内蒙古中部乌拉盖复式岩体古生代两期岩浆成因:古亚洲洋板块从前进式到后撤式俯冲-增生的岩浆响应
姜冠哲 , 李舢 , 朱俊宾 , 郭东海 , 邱志毅 , 万雪
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1443 -1469.
内蒙古中部乌拉盖复式岩体古生代两期岩浆成因:古亚洲洋板块从前进式到后撤式俯冲-增生的岩浆响应
Genesis of Paleozoic Two-Stage Magmatism of Wulagai Pluton in Central Inner Mongolia:Response to Tectonic Switch from Advancing to Retreating Subduction of Paleo-Asian Ocean Plate
,
,
俯冲带是壳幔物质相互作用的重要场所,并伴随着不同时期和性质的岩浆活动.理解不同俯冲过程(例如前进式俯冲和后撤式俯冲)中的岩浆作用特征对深入认识造山带演化历史具有重要意义.对内蒙古中部东乌旗地区乌拉盖复式岩体内古生代侵入岩开展了锆石U-Pb年代学、全岩主-微量元素地球化学、全岩Sr-Nd同位素和锆石Hf同位素特征研究.LA-ICP-MS锆石 U-Pb定年结果显示,岩体内辉长闪长岩形成时代为早奥陶世(~480 Ma);花岗质岩石年龄为348~344 Ma,为早石炭世岩浆活动的产物.早奥陶世辉长闪长岩(SiO2=51.27%~53.39%)相对富集轻稀土元素和Rb、Th、U等大离子亲石元素,亏损Nb、Ta等高场强元素,具有正的全岩εNd(t)值(+3.3~+3.5)和锆石εHf(t)值(+7.3~+13.3)的特征,指示岩浆来源于受到俯冲板片流体交代的亏损岩石圈地幔部分熔融.早石炭世花岗质岩石根据地球化学性质可进一步分为两组.第1组主要为正长花岗岩,具有高的SiO2含量(76.19%~77.52%),高稀土总量,强Eu负异常,高10 000 Ga/Al值(3.90~5.95)和锆饱和温度(平均965℃)的特征,显示出A型花岗岩的特征;第2组主要为花岗斑岩和黑云母二长花岗岩,发育少量角闪石,其SiO2含量相对第1组偏低(70.67%~76.42%),且与P2O5呈负相关关系,铝饱和指数为0.97~1.1,显示出I型花岗岩的特征.早石炭世两组花岗质岩石具有相似的Nd-Hf同位素特征(第1组εNd(t)=+5.8~+6.3,εHf(t)=+11.8~+15.5;第2组εNd(t)=+4.9~+5.1,εHf(t) = +11.6~+15.4),表明其岩浆可能源自于相似的新生地壳的部分熔融,但是经历了不同的岩浆演化过程.结合区域岩浆性质和演化特征,认为早古生代期间内蒙古中部地区为古亚洲洋板块的前进式俯冲,其至少在晚寒武世已俯冲至南蒙古地块南缘,如发育乌拉盖复式岩体内辉长闪长质弧岩浆岩;该前进式俯冲过程造成一系列弧地体拼贴到南蒙古地块南缘,晚志留世与南蒙古地块发生弧-陆碰撞.在晚泥盆世-早石炭世随着古亚洲洋板片回撤诱发弧后伸展,导致贺根山洋打开并形成了研究区内早石炭世早期的I型和A型花岗质岩石.
Subduction zone is an important place for the interaction between crust and mantle, and is accompanied by magmatism of different periods and nature.Understanding the characteristics of magmatism in different subduction processes (e.g., advancing subduction and retreating subduction) is of significance for an in-depth understanding of the evolution history of orogenic belts. In this paper, it presents zircon U-Pb ages, whole-rock major- and trace element data, whole-rock Sr-Nd isotope and zircon Hf isotope for Paleozoic intrusions of the Wulagai pluton from East Ujimqin of central Inner Mongolia. Zircon LA-ICP-MS dating for gabbro-diorite yields a weighted mean age of ~480 Ma, suggesting the crystallization age is Early Ordovician; the age of granitoids is 348-344 Ma, representing the products of magmatic activities during Early Carboniferous. Early Ordovician gabbro-diorites(SiO2=51.27%-53.39%) are relatively enriched in light rare earth elements and large ion lithophile elements (e.g., Rb, Th and U), and depleted in high field strength elements (e.g., Nb and Ta), with positive whole-rock εNd(t) values (+3.3 to +3.5) and zircon εHf(t) values (+7.3 to +13.3). The gabbro-diorites were originated from partial melting of a depleted lithospheric mantle that was metasomatized by slab-derived fluids. The Early Carboniferous granitoids can be divided into two groups according to their geochemical compositions.The first group is mainly syenogranite with high SiO2 content (76.19%-77.52%), high total rare earths content, strong Eu negative anomalies, high 10 000 Ga/Al values (3.90-5.95) and zircon saturation temperature (average 965 °C), displaying typical A-type granite affinity.The second group is mainly granite porphyry and biotite monzogranite with SiO2 content (70.67%-76.42%) lower than the first group.They showing metaluminous to weakly peraluminous characteristics, combined with negative correlation between SiO2 and P2O5, and hornblende can be observed, displaying I-type granite affinity.In terms of Nd-Hf isotopic compositions,these two groups of Early Carboniferous granitoids have similar isotopic compositions (first group: εNd(t) = +5.8 to +6.3, εHf(t) = +11.8 to +15.5;second group: εNd(t) = +4.9 to +5.1, εHf(t) = +11.6 to +15.4), indicating that they have similar magmatic source and both derived from partial melting of the juvenile crust, but underwent different evolution processes.Combined with regional magmatism, it proposes an advancing subduction of Paleo-Asian Ocean plate occurred during Early Paleozoic in central Inner Mongolia.Paleo-Asian Ocean plate subducted beneath the South Mongolian microcontinent before Late Cambrian and lead to the formation of gabbro-diorites reported in this study. The advancing subduction caused a series of arc accreted to the southern margin of the South Mongolian microcontinent.Then an arc-continent collision occurred during Late Silurian.The Early Carboniferous A-type and I-type granitoids were formed in a back-arc extensional environment which was resulted from the roll back of Paleo-Asian Ocean plate during Late Devonian to Early Carboniferous.
中亚造山带 / 东乌旗 / 早古生代 / 早石炭世 / 岩浆作用 / 板片回撤 / 岩石学.
central asian orogenic belt / east Ujimqin / Early Paleozoic / Early Carboniferous / magmatism / roll back / petrology
| [1] |
Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1-2): 67-95. https://doi.org/10.1016/S0377-0273(00)00182-7 |
| [2] |
Beltrando, M., Hermann, J., Lister, G., et al., 2007. On the Evolution of Orogens: Pressure Cycles and Deformation Mode Switches. Earth and Planetary Science Letters, 256(3-4): 372-388. https://doi.org/10.1016/j.epsl.2007.01.022 |
| [3] |
Bonin, B., 2007. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2): 1-29. https://doi.org/10.1016/j.lithos.2006.12.007 |
| [4] |
Cawood, P. A., Kröner, A., Collins, W. J., et al., 2009. Accretionary Orogens through Earth History. In: Cawood, P.A.,Kröner, A., eds., Earth Accretionary Systems in Space and Time.Geological Society, London, Special Publications, 318(1): 1-36. https://doi.org/10.1144/sp318.1 |
| [5] |
Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. https://doi.org/10.1016/S0024-4937(98)00086-3 |
| [6] |
Chappell, B. W., White, A. J. R., 1992. I- and S-Type Granites in the Lachlan Fold Belt.Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26. https://doi.org/10.1017/s0263593300007720 |
| [7] |
Chen, B., Jahn, B. M., Tian, W., 2009. Evolution of the Solonker Suture Zone: Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction- and Collision-Related Magmas and Forearc Sediments. Journal of Asian Earth Sciences, 34(3): 245-257. https://doi.org/10.1016/j.jseaes.2008.05.007 |
| [8] |
Chen, B., Jahn, B. M., Wilde, S., et al., 2000. Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications. Tectonophysics, 328(1-2): 157-182. https://doi.org/10.1016/S0040-1951(00)00182-7 |
| [9] |
Chen, Y., Zhang, Z. C., Li, K., et al., 2016. Geochemistry and Zircon U-Pb-Hf Isotopes of Early Paleozoic Arc-Related Volcanic Rocks in Sonid Zuoqi, Inner Mongolia: Implications for the Tectonic Evolution of the Southeastern Central Asian Orogenic Belt. Lithos, 264: 392-404. https://doi.org/10.1016/j.lithos.2016.09.009 |
| [10] |
Chen, Y., Zhang, Z. C., Qian, X. Y., et al., 2020. Early to Mid-Paleozoic Magmatic and Sedimentary Records in the Bainaimiao Arc: An Advancing Subduction-Induced Terrane Accretion along the Northern Margin of the North China Craton. Gondwana Research, 79: 263-282. https://doi.org/10.1016/j.gr.2019.08.012 |
| [11] |
Cheng, Y.H., Li, Y.F., Li, M., et al., 2014. Geochronology and Petrogenesis of the Alkaline Pluton in Dong Ujimqi, Inner Mongolia and Its Tectonic Implications. Acta Geologica Sinica, 88(11): 2086-2096 (in Chinese with English abstract). |
| [12] |
Cheng, Y. H., Teng, X. J., Li, Y. F., et al., 2014. Early Permian East-Ujimqin Mafic-Ultramafic and Granitic Rocks from the Xing’an-Mongolian Orogenic Belt, North China: Origin, Chronology, and Tectonic Implications. Journal of Asian Earth Sciences, 96: 361-373. https://doi.org/10.1016/j.jseaes.2014.09.027 |
| [13] |
Clemens, J. D., Holloway, J. R., White, A. J. R., 1986. Origin of an A-Type Granite: Experimental Constraints. American Mineralogist, 71(3-4): 317-324. |
| [14] |
Collins, W.J., 2002. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 30(6): 535-538.https://doi.org:10.1130/0091-7613(2002)030<0535:Hotsac>2.0.Co;2 |
| [15] |
Collins, W. J., Beams, S. D., White, A. J. R., et al., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200. https://doi.org/10.1007/BF00374895 |
| [16] |
Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4: 333-337. https://doi.org/10.1038/ngeo1127 |
| [17] |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)0200641: csotat>2.3.co;2 |
| [18] |
Feng, Z. Q., Li, W. M., Liu, Y. J., et al., 2018. Early Carboniferous Tectonic Evolution of the Northern Heihe-Nenjiang-Hegenshan Suture Zone, NE China: Constraints from the Mylonitized Nenjiang Rhyolites and the Moguqi Gabbros. Geological Journal, 53(3): 1005-1021. https://doi.org/10.1002/gj.2940 |
| [19] |
Finzel, E. S., Trop, J. M., Ridgway, K. D., et al., 2011. Upper Plate Proxies for Flat-Slab Subduction Processes in Southern Alaska. Earth and Planetary Science Letters, 303(3-4): 348-360. https://doi.org/10.1016/j.epsl.2011.01.014 |
| [20] |
Fu, D., Huang, B., Peng, S. B., et al., 2016. Geochronology and Geochemistry of Late Carboniferous Volcanic Rocks from Northern Inner Mongolia, North China: Petrogenesis and Tectonic Implications. Gondwana Research, 36: 545-560. https://doi.org/10.1016/j.gr.2015.08.007 |
| [21] |
Ge, M.C., Zhou, W.X., Yu, Y., et al., 2011. Dissolution and Supracrustal Rocks Dating of Xilin Gol Complex, Inner Mongolia, China. Earth Science Frontiers, 18(5): 182-195 (in Chinese with English abstract). |
| [22] |
Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2007. Metallogenic Age of Porphyry Cu and Mo Deposits in the Eastern Part of Xingmeng Orogenic Belt and Its Geodynamic Significance. Chinese Science Bulletin, 52(20): 2407-2417 (in Chinese). |
| [23] |
Gerya, T. V., Fossati, D., Cantieni, C., et al., 2009. Dynamic Effects of a Seismic Ridge Subduction: Numerical Modelling. European Journal of Mineralogy, 21(3): 649-661. https://doi.org/10.1127/0935-1221/2009/0021-1931 |
| [24] |
Guo, F., Fan, W.M., Li, C.W., et al., 2009. Early Paleozoic Paleo-Asian Ocean Subduction: Chronological and Geochemical Evidence from Dashizhai Basalt in Inner Mongolia. Science in China (Series D (Earth Sciences)), 39(5): 569-579 (in Chinese). |
| [25] |
Gutscher, M. A., Spakman, W., Bijwaard, H., et al., 2000. Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin. Tectonics, 19(5): 814-833. https://doi.org/10.1029/1999TC001152 |
| [26] |
Han, B.F., Zhang, C., Zhao, L., et al., 2010. A Preliminary Study of Granitoids in Western Inner Mongolia. Acta Petrologica et Mineralogica, 29(6): 741-749 (in Chinese with English abstract). |
| [27] |
He, Y., Xu, B., Zhang, L.Y., et al., 2018. Discovery of a Late Devonian Retroarc Foreland Basin in Sunid Zuoqi, Inner Mongolia and Its Tectonic Implications. Acta Petrologica Sinica, 34(10): 3071-3082 (in Chinese with English abstract). |
| [28] |
Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). |
| [29] |
Hu, F., Huang, W., He, X., et al., 2023. Geochronology and Geochemistry of Hailesitai Pluton in East Ujimqin Banner of Inner Mongolia and Their Geological Significance. Geological Review, 69(1): 199-218 (in Chinese with English abstract). |
| [30] |
Hu, F., Huang, W., Yang, Z. L., et al., 2020. Geochemistry and Zircon U-Pb-Hf Isotopes of the Mante Aobao Granite Porphyry at East Ujimqin Banner, Inner Mongolia: Implications for Petrogenesis and Tectonic Setting. Geological Magazine, 157(7): 1068-1086. https://doi.org/10.1017/s0016756819001274 |
| [31] |
Huang, B., Fu, D., Li, S.C., et al., 2016. The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia. Acta Petrologica Sinica, 32(1): 158-176 (in Chinese with English abstract). |
| [32] |
Jara, J. J., Barra, F., Reich, M., et al., 2021. Episodic Construction of the Early Andean Cordillera Unravelled by Zircon Petrochronology. Nature Communications, 12(1): 4930. https://doi.org/10.1038/s41467-021-25232-z |
| [33] |
Jian, P., Kröner, A., Windley, B. F., et al., 2012. Carboniferous and Cretaceous Mafic–Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral “Hegenshan Ophiolite”. Lithos, 142: 48-66. https://doi.org/10.1016/j.lithos.2012.03.007 |
| [34] |
Jian, P., Liu, D. Y., Kröner, A., et al., 2008. Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 101(3-4): 233-259. https://doi.org/10.1016/j.lithos.2007.07.005 |
| [35] |
Jiang, Y. H., Wang, G. C., Qing, L., et al., 2017. Early Jurassic A-Type Granites in Southeast China: Shallow Dehydration Melting of Early Paleozoic Granitoids by Basaltic Magma Intraplating. Journal of Geology, 125(3): 351-366. https://doi.org/10.1086/691242 |
| [36] |
Kemp, A. I. S., Hawkesworth, C. J., Collins, W. J., et al., 2009. Isotopic Evidence for Rapid Continental Growth in an Extensional Accretionary Orogen: The Tasmanides, Eastern Australia. Earth and Planetary Science Letters, 284(3-4): 455-466. https://doi.org/10.1016/j.epsl.2009.05.011 |
| [37] |
Kepezhinskas, P., McDermott, F., Defant, M. J., et al., 1997. Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 61(3): 577-600. https://doi.org/10.1016/S0016-7037(96)00349-3 |
| [38] |
King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 |
| [39] |
Li, H.Y., Zhou, Z.G., Li, P.J., et al., 2016. Geochemical Features and Significance of Late Ordovician Gabbros in East Ujimqin Banner, Inner Mongolia. Geological Review, 62(2): 300-316 (in Chinese with English abstract). |
| [40] |
Li, M. T., Tang, J., Wang, Z. W., et al., 2020. Geochronology and Geochemistry of the Early Carboniferous Volcanic Rocks in Sonid Zuoqi, Inner Mongolia: Implication for the Carboniferous Tectonic Evolution and Crustal Nature of the Eastern Central Asia Orogenic Belt. Acta Petrologica Sinica, 36: 799-819.https://doi.org/10.18654/1000-0569/2020.03.10 |
| [41] |
Li, M.T., Tang, J., Wang, Z.W., et al., 2020. Geochronology and Geochemistry of the Early Carboniferous Volcanic Rocks in Sonid Zuoqi, Inner Mongolia: Implication for the Carboniferous Tectonic Evolution and Crustal Nature of the Eastern Central Asia Orogenic Belt. Acta Petrologica Sinica, 36(3): 799-819 (in Chinese with English abstract). |
| [42] |
Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2019. Mesozoic Tectono-Magmatic Response in the East Asian Ocean-Continent Connection Zone to Subduction of the Paleo-Pacific Plate. Earth-Science Reviews, 192: 91-137. https://doi.org/10.1016/j.earscirev.2019.03.003 |
| [43] |
Li, H. Y., Zhou, Z. G., Li, P. J., et al., 2016a. Ordovician Intrusive Rocks from the Eastern Central Asian Orogenic Belt in Northeast China: Chronology and Implications for Bidirectional Subduction of the Early Palaeozoic Palaeo-Asian Ocean. International Geology Review, 58(10): 1175-1195. https://doi.org/10.1080/00206814.2015.1135762 |
| [44] |
Li, S., Chung, S.L., Wilde, S.A., et al., 2016b. Linking Magmatism with Collision in an Accretionary Orogen. Scientific Reports, 6: 25751.https://doi.org:10.1038/srep25751 |
| [45] |
Li, S., Chung, S.L., Wilde, S.A., et al., 2017a. Early-Middle Triassic High Sr/Y Granitoids in the Southern Central Asian Orogenic Belt: Implications for Ocean Closure in Accretionary Orogens. Journal of Geophysical Research: Solid Earth, 122(3): 2291-2309.https://doi.org:10.1002/2017jb014006 |
| [46] |
Li, Y. L., Brouwer, F. M., Xiao, W. J., et al., 2017b. Late Devonian to Early Carboniferous Arc-Related Magmatism in the Baolidao Arc, Inner Mongolia, China: Significance for Southward Accretion of the Eastern Central Asian Orogenic Belt. Geological Society of America Bulletin, 129(5/6): 677-697. https://doi.org/10.1130/b31511. |
| [47] |
Li, S., Wang, T., Xiao, W.J., et al., 2023. Tectono-Magmatic Evolution from Accretion to Collision in the Southern Margin of the Central Asian Orogenic Belt. Acta Petrologica Sinica, 39(5): 1261-1275 (in Chinese with English abstract). |
| [48] |
Li, Y., Xu, W. L., Tang, J., et al., 2020. Late Paleozoic Igneous Rocks in the Xing’an Massif and Its Amalgamation with the Songnen Massif, NE China. Journal of Asian Earth Sciences, 197: 104407. https://doi.org/10.1016/j.jseaes.2020.104407 |
| [49] |
Li, Y., Xu, W. L., Wang, F., et al., 2018. Early-Middle Ordovician Volcanism along the Eastern Margin of the Xing’an Massif, Northeast China: Constraints on the Suture Location between the Xing’an and Songnen-Zhangguangcai Range Massifs. International Geology Review, 60(16): 2046-2062. https://doi.org/10.1080/00206814.2017.1402378 |
| [50] |
Li, Y. L., Zhou, H. W., Brouwer, F. M., et al., 2011. Tectonic Significance of the Xilin Gol Complex, Inner Mongolia, China: Petrological, Geochemical and U-Pb Zircon Age Constraints. Journal of Asian Earth Sciences, 42(5): 1018-1029. https://doi.org/10.1016/j.jseaes.2010.09.009 |
| [51] |
Lin, M., Ma, C.Q., Xu, L.M., et al., 2019. Geological Characteristics of Subduction-Accretionary Complexes in Hellestein District, Inner Mongolia and Its Discovery Significance. Earth Science, 44(10): 3279-3296 (in Chinese with English abstract). |
| [52] |
Liu, B., Jin, S.K., Ma, M., et al., 2023. Petrogenesis of the Baoligaomiao Volcanic Rocks in the Abaga Banner, Inner Mongolia: Implications for Evolution of the Eastern Paleo Asian Ocean. Earth Science, 48(9): 3312-3326 (in Chinese with English abstract). |
| [53] |
Lister, G., Forster, M., 2009. Tectonic Mode Switches and the Nature of Orogenesis. Lithos, 113(1-2): 274-291. https://doi.org/10.1016/j.lithos.2008.10.024 |
| [54] |
Liu, J. F., Li, J. Y., Chi, X. G., et al., 2013. A Late-Carboniferous to Early Early-Permian Subduction-Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia: Evidence of Northward Subduction beneath the Siberian Paleoplate Southern Margin. Lithos, 177: 285-296. https://doi.org/10.1016/j.lithos.2013.07.008 |
| [55] |
Liu, Y. J., Li, W. M., Ma, Y. F., et al., 2021. An Orocline in the Eastern Central Asian Orogenic Belt. Earth-Science Reviews, 221: 103808. https://doi.org/10.1016/j.earscirev.2021.103808 |
| [56] |
Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 |
| [57] |
Lu, L., Qin, Y., Zhang, K. J., et al., 2020a. Petrogenesis of Post-Collisional Magmatism at the Carboniferous-Permian Boundary in Central Inner Mongolia, NE China: Insights into When the Hegenshan Ocean Closed? International Geology Review, 62(16): 2013-2038. https://doi.org/10.1080/00206814.2019.1683767 |
| [58] |
Lu, L., Qin, Y., Zhang, K. J., et al., 2020b. Provenance and Tectonic Settings of the Late Paleozoic Sandstones in Central Inner Mongolia, NE China: Constraints on the Evolution of the Southeastern Central Asian Orogenic Belt. Gondwana Research, 77: 111-135. https://doi.org/10.1016/j.gr.2019.07.006 |
| [59] |
Ma, Y. F., Liu, Y. J., Wang, Y., et al., 2019. Geochronology and Geochemistry of the Carboniferous Felsic Rocks in the Central Great Xing’an Range, NE China: Implications for the Amalgamation History of Xing’an and Songliao-Xilinhot Blocks. Geological Journal, 54(1): 482-513. https://doi.org/10.1002/gj.3198 |
| [60] |
McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 |
| [61] |
Miao, L. C., Fan, W. M., Liu, D. Y., et al., 2008. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex: Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences, 32(5-6): 348-370. https://doi.org/10.1016/j.jseaes.2007.11.005 |
| [62] |
Na, F.C., Wu, Y., Song, W.M., et al., 2022. Geochronology, Petrogenesis, and Tectonic Implications of Early Paleozoic Intermediate-Basic Complex of East Ujimqin Banner Area. Acta Petrologica Sinica, 38(9): 2762-2780 (in Chinese with English abstract). |
| [63] |
Norrish, K., Hutton, J. T., 1969. An Accurate X-Ray Spectrographic Method for the Analysis of a Wide Range of Geological Samples. Geochimica et Cosmochimica Acta, 33(4): 431-453. https://doi.org/10.1016/0016-7037(69)90126-4 |
| [64] |
Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743. https://doi.org/10.1130/0091-7613(1997)0250743: gomatg>2.3.co;2 |
| [65] |
Pearce, J.A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S., ed., Orogenic Andesites and Related Rocks. John Wiley and Sons, Chichester, 528-548. |
| [66] |
Pearce, J. A., 2014. Immobile Element Fingerprinting of Ophiolites. Elements, 10(2): 101-108. https://doi.org/10.2113/gselements.10.2.101 |
| [67] |
Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust.In: Heinrich, D.H., Karl, K.T., eds., Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b0-08-043751-6/03016-4 |
| [68] |
Şengör, A. M. C., Natal’in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 |
| [69] |
Shi, G.H., Liu, D.Y., Zhang, F.Q., et al., 2003. SHRIMP Zircon U-Pb Geochronology of Xilinguole Complex in Inner Mongolia, China and Its Significance. Chinese Science Bulletin, 48(20): 2187-2192 (in Chinese). |
| [70] |
Shi, Y. R., Jian, P., Kröner, A., et al., 2016. Zircon Ages and Hf Isotopic Compositions of Ordovician and Carboniferous Granitoids from Central Inner Mongolia and Their Significance for Early and Late Paleozoic Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 117: 153-169. https://doi.org/10.1016/j.jseaes.2015.12.007 |
| [71] |
Shi, Y.R., Liu, D.Y., Zhang, Q., et al., 2004. SHRIMP Dating of Diorites and Granites in Southern Suzuoqi, Inner Mongolia. Acta Geologica Sinica, 78(6): 789-799 (in Chinese with English abstract). |
| [72] |
Shi, Y.R., Liu, D.Y., Zhang, Q., et al., 2007. SHRIMP U-Pb Zircon Dating of Triassic A-Type Granites in Sonid Zuoqi, Central Inner Mongolia, China, and Its Tectonic Implications. Geological Bulletin of China, 26(2): 183-189 (in Chinese with English abstract). |
| [73] |
Song, S. G., Wang, M. M., Xu, X., et al., 2015. Ophiolites in the Xing’an-Inner Mongolia Accretionary Belt of the CAOB: Implications for Two Cycles of Seafloor Spreading and Accretionary Orogenic Events. Tectonics, 34(10): 2221-2248. https://doi.org/10.1002/2015TC003948 |
| [74] |
Spencer, C. J., Roberts, N. M. W., Santosh, M., 2017. Growth, Destruction, and Preservation of Earth’s Continental Crust. Earth-Science Reviews, 172: 87-106. https://doi.org/10.1016/j.earscirev.2017.07.013 |
| [75] |
Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 |
| [76] |
Tang, J.Z., Zhang, Z.C., Chen, Y., et al., 2018. Geochronology, Geochemistry and Zircon Hf Isotope of Early Paleozoic Igneous Rocks in Sonid Zuoqi, Central Inner Mongolia and Their Tectonic Significances. Acta Petrologica Sinica, 34(10): 2973-2994 (in Chinese with English abstract). |
| [77] |
Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford |
| [78] |
Thompson, R. N., Morrison, M. A., 1988. Asthenospheric and Lower-Lithospheric Mantle Contributions to Continental Extensional Magmatism: An Example from the British Tertiary Province. Chemical Geology, 68(1-2): 1-15. https://doi.org/10.1016/0009-2541(88)90082-4 |
| [79] |
Tian, D. X., Yang, H., Ge, W. C., et al., 2018. Petrogenesis and Tectonic Implications of Late Carboniferous Continental Arc High-K Granites in the Dongwuqi Area, Central Inner Mongolia, North China. Journal of Asian Earth Sciences, 167: 82-102. https://doi.org/10.1016/j.jseaes.2018.07.010 |
| [80] |
Tong, Y., Jahn, B. M., Wang, T., et al., 2015. Permian Alkaline Granites in the Erenhot-Hegenshan Belt, Northern Inner Mongolia, China: Model of Generation, Time of Emplacement and Regional Tectonic Significance. Journal of Asian Earth Sciences, 97: 320-336. https://doi.org/10.1016/j.jseaes.2014.10.011 |
| [81] |
Turner, S. P., Foden, J. D., Morrison, R. S., 1992. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 28(2): 151-179. https://doi.org/10.1016/0024-4937(92)90029-X |
| [82] |
Wang, Q., Zhao, Z.H., Xiong, X.L., 2000. The Ascertainment of Late-Yanshanian A-Type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrrologica et Mineralogica, 19(4): 297-306, 315(in Chinese with English abstract). |
| [83] |
Wang, X. S., Klemd, R., Gao, J., et al., 2021. Early Devonian Tectonic Conversion from Contraction to Extension in the Chinese Western Tianshan: A Response to Slab Rollback. GSA Bulletin, 133(7-8): 1613-1633. https://doi.org/10.1130/b35760.1 |
| [84] |
Wang, Z. G., Li, K., Zhang, Z. C., et al., 2022. Carboniferous to Early Permian Magmatism in the Uliastai Continental Margin (Inner Mongolia) and Its Correlation with the Tectonic Evolution of the Hegenshan Ocean. Lithos, 414: 106635. https://doi.org/10.1016/j.lithos.2022.106635 |
| [85] |
Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X |
| [86] |
Wei, R. H., Gao, Y. F., Xu, S. C., et al., 2018. Carboniferous Continental Arc in the Hegenshan Accretionary Belt: Constrains from Plutonic Complex in Central Inner Mongolia. Lithos, 308: 242-261. https://doi.org/10.1016/j.lithos.2018.03.010 |
| [87] |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 |
| [88] |
Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022 |
| [89] |
Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract). |
| [90] |
Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 |
| [91] |
Wu, G., Chen, Y. C., Sun, F. Y., et al., 2015. Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of the Early Paleozoic Igneous Rocks in the Duobaoshan Area, NE China, and Their Geological Significance. Journal of Asian Earth Sciences, 97: 229-250. https://doi.org/10.1016/j.jseaes.2014.07.031 |
| [92] |
Xiao, W.J., Song, D.F., Windley, B.F., et al., 2019. Research Progress on Accretion Orogeny and Mineralization in Central Asia. Scientia Sinica (Terrae), 49(10): 1512-1545 (in Chinese). |
| [93] |
Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020 |
| [94] |
Xiao, W. J., Windley, B. F., Hao, J., et al., 2003. Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 22(6): 1069. https://doi.org/10.1029/2002tc001484 |
| [95] |
Xiao, W. J., Windley, B. F., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254 |
| [96] |
Xu, B., Charvet, J., Chen, Y., et al., 2013. Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 23(4): 1342-1364. https://doi.org/10.1016/j.gr.2012.05.015 |
| [97] |
Xu, B., Charvet, J., Zhang, F.Q., 2001. Primary Study on Petrology and Geochrononology of Blueschists in Sunitezuoqi, Northern Inner Mongolia. Chinese Journal of Geology (Scientia Geologica Sinica), 36(4): 424-434 (in Chinese with English abstract). |
| [98] |
Xu, B., Chen, B., Shao, J.A., 1996. Sm-Nd, Rb-Sr Isotopic Dating of Xilinguole Complex in Inner Mongolia.Chinese Science Bulletin, 41(2): 153-155 (in Chinese). |
| [99] |
Xu, B., Zhao, G. C., Li, J. H., et al., 2017. Ages and Hf Isotopes of Detrital Zircons from Paleozoic Strata in the Chagan Obo Temple Area, Inner Mongolia: Implications for the Evolution of the Central Asian Orogenic Belt. Gondwana Research, 43: 149-163. https://doi.org/10.1016/j.gr.2016.08.004 |
| [100] |
Xue, H.M., Guo, L.J., Hou, Z.Q., et al., 2009. The Xilingeie Complex from the Eastern Part of the Central Asian-Mongolia Orogenic Belt, China: Products of Early Variscan Orogeny Other than Ancient Block: Evidence from Zircon SHRIMP U-Pb Ages. Acta Petrologica Sinica, 25(8): 2001-2010 (in Chinese with English abstract). |
| [101] |
Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2006. A Hybrid Origin for the Qianshan A-Type Granite, Northeast China: Geochemical and Sr-Nd-Hf Isotopic Evidence. Lithos, 89(1-2): 89-106. https://doi.org/10.1016/j.lithos.2005.10.002 |
| [102] |
Yang, Z.L., Hu, X.J., Wang, S.Q., et al., 2020. Geochronology, Geochemistry and Geological Significance of Early Paleozoic Volcanic Rocks in Northern East Ujimqin Banner, Inner Mongolia. Acta Petrologica Sinica, 36(4): 1107-1126 (in Chinese with English abstract). |
| [103] |
Yang, Z.L., Wang, S.Q., Hu, X.J., et al., 2017. Petrogenesis of the Early Paleozoic Jiergalangtu Pluton in Inner Mongolia: Constraints from Geochronology, Geochemistry and Nd-Hf Isotopes. Geological Bulletin of China, 36(8): 1369-1384 (in Chinese with English abstract). |
| [104] |
Yang, Z.L., Wang, S.Q., Hu, X.J., et al., 2018. Geochronology and Geochemistry of Early Paleozoic Gabbroic Diorites in East Ujimqin Banner of Inner Mongolia and Their Geological Significance. Acta Petrologica et Mineralogica, 37(3): 349-365 (in Chinese with English abstract). |
| [105] |
Yu, Y., Chen, Z.B., Zhou, W.X., et al., 2017. Tectonic Background and Deposition Epoch of the Tongshan Formation in Wayao Area of Dong Ujimqin Banner, Inner Mongolia. Geological Bulletin of China, 36(10): 1814-1822 (in Chinese with English abstract). |
| [106] |
Yuan, L. L., Zhang, X. H., Yang, Z. L., 2022. The Timeline of Prolonged Accretionary Processes in Eastern Central Asian Orogenic Belt: Insights from Episodic Paleozoic Intrusions in Central Inner Mongolia, North China. GSA Bulletin, 134(3-4): 629-657. https://doi.org/10.1130/b35907.1 |
| [107] |
Zhang, J. M., Xu, B., Yan, L. J., et al., 2020. Evolution of the Heihe-Nenjiang Ocean in the Eastern Paleo-Asian Ocean: Constraints of Sedimentological, Geochronological and Geochemical Investigations from Early-Middle Paleozoic Heihe-Dashizhai Orogenic Belt in the Northeast China. Gondwana Research, 81: 339-361. https://doi.org/10.1016/j.gr.2019.11.006 |
| [108] |
Zhang, S. H., Zhao, Y., Ye, H., et al., 2014. Origin and Evolution of the Bainaimiao Arc Belt: Implications for Crustal Growth in the Southern Central Asian Orogenic Belt. Geological Society of America Bulletin, 126(9-10): 1275-1300. https://doi.org/10.1130/b31042.1 |
| [109] |
Zhang, X. R., Zhao, G. C., Han, Y. G., et al., 2019. Differentiating Advancing and Retreating Subduction Zones through Regional Zircon Hf Isotope Mapping: A Case Study from the Eastern Tianshan, NW China. Gondwana Research, 66: 246-254. https://doi.org/10.1016/j.gr.2018.10.009 |
| [110] |
Zhang, Y., Pei, F. P., Wang, Z. W., et al., 2018. Late Paleozoic Tectonic Evolution of the Central Great Xing’an Range, Northeast China: Geochronological and Geochemical Evidence from Igneous Rocks. Geological Journal, 53(1): 282-303. https://doi.org/10.1002/gj.2891 |
| [111] |
Zhang, Z. C., Li, K., Li, J. F., et al., 2015. Geochronology and Geochemistry of the Eastern Erenhot Ophiolitic Complex: Implications for the Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt. Journal of Asian Earth Sciences, 97: 279-293. https://doi.org/10.1016/j.jseaes.2014.06.008 |
| [112] |
Zhao, C., Qin, K. Z., Song, G. X., et al., 2019. Early Palaeozoic High-Mg Basalt-Andesite Suite in the Duobaoshan Porphyry Cu Deposit, NE China: Constraints on Petrogenesis, Mineralization, and Tectonic Setting. Gondwana Research, 71: 91-116. https://doi.org/10.1016/j.gr.2019.01.015 |
| [113] |
Zhao, L.G., Ran, H., Zhang, Q.H., et al., 2012. Discovery of Ordovician Pluton in Abaga Banner, Inner Mongolia and Its Geological Significance. Global Geology, 31(3): 451-461 (in Chinese with English abstract). |
| [114] |
Zhao, Z., Chi, X.G., Pan, S.Y., et al., 2010. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing’an Range. Acta Petrologica Sinica, 26(8): 2452-2464 (in Chinese with English abstract). |
| [115] |
Zhao, Z.H., Qu, H., Li, C.L., et al., 2014. Zircon U-Pb Ages, Geochemical Characteristics and Tectonic Implications of the Early Paleozoic Granites in Huolongmen Area, Heilongjiang Province. Geology in China, 41(3): 773-783 (in Chinese with English abstract). |
| [116] |
Zheng, R. G., Li, J. Y., Zhang, J., 2022. Juvenile Hafnium Isotopic Compositions Recording a Late Carboniferous-Early Triassic Retreating Subduction in the Southern Central Asian Orogenic Belt: A Case Study from the Southern Alxa. Geological Society of America Bulletin, 134(5-6): 1375-1396. https://doi.org/10.1130/B35991.1 |
| [117] |
Zhou, H.S., Ma, C.Q., Zhang, C., et al., 2008. Yanshanian Aluminous A-Type Granitoids in the Chunshui of Biyang, South Margin of North China Craton: Implications from Petrology, Geochronology and Geochemistry. Acta Petrologica Sinica, 24(1): 49-64 (in Chinese with English abstract). |
| [118] |
Zhou, H., Zhao, G. C., Han, Y. G., et al., 2018a. Geochemistry and Zircon U-Pb-Hf Isotopes of Paleozoic Intrusive Rocks in the Damao Area in Inner Mongolia, Northern China: Implications for the Tectonic Evolution of the Bainaimiao Arc. Lithos, 314: 119-139. https://doi.org/10.1016/j.lithos.2018.05.020 |
| [119] |
Zhou, W. X., Zhao, X. C., Fu, D., et al., 2018b. Geochronology and Geochemistry of the Carboniferous Ulann Tolgoi Granite Complex from Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications for the Uliastai Continental Margin. Geological Journal, 53(6): 2690-2709. https://doi.org/10.1002/gj.3104 |
国家自然科学基金项目(42161144007)
中科院人才项目择优支持(E3ER0401A2)
/
| 〈 |
|
〉 |