09.007 |
| [6] |
Cheng, J. Y., Dai, X. A., Wang, Z. K., et al., 2022. Landslide Susceptibility Assessment Model Construction Using Typical Machine Learning for the Three Gorges Reservoir Area in China. Remote Sensing, 14(9): 2257. https://doi.org/10.3390/rs14092257 |
| [7] |
Choi, J., Oh, H. J., Lee, H. J., et al., 2012. Combining Landslide Susceptibility Maps Obtained from Frequency Ratio, Logistic Regression, and Artificial Neural Network Models Using ASTER Images and GIS. Engineering Geology, 124: 12-23. https://doi.org/10.1016/j.enggeo.2011.09.011 |
| [8] |
Deng, M., Cai, J.N., Yang, W.T., et al., 2020. Spatio-Temporal Analysis Methods for Multi-Modal Geographic Big Data. Journal of Geo-Information Science, 22(1): 41-56 (in Chinese with English abstract). |
| [9] |
Hu, Q., Zhou, Y., Wang, S. X., et al., 2020. Machine Learning and Fractal Theory Models for Landslide Susceptibility Mapping: Case Study from the Jinsha River Basin. Geomorphology, 351: 106975. https://doi.org/10.1016/j.geomorph.2019.106975 |
| [10] |
Huang, F.M., Chen, B., Mao, D.X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract). |
| [11] |
Huang, F. M., Yin, K. L., Huang, J. S., et al., 2017. Landslide Susceptibility Mapping Based on Self-Organizing-Map Network and Extreme Learning Machine. Engineering Geology, 223: 11-22. https://doi.org/10.1016/j.enggeo.2017.04.013 |
| [12] |
Jones, J. N., Boulton, S. J., Bennett, G. L., et al., 2021. Temporal Variations in Landslide Distributions Following Extreme Events: Implications for Landslide Susceptibility Modeling. Journal of Geophysical Research: Earth Surface, 126(7): e2021JF006067. https://doi.org/10.1029/2021JF006067 |
| [13] |
Khanna, K., Martha, T. R., Roy, P., et al., 2021. Effect of Time and Space Partitioning Strategies of Samples on Regional Landslide Susceptibility Modelling. Landslides, 18(6): 2281-2294. https://doi.org/10.1007/s10346-021-01627-3 |
| [14] |
Lefever, D. W., 1926. Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. American Journal of Sociology, 32(1): 88-94. https://doi.org/10.1086/214027 |
| [15] |
Li, K. F., Zhu, C., Wu, L., et al., 2013. Problems Caused by the Three Gorges Dam Construction in the Yangtze River Basin: A Review. Environmental Reviews, 21(3): 127-135. https://doi.org/10.1139/er-2012-0051 |
| [16] |
Lin, Q. G., Wang, Y., 2018. Spatial and Temporal Analysis of a Fatal Landslide Inventory in China from 1950 to 2016. Landslides, 15(12): 2357-2372. https://doi.org/10.1007/s10346-018-1037-6 |
| [17] |
Loche, M., Alvioli, M., Marchesini, I., et al., 2022. Landslide Susceptibility Maps of Italy: Lesson Learnt from Dealing with Multiple Landslide Types and the Uneven Spatial Distribution of the National Inventory. Earth-Science Reviews, 232: 104125. https://doi.org/10.1016/j.earscirev.2022.104125 |
| [18] |
Merghadi, A., Yunus, A. P., Dou, J., et al., 2020. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Science Reviews, 207: 103225. https://doi.org/10.1016/j.earscirev.2020.103225 |
| [19] |
Miao, F. S., Ruan, Q. Y., Wu, Y. P., et al., 2023a. Landslide Dynamic Susceptibility Mapping Base on Machine Learning and the PS-InSAR Coupling Model. Remote Sensing, 15(22): 5427. https://doi.org/10.3390/rs15225427 |
| [20] |
Miao, F. S., Zhao, F. C., Wu, Y. P., et al., 2023b. Landslide Susceptibility Mapping in Three Gorges Reservoir Area Based on GIS and Boosting Decision Tree Model. Stochastic Environmental Research and Risk Assessment, 37(6): 2283-2303. https://doi.org/10.1007/s00477-023-02394-4 |
| [21] |
Ozturk, U., Pittore, M., Behling, R., et al., 2021. How Robust are Landslide Susceptibility Estimates? Landslides, 18(2): 681-695. https://doi.org/10.1007/s10346-020-01485-5 |
| [22] |
Reichenbach, P., Rossi, M., Malamud, B. D., et al., 2018. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Science Reviews, 180: 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001 |
| [23] |
Samia, J., Temme, A., Bregt, A., et al., 2017. Do Landslides Follow Landslides? Insights in Path Dependency from a Multi-Temporal Landslide Inventory. Landslides, 14(2): 547-558. https://doi.org/10.1007/s10346-016-0739-x |
| [24] |
Tien Bui, D., Pradhan, B., Lofman, O., et al., 2012. Landslide Susceptibility Mapping at Hoa Binh Province (Vietnam) Using an Adaptive Neuro-Fuzzy Inference System and GIS. Computers & Geosciences, 45: 199-211. https://doi.org/10.1016/j.cageo.2011.10.031 |
| [25] |
Torizin, J., Wang, L. C., Fuchs, M., et al., 2018. Statistical Landslide Susceptibility Assessment in a Dynamic Environment: A Case Study for Lanzhou City, Gansu Province, NW China. Journal of Mountain Science, 15(6): 1299-1318. https://doi.org/10.1007/s11629-017-4717-0 |
| [26] |
Vakhshoori, V., Zare, M., 2018. Is the ROC Curve a Reliable Tool to Compare the Validity of Landslide Susceptibility Maps? Geomatics, Natural Hazards and Risk, 9(1): 249-266. https://doi.org/10.1080/19475705.2018.1424043 |
| [27] |
Wang, J.J., Yin, K.L., Xiao, L.L., 2014. Landslide Susceptibility Assessment Based on GIS and Weighted Information Value: A Case Study of Wanzhou District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 33(4): 797-808 (in Chinese with English abstract). |
| [28] |
Wang, Y. M., Feng, L. W., Li, S. J., et al., 2020. A Hybrid Model Considering Spatial Heterogeneity for Landslide Susceptibility Mapping in Zhejiang Province, China. CATENA, 188: 104425. https://doi.org/10.1016/j.catena.2019.104425 |
| [29] |
Wu, S.R., Shi, J.S., Zhang, Y.S., et al., 2006. Landslide Mechanisms:A Case Study of the Yangtze Three Gorges Reservoir Area. Geological Bulletin of China, 25(7): 874-879 (in Chinese with English abstract). |
| [30] |
Xiao, T., 2020. Risk Assessment of Landslide Disaster in Wanzhou District and Bank Section of Three Gorges Reservoir Area(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). |
| [31] |
Xiao, T., Yu, L. B., Tian, W. M., et al., 2021. Reducing Local Correlations among Causal Factor Classifications as a Strategy to Improve Landslide Susceptibility Mapping. Frontiers in Earth Science, 9: 781674. https://doi.org/10.3389/feart.2021.781674 |
| [32] |
Yin, Y.P., 2004. Research Progress of Major Geological Disasters and Their Prevention in the Three Gorges Reservoir Area. Geotechnical Engineering Community, (8):20-26(in Chinese). |
| [33] |
Yuan, W. H., Yin, D. W., Finlayson, B., et al., 2012. Assessing the Potential for Change in the Middle Yangtze River Channel Following Impoundment of the Three Gorges Dam. Geomorphology, 147: 27-34. https://doi.org/10.1016/j.geomorph.2011.06.039 |
| [34] |
Zeng, T. R., Wu, L. Y., Peduto, D., et al., 2023. Ensemble Learning Framework for Landslide Susceptibility Mapping: Different Basic Classifier and Ensemble Strategy. Geoscience Frontiers, 14(6): 101645. https://doi.org/10.1016/j.gsf.2023.101645 |
| [35] |
Zhang, H. J., Song, Y. X., Xu, S. L., et al., 2022. Combining a Class-Weighted Algorithm and Machine Learning Models in Landslide Susceptibility Mapping: A Case Study of Wanzhou Section of the Three Gorges Reservoir, China. Computers & Geosciences, 158: 104966. https://doi.org/10.1016/j.cageo.2021.104966 |
| [36] |
Zhao, Y. F., Wu, Q. R., Wei, P. P., et al., 2022. Explore the Mitigation Mechanism of Urban Thermal Environment by Integrating Geographic Detector and Standard Deviation Ellipse (SDE). Remote Sensing, 14(14): 3411. https://doi.org/10.3390/rs14143411 |
国家自然科学基金项目(42307275)
湖南省自然科学基金项目(2024JJ6498)
/
| 〈 |
|
〉 |