气候变化下高寒区裂隙岩石破裂机制及致灾模式

陈国庆 ,  许强 ,  杨鑫 ,  孙祥

地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1585 -1598.

PDF (6449KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1585 -1598. DOI: 10.3799/dqkx.2024.030

气候变化下高寒区裂隙岩石破裂机制及致灾模式

作者信息 +

Fracture Propagation Characteristics and Catastrophic Modes of Fractured Rock in Alpine Region under Climate Change

Author information +
文章历史 +
PDF (6603K)

摘要

气候变化下高寒区裂隙岩石受长期冻融循环作用而产生劣化,极易诱发边坡突发失稳.为分析其冻融循环作用下的破裂机制及相应的致灾模式,开展了高寒区现场破坏模式调查及不同裂隙长度的寒区花岗岩与石英砂岩冻融循环试验,借助声发射系统和应变测试系统分析了端部裂隙扩展全过程的声发射和微应变曲线变化规律,基于试验和理论讨论了灾害形成机制.结果表明:高寒区冻融作用下的裂隙岩石致灾模式包含冻胀型、融沉型、冻融循环型三大类.针对于广泛发育的冻胀型模式设计的岩石试验结果显示,随着冻融循环次数的增加,试样的裂纹均从裂隙端部垂直向下扩展,无偏转、次生现象,花岗岩试样初期裂纹扩展更为明显,但石英砂岩裂隙会更早贯通.花岗岩声发射计数突增现象前期出现多,后期出现少,最大微应变呈现台阶式增大现象.石英砂岩声发射计数前期趋于平稳,随冻融次数增多,计数频率迅速增加,最大微应变呈现由初期平稳变化到快速升高趋势.断裂力学分析表明冻融条件下裂隙岩体的扩展特征主要受岩性和裂隙长度的影响,因此高寒区灾害的形成受控于岩性和裂隙扩展.研究结果为寒区裂隙岩体破裂演化及致灾模式提供理论依据.

Abstract

Under the influence of climate change, frost-weathered rock masses in high-altitude regions are prone to deterioration due to long-term freeze-thaw cycles. This deterioration can lead to sudden slope instability. To analyze the fracture mechanisms and corresponding hazard patterns under freeze-thaw cycles, it conducted field investigations on failure modes in high-altitude regions and freeze-thaw tests on fractured granite and quartz sandstone with varying crack lengths. By utilizing acoustic emission (AE) systems and strain testing systems, it analyzed the entire process of crack propagation at the end of the fissures, observing AE and microstrain curve variations. Based on experimental and theoretical discussions, it identified three main hazard patterns for fractured rock masses under freeze-thaw conditions: frost heaving, thaw subsidence, and freeze-thaw cycling. For the widely observed frost heaving pattern, the rock sample tests revealed that crack propagation occurred vertically downward from the crack ends, without deviation or secondary phenomena. While granite samples exhibited more pronounced initial crack propagation, quartz sandstone fissures tended to connect earlier. The AE count for granite showed an initial increase followed by a decrease, while quartz sandstone exhibited a steady count initially, which rapidly increased with more freeze-thaw cycles. Fracture mechanics analysis indicates that the expansion characteristics of fissured rock masses under freeze-thaw conditions are primarily influenced by rock type and crack length. Consequently, the formation of hazards in high-altitude regions is controlled by rock type and crack propagation. The research provides a theoretical basis for understanding the evolution of fractured rock masses and their hazard patterns in cold regions.

Graphical abstract

关键词

气候变化 / 冻融循环 / 裂隙扩展特征 / 断裂力学 / 致灾模式 / 工程地质学.

Key words

climate change / freeze-thaw cycle / fracture propagation characteristics / fracture mechanics / catastrophic modes / engineering geology

引用本文

引用格式 ▾
陈国庆,许强,杨鑫,孙祥. 气候变化下高寒区裂隙岩石破裂机制及致灾模式[J]. 地球科学, 2025, 50(04): 1585-1598 DOI:10.3799/dqkx.2024.030

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

IPCC(2022,2023)与WMO(World Meteorological Organization, 2023, Provisional State of the Global Climate 2023)的气候报告,与1850—1900年相比,2023年全球地表温度上升了1.40±0.12 ℃.伴随着气候变化,高寒区灾害发生频率也在不断上升,冻融问题日益突出(Ravanel and Deline, 2011Coe et al., 2018;彭建兵等,2023).在高寒区域,强烈的地表冻融风化剥蚀及河谷下切卸荷导致边坡岩体裂隙发育(黄润秋, 2008; Yang et al., 2016Zhang et al., 2016).在气候变化条件下,裂隙岩石反复冻胀与融缩,导致岩体损伤劣化并诱发不同模式的边坡失稳(徐光苗等,2005;张继周等,2008;闻磊等,2014).总体上,气候变化改变了高寒区灾害的发生频率、大小和位置,导致高寒区致灾风险程度不断加剧(Cui et al., 2010,2013;邬光剑等,2019; Bazai et al., 2021).因此有必要厘清高寒区裂隙岩石的孕灾机制及其相应的致灾模式,以支撑灾害识别与防治.

研究冻融循环作用下裂隙岩石的损伤劣化及断裂过程,揭示其破裂机制,有助于掌握寒区裂隙岩石孕灾机制及致灾模式.目前,关于冻融作用下岩石损伤劣化的研究主要以室内试验为主,通过观察冻融循环后岩体劣化情况,分析冻融对裂隙岩石破坏的影响(汤明高等,2022),并通过单轴或剪切试验分析冻融对裂隙岩石物理力学特性的影响(路亚妮等,2014;Mu et al.,2017).在微-细观结构方面,基于CT技术、核磁共振技术及电镜扫描技术进行冻融岩体损伤劣化研究(张淑娟等,2004;刘慧等,2007;贾海梁等,2016;张二锋等,2018;李杰林等,2019;姜德义等,2019).在理论模型方面,通过细观损伤理论和宏观统计损伤模型建立冻融损伤本构模型(李新平等,2013).而裂隙充水冻融研究方面主要集中于冻胀力对岩体裂隙应力场及其扩展规律(刘泉声等,2011;阎锡东等,2015).冻融循环裂隙开裂和扩展机制方面的研究主要集中于现场监测试验(Ishikawa et al.,2004Christiansen,2005),仅少量学者针对冻融作用下预制裂隙扩展开展室内试验研究,另外,岩石试样具有尺寸效应(张宁,2023),小尺寸的岩石试验在反映边坡实际时不足.

鉴于此,本文开展了高寒区现场破坏模式调查及不同裂隙长度的寒区花岗岩与石英砂岩冻融循环试验,将拟用大尺寸寒区裂隙岩石试样进行冻融循环试验,并使用声发射和应变仪监测裂隙扩展全过程中声发射现象以及微应变,通过应变及裂纹扩展情况反映冻胀力对岩石裂隙影响,利用声发射与应变发展对应关系分析岩石破裂机制,据此研究冻融循环作用下裂隙端部裂纹扩展过程与灾害形成机制.

1 高寒区裂隙岩石致灾模式

气候变化下的高寒区灾害具有以下特征:(1)灾害密度及频率明显上升.高寒区域,在不断变化的气候条件下,大部分冰川总体上持续消融.这导致冰川灾害(链)的发生频率持续上升(Lyu et al., 2025).(2)灾害呈链式灾害发育,并且表现出超强的破坏能力(Ravanel andDeline, 2011Lacelle et al., 2015).典型的包括雅鲁藏布江2018年色东普沟崩滑-碎屑流-堵江灾害链(Fan et al., 2022Long et al., 2024)、印度2021年Chamoli地区冰岩崩引起的碎屑流-堰塞坝-溃发洪水灾害链(Shugar et al., 2021)、以及西藏易贡2000年崩滑-碎屑流-堵江灾害链(殷跃平, 2000; Fan et al., 2022).(3)灾害受控于裂隙岩体的破坏.近年来发生的几个典型冰川灾害(链),多是由于冰岩崩启动而发育成链式灾害,受控于裂隙岩石的破裂失效.而高寒区又是构造、风化、卸荷等因素促进岩体裂隙形成的区域.以川西高寒区域为例研究裂隙岩石冻融致灾情况,进行了致灾模式统计分类.

川西区域海拔升降明显,冰川、雪山和地表辫状河相伴而生,在此区域发育多个典型深切河谷(图1).长期河流下切引起的卸荷裂隙为裂隙岩石的冻融风化提供了先决条件.而在构造方面发育的大量区域断裂也为裂隙岩石的发育起着决定性作用.在气象水文方面,高寒区昼夜温差大,年平均温度常低于10 ℃,以理塘为例,其全年日最低温度小于0 ℃的天数约150 d,同时高海拔地区短时性冻土层、季节性冻土层和永冻层发育普遍.对这些高寒地区而言,冻融损伤是风化作用的重要组成部分,甚至起着主控作用.

整个川西区域可见大量的冻融风化现象,灾害发育.具体包括不同长度的镶嵌式冻融裂隙、表层溜滑和块状剥离等灾害类型(图2).

针对川西高寒区的典型冻融现象及试验得到的裂隙岩石冻胀机制,按冻融灾害的动力机制,即冻胀作用、融沉作用以及冻融循环作用三个方面(齐吉琳等,2010;张玉芝等,2014).参考已有的分类(黄润秋,2009;黄勇,2012;母剑桥,2013;杨帆,2017;乔趁,2023),对高寒区裂隙岩石的致灾模式分类如下(表1图3).

冻胀型:在河谷区域,由于长时间的河谷下切卸荷,形成与坡面近于平行的陡倾裂隙,降雨(雪)入渗形成裂隙水.气温降低导致水冻结时,水结冰相变产生体积膨胀,从而促进岩体中的裂隙扩展,形成劈裂.在触发性事件下(如强降雨或地震)形成崩滑体.根据坡体的结构和破坏方式,这种模式可以分为冻胀-劈裂-滑移型、冻胀-劈裂-坠落型以及冻胀-劈裂-倾倒型.

融沉型:在硬软岩互层或含有软弱夹层的岩体结构中,冻结融化时,冰相变为水使得软弱层强度降低,从而产生融沉,而根据坡体的结构和破化方式可以分为融沉-滑移型、融沉-塑流-拉裂型以及融沉-弯曲-拉裂型.

冻融循环型:往复的冻融循环会导致岩石蠕变,从而强度降低.由于气温变化大,坡表位置的大气作用使得岩体发生破坏,甚至原地崩解.斜坡表面的温度场周期性变化,导致岩体受到强烈风化作用,使得岩体剥蚀效应显著,崩解的岩土体在重力作用下失稳运移,并在坡脚堆积.这种破坏方式称之为冻融循环-剥蚀型.

2 裂隙岩石冻融循环试验

典型的寒区灾害(链)多受控于裂隙岩体的破坏失效,而其中冻胀型发育分布较广,为分析寒区灾害形成机制,设计了以冻胀型为地质原型的裂隙岩体冻融循环试验.为得到裂隙岩体端部断裂过程,以及模拟实际边坡发育的上部拉裂缝和下端卸荷裂隙,对岩样预制裂缝进行了相应的设计.

为考虑裂隙对岩石的损伤作用,大尺寸岩样更为合适.同时,为避免尺寸效应(张宁,2023),试样采用直径100 mm,高度200 mm的圆柱样.选用广泛分布于高寒区的花岗岩和石英砂岩(徐正宣等,2021),其中花岗岩两组,每组两个,顶部裂隙长参照表1,设定较长的顶部裂隙长度,分别为70 mm和100 mm,裂隙宽度为3 mm,下部裂隙与水平夹角为45°,裂隙长和宽分别为70.7 mm和3 mm.此外另设一组顶部裂隙100 mm的石英砂岩作为对比,预制裂隙岩样见图4a.

试样充分饱水后使用密封胶将顶端裂隙密封,为保证密封胶不成为影响岩石强度的变量(朱永建等,2022;张培森等,2023),仅涂抹薄层密封胶.待密封胶充分凝固后,将裂隙填充自由水(乔趁,2023),如图4b所示.

在裂隙下端端部放置声发射监测装置与垂直于裂隙的应变片.试验使用全自动冻融测试箱(图4c),进行6、12、24、36次冻融循环,其中冻融温度为-20~20 ℃,冻融周期为2 h一个循环.每次冻融循环后从顶端裂隙处进行补水至填满裂隙.

应变测量系统采用CM-1L-10应变仪,按照1/4桥接法通过导线连接应变片与CM-1L-10应变测试系统.应变测量频率为1 min/次.声发射仪器采用美国Micro-II型声发射仪(图4d),试验设置采样门槛值40 dB,前置放大器增益40 dB,声发射采样间隔1 μs,频率范围1~400 kHz.

3 裂隙岩石冻融循环试验结果

3.1 裂隙岩样冻融作用下微应变特征

在冻融循环作用下3种试样的微应变-时间曲线如图5所示.与岩样类型无关,微应变曲线均处于上升与下降的循环过程,分别对应冻融周期的冻胀阶段与融缩阶段. 温度降低,裂隙水迅速结冰膨胀,对裂隙四周造成挤压,微应变增大;温度上升,裂隙水迅速融化,膨胀力消散,微应变下降.对比不同岩性,石英砂岩的微应变变化幅度大于花岗岩,表明石英砂岩受冻融影响产生的胀缩变形更大.其内在机制在于组成石英砂岩的矿物颗粒与胶结物之间孔隙较发育,拉伸模量较小,因此在冻胀力相近时石英砂岩产生的微应变大于花岗岩.对比不同裂隙长度花岗岩试样,裂隙长度越长,其微应变变化幅度越大.由于长裂隙试样冻胀力较大(Davidson and Nye,1985),裂隙长度较长的试样其微变形变化幅度较大.

为进一步研究冻融循环作用下岩石端部裂隙应变规律,取每一次冻融周期冻胀阶段的最大微应变值并绘于图6.花岗岩最大微应变曲线呈台阶式上升趋势,表明单次冻融循环造成微裂纹扩展程度有限,不足以产生大的变形,但会造成不可逆渐进损伤区,反复冻融下裂隙尖端局部化损伤效应加剧,各种微裂纹相互贯通,造成一次较大变形.在冻融前期石英砂岩的最大微应变相对平稳,第5个冻融循环后,最大微应变随冻融循环周期增加而逐步增大,呈加速上升趋势.不同于花岗岩微应变的“台阶式”变化,石英砂岩的硅质胶结弱,冻融作用能对石英砂岩裂纹端部造成持续损伤.

3.2 裂隙岩样冻融作用下声发射特征

图7为试样在冻融循环下的时间-计数、时间-累计能量演化曲线.在整个过程中3种裂隙试样的声发射事件反复出现,表明试样在冻融循环过程中端部微裂纹逐渐扩展,而冻胀力作用是造成微裂纹扩展的主要因素.

图7a、图7b显示声发射事件计数出现了数次大幅度增高,在整个冻融阶段,冻融初期突增现象更为频繁,裂隙端部裂纹扩展较明显.随着循环次数增加,每隔若干周期端部微裂纹的聚集会形成一次大破裂.因此花岗岩试样的累计能量呈不连续的台阶式增长.裂隙长7 cm试样比10 cm试样释放能量更大,表明岩桥长度越长,其贯通所耗散的能量越大.图7c表明石英砂岩的声发射事件计数突增间隔较为紧密,累计能量也表现出连续的台阶式上升.但冻融初期声发射计数信号处于一段平静期,裂隙端部裂纹扩展不明显,随着冻融循环次数增加,计数逐渐增加,每隔一段平静期均出现突增现象.由于每个冻融周期冻胀过程石英砂岩裂隙端部均有新贯通性裂纹产生,融缩过程中冻胀力消散,因此,裂隙不扩展而少有声发射现象.在冻融过程中石英砂岩累计能量比花岗岩小,这是由于花岗岩矿物颗粒之间的胶结更为致密,岩石断裂破坏所释放的能量更大.

3.3 两种岩性的声发射与应变特征对比分析

8a、8b与8c分别为裂隙长7 cm、10 cm花岗岩与裂隙长10 cm石英砂岩的振铃计数-时间、累计能量-时间与微应变-时间曲线.

图8a、图8b表明,花岗岩在整个冻融阶段振铃计数出现了数次大幅度增高,冻融初期突增现象更为频繁,在冻融循环过程中,振铃计数每一次突增现象的产生,均伴随着累计能量的大幅度增加以及微应变的迅速上升,相邻两个振铃计数峰值之间声发射活动较少,累计能量保持水平,微应变基本维持前一个冻融周期的应变幅度.冻融初期振铃计数突增频率相对后期较高,微应变上升速率随着突增频率的降低而减小,整个过程呈现不连续性周期突增现象.相对而言,裂隙长7 cm的试样要比10 cm的试样振铃计数更大,能量更大,对应的微应变增长更小.图8c表明石英砂岩冻融初期声发射活动较少,微应变变化趋于平稳,随着冻融次数增加,振铃计数逐渐活跃,伴随着突增频率的升高,微应变变化速率迅速增大,突增现象比较连续.

声发射的阶段性增长与微应变的增长特征相对应,石英砂岩的声发射振铃计数和累计能量缓慢增长,表明其裂纹贯通破坏具有较强的塑性特征,在实际边坡中表现为缓慢的渐进破坏过程.而花岗岩的突发性声发射振铃计数和累计能量增长则表现较强的脆性特征,在实际边坡中表现为快速的突发破坏过程.声发射信号较好地反映裂隙贯通的阶段性特征,从而运用于裂隙岩石贯通导致的灾害防治.

4 裂纹扩展特征和致灾机制

对裂隙长7 cm、10 cm的花岗岩与裂隙长10 cm的石英砂岩开展6、12、24、36次的冻融循环试验,随着冻融次数的增加,依据表2,不同岩样裂隙端部裂纹的扩展过程表现如下特征.(1)3种裂隙试样裂纹均沿裂隙端部垂直向下贯通,无肉眼可观的偏转、次生及表面剥落现象.(2)对于不同裂隙长度的花岗岩,裂隙的长短控制着裂纹贯通所需的时间.(3)石英砂岩端部裂纹初期扩展不明显,但随着冻融次数增加,裂纹贯通最快.

在一次冻融循环过程中,水冰相变和冰分凝作用于裂隙内产生冻胀力,在裂隙端部冻胀力对端部产生一定范围的塑性区,当塑性区变形大于岩样本身的允许值时,冻融循环会促进微裂纹扩展,塑性区变形未达到岩样本身的允许值时,冻融循环会对周围一定区域产生局部化损伤.多次冻融循环作用后,裂隙端部损伤不断累积,最终形成宏观断裂.

对于等宽平直、完全冻结裂隙而言,初始裂隙在未产生宏观裂纹前,其内部冻胀模型可简化为处于垂直裂隙面常拉张力模型,属于纯Ⅰ型裂纹,在循环冻融作用下,端部裂隙断裂沿自身平面扩展.裂隙尖端处单元体应力状态如图9所示.

从裂隙端部渐进损伤区角度出发,考虑塑性区尺寸估算,冻胀作用下的Ⅰ型裂纹尖端应力分量在极坐标中的表达式为(李庆芬和朱世范,2008):

σr=KI22πrcosθ23-cosθσθ=KI2πrcos3θ2τrθ=KI22πrcosθ2sinθ

式(1)中:r为单位微元距裂纹尖端的距离,θ为单位微元与裂纹尖端的极坐标角度,ν是泊松比.当r趋近于0,各应力分量趋于无穷大.因此只能分析距尖端一微小距离r0的圆周上各点应力.将式(1)中的第二式对θ求导,得出:

σθθ=-342πrcosθ2Ksinθ .

根据最大周向准则,假定开裂角度为θ0,且满足式(2)左边为0,则有

cosθ2Ksinθ=0 .

式3可知开裂角度为0.因此Ⅰ型裂纹扩展始终沿着原裂纹面方向扩展,本次冻融试验中裂纹沿着竖直方向扩展,没有明显的偏转和次生裂纹的结果吻合.

针对本次试验中裂纹的形状可知裂纹尖端的应力强度因子为

K=1.121 5σ0πa

式中:σ0为冻胀应力,a为裂纹长度.

本次试验设计了两种不同裂隙长度的花岗岩,其断裂韧度KIc相近,裂隙小的冻胀应力也偏小,短裂隙的岩样应力强度因子K较长裂隙度小,因此裂隙较长的花岗岩在冻融循环初始阶段更容易达到断裂条件.试验中70 mm裂隙花岗岩6次冻融循环使得裂隙延长了10 mm,而100 mm裂隙长度花岗岩6次冻融循环使得裂隙延长了20 mm.试验结果与理论分析结果一致,从而解释了寒区结构面发育的斜坡受冻融作用更为严重,产生崩塌等失稳现象.因此寒区内受冻融作用的坡体其后缘裂隙长度是影响其稳定性的重要因素.其次,前人试验研究结果表明花岗岩的断裂韧度通常大于砂岩的断裂韧度(孙宗颀等,2002;Moon and Oh,2012),因此石英砂岩更容易达到裂纹扩展条件,石英砂岩岩桥在更短的冻融次数完全贯通,表明理论与试验结果一致.

断裂力学分析表明冻融条件下裂隙岩体的扩展特征主要受岩性和裂隙长度的影响,因此高寒区灾害的形成受控于岩性和裂隙扩展.现场调查表明高寒区典型的灾害取决于裂隙的贯通失效,而裂隙岩石的冻融循环试验表明冻胀致裂隙贯通是裂隙岩石失效的主要破坏模式之一.试验揭示了端部裂隙的贯通是导致灾害发生的一种模式,但现场统计发现,裂隙岩石冻胀破坏依据其坡体结构的不同,表现为不同的灾害模式,这不仅包括试验结果显示的端部裂隙贯通形成的灾害模式.另外,除冻胀破坏模式外,仍然有其他灾害模式发育,但灾害发生都受控于裂隙贯通.

5 结论

本文以气候变化下的高寒区裂隙岩石为背景,分析了气候变化高寒区灾害的特征.采用试验方法研究了高寒区裂隙岩石在冻融循环下的微应变、声发射及裂纹扩展特征.以川西高寒区灾害为背景,结合试验现象对冻融致灾模式进行了分类,获得以下结论:

(1)冻融灾害的动力机制包括3类,即冻胀作用、融沉作用以及冻融循环3个方面.而相对应的灾害模式包括冻胀-劈裂-滑移型、冻胀-劈裂-坠落型、冻胀-劈裂-倾倒型、融沉-滑移型、融沉-塑流-拉裂型、融沉-弯曲-拉裂型以及冻融循环-剥蚀型.

(2)裂隙花岗岩试样最大微应变呈“台阶式”增长,声发射累计能量呈不连续的“台阶式”增长;而石英砂岩试样最大微应变呈指数增长,声发射累计能量呈连续的“台阶式”增长.

(3) 3种裂隙试样裂纹均沿裂隙端部垂直向下贯通岩桥,无肉眼可观的偏转、次生现象.断裂力学分析表明岩性以及裂隙长度是影响裂隙冻融扩展的主要因素.高寒区灾害的形成受控于岩性和裂隙扩展.

参考文献

[1]

Bazai, N. A., Cui, P., Carling, P. A., et al., 2021. Increasing Glacial Lake Outburst Flood Hazard in Response to Surge Glaciers in the Karakoram. Earth-Science Reviews, 212: 103432. https://doi.org/10.1016/j.earscirev.2020.103432

[2]

Christiansen, H. H., 2005. Thermal Regime of Ice-Wedge Cracking in Adventdalen, Svalbard. Permafrost and Periglacial Processes, 16(1): 87-98. https://doi.org/10.1002/ppp.523

[3]

Coe, J. A., Bessette-Kirton, E. K., Geertsema, M., 2018. Increasing Rock-Avalanche Size and Mobility in Glacier Bay National Park and Preserve, Alaska Detected from 1984 to 2016 Landsat Imagery. Landslides, 15(3): 393-407. https://doi.org/10.1007/s10346-017-0879-7

[4]

Cui, P., Dang, C., Cheng, Z. L., et al., 2010. Debris Flows Resulting from Glacial-Lake Outburst Floods in Tibet, China. Physical Geography, 31: 508-527. https://doi.org/10.2747/0272-3646.31.6.508

[5]

Cui, P., Zhou, G. G. D., Zhu, X. H., et al., 2013. Scale Amplification of Natural Debris Flows Caused by Cascading Landslide Dam Failures. Geomorphology, 182: 173-189. https://doi.org/10.1016/j.geomorph.2012.11.009

[6]

Davidson, G. P., Nye, J. F., 1985. A Photoelastic Study of Ice Pressure in Rock Cracks. Cold Regions Science and Technology, 11(2): 141-153. https://doi.org/10.1016/0165-232X(85)90013-8

[7]

Fan, X. M., Yunus, A. P., Yang, Y. H., et al., 2022. Imminent Threat of Rock-Ice Avalanches in High Mountain Asia. Science of the Total Environment, 836: 155380. https://doi.org/10.1016/j.scitotenv.2022.155380

[8]

Huang, R.Q., 2008. Geodynamical Process and Stability Control of High Rock Slope Development. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1525-1544 (in Chinese with English abstract).

[9]

Huang, R.Q., 2009. Mechanism of Landslide Disaster Triggered by Wenchuan Magnitude 8.0 Earthquake and Its Geomechanical Model. Chinese Journal of Rock Mechanics and Engineering, 28(6):1239-1249 (in Chinese with English abstract).

[10]

Huang, Y., 2012. Research on Freeze-Thaw Mechanical Behavior and Collapse Mechanism of Rock Mass in Alpine Mountainous Areas: Taking Tianshan Highway Slope as an Example. Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[11]

IPCC (Intergovernmental Panel on Climate Change), 2022. Ocean and Cryosphere in a Changing Climate: Special Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

[12]

IPCC (Intergovernmental Panel on Climate Change), 2023. Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

[13]

Ishikawa, M., Kurashige, Y., Hirakawa, K., 2004. Analysis of Crack Movements Observed in an Alpine Bedrock Cliff. Earth Surface Processes and Landforms, 29(7): 883-891. https://doi.org/10.1002/esp.1076

[14]

Jia, H.L., Xiang, W., Tan, L., et al., 2016. Theoretical Analysis and Experimental Verifications of Frost Damage Mechanism of Sandstone. Chinese Journal of Rock Mechanics and Engineering, 35(5): 879-895 (in Chinese with English abstract).

[15]

Jiang, D.Y., Zhang, S.L., Chen, J., et al., 2019. Low Filed NMR and Acoustic Emission Probability Density Study of Freezing and Thawing Cycles Damage for Sandstone. Rock and Soil Mechanics, 40(2): 436-444 (in Chinese with English abstract).

[16]

Lacelle, D., Brooker, A., Fraser, R. H., et al., 2015. Distribution and Growth of Thaw Slumps in the Richardson Mountains–Peel Plateau Region, Northwestern Canada. Geomorphology, 235: 40-51. https://doi.org/10.1016/j.geomorph.2015.01.024

[17]

Li, J.L., Zhu, L.Y., Zhou, K.P., et al., 2019. Damage Characteristics of Sandstone Pore Structure under Freeze-Thaw Cycles. Rock and Soil Mechanics, 40(9): 3524-3532 (in Chinese with English abstract).

[18]

Li, Q.F., Zhu, S.F., 2008. Fracture Mechanics and Its Engineering Application (2nd ed.). Harbin Engineering University Press, Harbin, 9-13(in Chinese).

[19]

Li, X.P., Lu, Y.N., Wang, Y.J., 2013. Research on Damage Model of Single Jointed Rock Masses under Coupling Action of Freeze-Thaw and Loading. Chinese Journal of Rock Mechanics and Engineering, 32(11): 2307-2315 (in Chinese with English abstract).

[20]

Liu, H., Yang, G.S., Ren, J.X., 2007. Numerical Analysis Method for Temperature Field of Freezing-Thawing Shale Based on Digital Image Processing. Chinese Journal of Rock Mechanics and Engineering, 26(8): 1678-1683 (in Chinese with English abstract).

[21]

Liu, Q.S., Kang, Y.S., Liu, X.Y., 2011. Analysis of Stress Field and Coupled Thermo-Mechanical Simulation of Single-Fracture Freezed Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 30(2): 217-223 (in Chinese with English abstract).

[22]

Lu, Y.N., Li, X.P., Xiao, J.S., 2014. Experimental Analysis on Mechanical Characteristic of Single Cracked Rock Mass under Freeze-Thaw Condition. Chinese Journal of Underground Space and Engineering, 10(3): 593-598, 649(in Chinese with English abstract).

[23]

Long, X. Y., Hu, Y. X., Gan, B. R., et al., 2024. Numerical Simulation of the Mass Movement Process of the 2018 Sedongpu Glacial Debris Flow by Using the Fluid-Solid Coupling Method. Journal of Earth Science, 35(2): 583-596. https://doi.org/10.1007/s12583-022-1625-1

[24]

Lyu, Y., Ma, R.X., Wang, Z.P., et al., 2025. A Study on the Genetic Dynamics and Development Characteristics of Granitic Rock Avalanches in the Northern Qinling Mountains, China. Journal of Earth Science, 36(2): 737-749. https://doi.org/10.1007/s12583-024-0016-1

[25]

Moon, T., Oh, J., 2012. A Study of Optimal Rock-Cutting Conditions for Hard Rock TBM Using the Discrete Element Method. Rock Mechanics and Rock Engineering, 45(5): 837-849. https://doi.org/10.1007/s00603-011-0180-3

[26]

Mu, J. Q., Pei, X. J., Huang, R. Q., et al., 2017. Degradation Characteristics of Shear Strength of Joints in Three Rock Types Due to Cyclic Freezing and Thawing. Cold Regions Science and Technology, 138: 91-97. https://doi.org/10.1016/j.coldregions.2017.03.011

[27]

Mu, J.Q., 2013. Study on Damage and Deterioration Characteristics of Rock Mass and Its Disaster-Causing Effect under Cyclic Freeze-Thaw Conditions (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).

[28]

Peng, J.B., Zhang, Y.S., Huang, D., et al., 2023. Interaction Disaster Effects of the Tectonic Deformation Sphere, Rock Mass Loosening Sphere, Surface Freeze-Thaw Sphere and Engineering Disturbance Sphere on the Tibetan Plateau. Earth Science, 48(8): 3099-3114 (in Chinese with English abstract).

[29]

Qi, J.L., Ma, W., 2010. State-of-Art of Research on Mechanical Properties of Frozen Soils. Rock and Soil Mechanics, 31(1): 133-143 (in Chinese with English abstract).

[30]

Qiao, C., 2023. Study on Damage Evolution Law and Disaster-Causing Mechanism of Rock Slope with Locked Segment Subjected to Freeze-Thaw Cycles (Dissertation). University of Science and Technology Beijing, Beijing(in Chinese with English abstract).

[31]

Ravanel, L., Deline, P., 2011. Climate Influence on Rockfalls in High-Alpine Steep Rockwalls: The North Side of the Aiguilles de Chamonix (Mont Blanc Massif) since the End of the `Little Ice Age'. The Holocene, 21(2): 357-365. https://doi.org/10.1177/0959683610374887

[32]

Shugar, D. H., Jacquemart, M., Shean, D., et al., 2021. A Massive Rock and Ice Avalanche Caused the 2021 Disaster at Chamoli, Indian Himalaya. Science, 373(6552): 300-306. https://doi.org/10.1126/science.abh4455

[33]

Sun, Z.Q., Rao, Q.H., Wang, G.Y., 2002. Study on Determination of Shear Fracture Toughness(KIIc). Chinese Journal of Rock Mechanics and Engineering, 21(2): 199-203 (in Chinese with English abstract).

[34]

Tang, M.G., Xu, Q., Deng, W.F., et al., 2022. Degradation Law of Mechanical Properties of Typical Rock in Sichuan-Tibet Traffic Corridor under Freeze-Thaw and Unloading Conditions. Earth Science, 47(6): 1917-1931 (in Chinese with English abstract).

[35]

Wen, L., Li, X.B., Chen, G.H., et al., 2014. The Effect of Freeze-Thaw Cycles on the Durability of Hard Rocks of Slope in Metal Mine. Mining and Metallurgical Engineering, 34(6): 10-13 (in Chinese with English abstract).

[36]

Wen, L., Li, X.B., Yin, Y.B., et al., 2014. Study of Physico-Mechanical Properties of Granite Porphyry and Limestone in Slopes of Open-Pit Metal Mine under Freezing-Thawing Cycles and Their Application. Journal of Glaciology and Geocryology, 36(3): 632-639 (in Chinese with English abstract).

[37]

Wu,G.J.,Yao,T.D.,Wang,W.C.,et al.,2019.Glacial Hazards on Tibetan Plateau and Surrounding Alpines. Bulletin of Chinese Academy of Sciences, 34(11): 1285-1292 (in Chinese with English abstract).

[38]

Xu, G.M., Liu, Q.S., 2005. Analysis of Mechanism of Rock Failure Due to Freeze-Thaw Cycling and Mechanical Testing Study on Frozen-Thawed Rocks. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3076-3082 (in Chinese with English abstract).

[39]

Xu, Z.X., Zhang, L.G., Jiang, L.W., et al., 2021. Engineering Geological Environment and Main Engineering Geological Problems of Ya’an-Linzhi Section of the Sichuan-Tibet Railway. Advanced Engineering Sciences, (3): 29-42(in Chinese with English abstract).

[40]

Yan, X.D., Liu, H.Y., Xing, C.F., et al., 2015. Constitutive Model Research on Freezing-Thawing Damage of Rock Based on Deformation and Propagation of Microcracks. Rock and Soil Mechanics, 36(12): 3489-3499 (in Chinese with English abstract).

[41]

Yang, F., 2017. Preliminary Study on Classification and Identification Map of Large Landslides in Western Mountainous Areas (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).

[42]

Yang, R., Fellin, M. G., Herman, F., et al., 2016. Spatial and Temporal Pattern of Erosion in the Three Rivers Region, Southeastern Tibet. Earth and Planetary Science Letters, 433: 10-20. https://doi.org/10.1016/j.epsl.2015.10.032

[43]

Yin, Y.P., 2000. Rapid Huge Landslide and Hazard Reduction of Yigong River in the Bomi, Tibet. Hydrogeology & Engineering Geology, 27(4): 8-11 (in Chinese with English abstract).

[44]

Zhang, E.F., Yang, G.S., Liu, H., 2018. Experimental Study on Meso-Damage Evolution of Sandstone under Freeze-Thaw Cycles. Coal Engineering, 50(10): 50-55 (in Chinese with English abstract).

[45]

Zhang, G.Z., Chen, G.Q, Wang, Z.W, et al., 2022. Development Characteristics and Rapid Evaluation of High-Steep Unstable Rock in Ya’an-Changdu Section of Sichuan-Tibet Railway. Advanced Engineering Sciences, 54(2):1-11 (in Chinese).

[46]

Zhang, H. P., Oskin, M., Jing, L. Z., et al., 2016. Pulsed Exhumation of Interior Eastern Tibet: Implications for Relief Generation Mechanisms and the Origin of High-Elevation Planation Surfaces. Earth and Planetary Science Letters, 449: 176-185. https://doi.org/10.1016/J.EPSL.2016.05.048

[47]

Zhang, J.Z., Miao, L.C., Yang, Z.F., 2008. Research on Rock Degradation and Deterioration Mechanisms and Mechanical Characteristics under Cyclic Freezing-Thawing. Chinese Journal of Rock Mechanics and Engineering, 27(8): 1688-1694 (in Chinese with English abstract).

[48]

Zhang, N., 2023. Study on Size Effect of Physical and Mechanical Characteristics of Intact Rock (Dissertation). Changan University, Xi’an(in Chinese with English abstract).

[49]

Zhang, P.S., Xu, D.Q., Li, T.H., et al., 2023. Experimental Study of Seepage Characteristics before and after Grouting and Mechanical Characteristics after Grouting of Fractured Sandstone. Rock and Soil Mechanics, 44(S1): 12-26(in Chinese with English abstract).

[50]

Zhang, S.J., Lai, Y.M., Su, X.M., et al., 2004. A Laboratory Study on the Damage Propagation of Rocks under Freeze-Thaw Cycle Condition. Chinese Journal of Rock Mechanics and Engineering, 23(24): 4105-4111 (in Chinese with English abstract).

[51]

Zhang, Y.Z., Du, Y.L., Sun, B.C., et al., 2014. Roadbed Deformation of High-Speed Railway Due to Freezing-Thawing Process in Seasonally Frozen Regions. Chinese Journal of Rock Mechanics and Engineering, 33(12): 2546-2553 (in Chinese with English abstract).

[52]

Zhu, Y.J., Ren, H., Wang, P., et al., 2022. Grouting Test and Reinforcement Mechanism Analysis of Rock with Single Penetrated Fracture Surface. Rock and Soil Mechanics, 43(12): 3221-3230 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(W2412153)

国家自然科学基金项目(42372326)

四川省科技计划资助(2025ZNSFSC1208)

AI Summary AI Mindmap
PDF (6449KB)

96

访问

0

被引

详细

导航
相关文章

AI思维导图

/