东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义

李斌 ,  魏俊浩 ,  高强 ,  赖联新 ,  李笑龙 ,  张声桃 ,  杜玉梅

地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1417 -1442.

PDF (9297KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1417 -1442. DOI: 10.3799/dqkx.2024.025

东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义

作者信息 +

Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun

Author information +
文章历史 +
PDF (9519K)

摘要

东昆仑造山带志留纪的岩浆岩对于确定原特提斯洋的碰撞演化过程具有重要意义.通过对东昆仑造山带东段沟里地区出露的迈龙二长花岗岩及花岗闪长岩开展岩相学、年代学、地球化学和锆石Hf同位素研究,探讨岩石成因及其形成的构造背景.结果表明,二长花岗岩和花岗闪长岩年龄分别为438±3 Ma和426±2 Ma,指示侵位时代为早志留世和晚志留世.二长花岗岩具有高硅(SiO2=71.86%~74.37%)、富钾(K2O=4.67%~5.81%)、贫钙、镁、钛和磷和弱过铝质(A/CNK=1.01~1.08),较富集大离子亲石元素(K、Rb、Sr、U和Th),亏损高场强元素(HFSE,如Nb、Ta和Ti)等特征,以及负Eu异常特征,锆石εHft)值在-9.2~12.7之间,二阶段模式年龄T2DM(Hf)为1 805~592 Ma.花岗闪长岩具有高铝(Al2O3=15.90%~17.12%)、高锶(Sr=359×10-6~468×10-6)、低钇、高Sr/Y(33.2~87.5)和(La/Yb)N(11.6~43.7)比值等特征.岩石稀土元素总量较低,轻重稀土分异明显,富集大离子亲石元素(LILE;Rb、K、Sr、Th、U),亏损Ba、Nb、Ta、P、Ti等元素,具有正Eu异常特征,锆石εHft)为-4.9~-0.7,二阶段模式年龄T2DM(Hf)为1 559~1 322 Ma.迈龙二长花岗岩具有高分异I型花岗岩的特征,是下地壳长英质岩浆和少量地幔镁铁质岩浆混合后经历高程度分离结晶作用的产物;与前者不同的是,花岗闪长岩具有埃达克岩的特征,由加厚的新生下地壳部分熔融后经过一定程度分离结晶作用形成.结合区域上报道的最新资料,二长花岗岩和花岗闪长岩可能分别形成于同碰撞环境和同碰撞向后碰撞伸展的转换环境.东昆仑地区至少在早志留世(440 Ma)开始进入同碰撞阶段,经历一个快速大陆碰撞期(440~427 Ma),并在427~425 Ma之间由于板片断离而由碰撞阶段向后碰撞伸展阶段转换.

Abstract

The Silurian magmatic rocks of the East Kunlun Orogen are of great significance in determining the collisional evolution process of the proto-Tethys Ocean. In this study, the petrographic, chronological, geochemical and Hf isotope analysis were carried out for Mailong granodiorite and monzogranite exposed in the Gouli area of the eastern section of the East Kunlun orogenic belt, and the rock genesis and formation were discussed accordingly construction background. The results show that the zircon weighted mean ages of Mailong monzonite and granodiorite are 438±3 Ma and 426±2 Ma, which indicated it was formed in Early Silurian and Late Silurian. The granodiorite is characterized by high silic, enrichment of alkaline, but depletion in calcium, magnesium, titanium and phosphorus. The A/CNK values range from 1.01 to 1.08.The rock is obviously enriched in large ion lithophile elements (LILE;K, Rb, Sr, U, Th etc.) and depleted in high field strength elements (HFSE; Nb, Ta, Ti etc.), with negative Eu anomalies. The zircon εHf (t) value has a wide range (from -3.54 to -0.56),and the two-stage mode age T2DM (Hf) is 1 805 to 592 Ma. The granodiorite is characterized by high aluminum, high strontium content, high Sr/Y and (La/Yb)N ratio and lower yttrium content. The total amount of rare earth elements in the rock is low, the differentiation between light and heavy rare earth elements is obvious, with positive Eu anomaly characteristics. εHf(t) ranges from -4.9 to -0.7, and the two-stage model age T2DM (Hf) is 1 559 to 1 332 Ma. The monzonite showing characteristics of highly fractionated I-type granites, it is formed by a high degree of separation and crystallization after the mixing of felsic magma in the lower crust and mafic magma in the mantle. But the granodiorite has the characteristics of adakite, it is formed by subsequent crystallization after partial melting of the thickened juvenile lower crust. Combining with new regional studies, the monzonite and granodiorite may have been formed in a syn-collision environment and a transition environment from syn-collision to post-collision extension. It proposes that the East Kunlun area began to enter the syn-collision stage at least in the Early Silurian (440 Ma), experiencing a period of rapid continental collision (440-427 Ma), and due to slab break-off began to transform from the syn-collision stage to the post-collision extension stage between 427 to 425 Ma.

Graphical abstract

关键词

东昆仑造山带 / 原特提斯洋 / 早古生代 / 地球化学 / 埃达克质岩石 / 岩石学.

Key words

East Kunlun orogenic belt / Proto-Tethys Ocean / Early Paleozoic / geochemistry / adakitic rock / petrology

引用本文

引用格式 ▾
李斌,魏俊浩,高强,赖联新,李笑龙,张声桃,杜玉梅. 东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义[J]. 地球科学, 2025, 50(04): 1417-1442 DOI:10.3799/dqkx.2024.025

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

碰撞造山带由陆陆碰撞或陆-弧碰撞而形成,期间通常会发生大陆俯冲和大陆地壳的强烈加厚,并伴随大陆深俯冲所形成的超高压变质带(宋述光等, 2015).碰撞型造山带,主要经历3个阶段:(1)大洋闭合后,大陆板块在俯冲洋壳的作用之下向另一大陆板块俯冲,引起地壳加厚;(2)当俯冲到一定深度,俯冲板片发生断离,造成大陆地壳折返;(3)造山晚期,由于岩石圈伸展和软流圈地幔上涌,形成后碰撞岩浆作用,并标志造山旋回的结束(宋述光等, 2015).不同大陆之间的碰撞造山作用通常导致地壳的逐渐缩短和岩石圈地幔的增厚,这种地壳厚度变化能为恢复碰撞造山带构造演化历史提供关键线索(刘彬等, 2023).

东昆仑造山带是青藏高原北部存在的一条典型的复合型造山带(孟繁聪等, 2015; Li et al., 2018),经历了与特提斯洋有关的多个阶段的构造演化过程(如新元古代-早古生代原特提斯洋演化和晚古生代-早中生代古特提斯洋演化)(莫宣学等, 2007; Zhao et al., 2020).昆中缝合带位于东昆仑造山带中部,呈近东西向展布,是早古生代时期一个重要的板块汇聚边界,沿昆中缝合带发育大量的蛇绿岩(莫宣学等, 2007).昆中缝合带北侧出露的壳型榴辉岩证实了东昆仑地区在早古生代造山性质以陆陆碰撞为主(贾丽辉等, 2014; 祁晓鹏等, 2016; Bi et al., 2020,2022).目前一些学者普遍认为东昆仑造山带在早古生代经历了完整的洋壳形成、俯冲消减、碰撞造山和后碰撞伸展的演化过程(Zhang et al., 2014Chen et al., 2017Dong et al., 2018Li et al., 2020Fu et al., 2022Zhao et al., 2022Feng et al., 2023Li et al., 2023),并随之产生了一系列的构造-变质-岩浆活动,大体上可以总结为:(1)洋盆打开或者扩张时形成的镁铁质岩(522~490 Ma)(祁晓鹏等, 2016; Dong et al., 2024);(2)与洋壳俯冲、消减有关的弧花岗岩和O型埃达克岩(485~440 Ma)(崔美慧等, 2011; Li et al., 2015Xiong et al., 2015; 陈加杰等, 2016; Zhou et al., 2016Yu et al., 2017; Dong et al., 2018; Hu et al., 2023);(3)陆陆碰撞过程中的S-I型花岗岩(444~428 Ma)(郭峰等, 2020; 王秉璋等, 2023);(4)陆壳俯冲作用形成的榴辉岩(贾丽辉等, 2014; 孟繁聪等, 2015; 祁晓鹏等, 2016; Bi et al., 2020,2022);(5)后碰撞伸展过程中形成的A型花岗岩(425~385 Ma)、镁铁质-超镁铁质岩(426~393 Ma)和双峰式火山岩(423~400 Ma)(Chen et al., 2020Li et al., 2020Wang et al., 2023; 童海奎等, 2023).尽管前人基于构造、变质、岩浆作用等对东昆仑早古生代晚期构造演化过程开展过大量研究(Sun et al., 2021),但关于东昆仑地区早古生代碰撞阶段的演化仍然有一些关键问题仍有争议,即(1)东昆仑造山带早古生代同碰撞阶段何时开始;(2)东昆仑造山带何时由同碰撞阶段向后碰撞伸展阶段转换.

近年来,国内外学者利用锆石U-Pb定年在东昆仑造山带东段识别出大量志留纪花岗岩,这些花岗岩的形成与地幔分异、壳幔混合作用和下地壳部分熔融有关(Zhang et al., 2014Dong et al., 2018Fu et al., 2022; 刘彬等, 2023).本文在野外地质调查基础上,对东昆仑造山带东段沟里地区迈龙志留纪埃达克质花岗闪长岩和二长花岗岩进行了精确定年,通过锆石Hf同位素和全岩主微量元素分析,并结合区域资料,为原特提斯洋碰撞阶段的演化提供参考及制约依据.

1 地质背景及岩相学特征

东昆仑造山带向东与秦岭造山带相连,向西则以阿尔金断裂与西昆仑造山带相隔,北面与柴达木盆地相邻,南面则以昆南断裂带与巴颜喀拉地体隔开(图1a)(Zhou et al., 2016).区域上,昆中断裂带(昆中缝合带)和昆南断裂带(昆南缝合带)贯穿东昆仑地区,两个缝合带中零星发育了与原特提斯洋的演化有关的寒武纪-奥陶纪蛇绿岩.东昆仑造山带以昆中断裂带(昆中缝合带)为界,可划分为东昆北地体和东昆南地体(图1b)(许志琴等, 2006).东昆北地体基底金水口群可划分为白沙河岩组和小庙岩组,白沙河岩组岩性为片麻岩、混合岩、大理岩和斜长角闪岩等(He et al., 2016),小庙岩组岩性主要为石英岩、大理岩、片麻岩和变粒岩(He et al., 2016);上覆盖层从老到新依次为奥陶纪纳赤台群低级变质火山岩和变质沉积岩,晚志留世-早泥盆世牦牛山组(423~400 Ma)陆相沉积岩,石炭纪-二叠纪浩特洛洼组碳酸盐岩和碎屑沉积岩;东昆北地体岩浆活动主要集中在两个时期,即奥陶纪-泥盆纪(470~390 Ma)和二叠纪-三叠纪(260~210 Ma)(周红智等, 2020; 韩志辉等, 2021),与原特提斯洋和古特提洋的演化关系密切.东昆南地体侵入岩分布相对较少,主要为志留纪和三叠纪花岗岩,基底为中元古代苦海群高绿片岩-角闪岩相变质岩系,岩性为片麻岩、斜长角闪岩、大理岩和变粒岩等;另外,东昆南地体还出露大量新元古代万宝沟群(碳酸盐岩、碎屑岩和玄武岩)和早古生代纳赤台群浅变质岩系(火山岩);上覆盖层为晚古生代-早中生代沉积岩系,岩性为碎屑岩、灰岩和火山岩等.

本文研究区位于东昆仑造山带的东段(图1b),地跨东昆北和东昆南地体,以发育广泛的奥陶纪-志留纪和二叠纪-三叠纪侵入岩为特征.奥陶纪-志留纪侵入岩主要发育在智玉、瓦勒尕和坑德弄舍等地区,岩性组合为花岗岩-花岗闪长岩-镁铁质岩(图2),形成时间在471~403 Ma之间(陈加杰等, 2016; Chen et al., 2020Fu et al., 2022),与早古生代构造事件有密切的关系.二叠纪-三叠纪侵入岩发育在研究区北部迈龙等地区,岩性主要为花岗闪长岩和辉长岩,形成时间在262~232 Ma之间(Sun et al., 2021Xu et al., 2023).

迈龙二长花岗岩和花岗闪长岩位于东昆北地体中,据沟里乡约30 km,两者均侵位于古元古代白沙河岩组片麻岩中(图2),呈小岩株的形式单独出露,后期被三叠纪花岗闪长岩所侵吞.此外,二长花岗岩内还发育暗色微粒包体,包体呈大小不一的团块状或椭圆状(图3d).

花岗闪长岩呈灰色(图3a),中细粒半自形-他形粒状结构,块状构造.主要由斜长石(40%~45%)、钾长石(20%~30%)、石英(10%~15%)、黑云母(4%~6%)和角闪石(5%~8%)等矿物组成,含少量锆石(图3b)、磷灰石、方解石和绿泥石等副矿物.斜长石呈灰白色,可见聚片双晶,部分发育环带结构(图3b),半自形-他形板状结构,粒径为0.2~2.0 mm,局部被绢云母、绿泥石及方解石等交代;碱性长石发育条纹结构(图3b, 3c),半自形-他形板状,粒径为0.2~2.0 mm,局部被绿泥石及方解石等交代;石英多为不规则粒状(图3b, 3c),0.2~3.0 mm,零星分布于斜长石及钾长石等粒间;角闪石为黄褐色-褐绿色,不规则粒状,粒径为0.4~2.0 mm,被黑云母及绿泥石等交代(图3c);黑云母为褐黄色片状,粒径为0.4~3.0 mm.

二长花岗岩呈灰白色(图3d),中细粒花岗结构,块状构造.主要由斜长石(35%~40%)、钾长石(30%~35%)、石英(20%~25%)及少量黑云母(4%~6%)等矿物组成,含少量锆石和磷灰石等副矿物.斜长石呈半自形-他形板状结构,粒径为0.01~3.20 mm,可见解理及聚片双晶结构(图3e, 3f),并被绢云母、绿泥石及绿帘石等交代(图3f);钾长石呈半自形-他形板状结构,粒径为0.01~3.00 mm,发育条纹结构(图3e, 3f),被绿泥石及绿帘石等交代;石英呈灰白色,不规则粒状(图3f),粒径为0.01~2.00 mm;黑云母褐黄色,片状,粒径为0.01~0.60 mm之间.

2 分析测试方法

野外采集15件地表新鲜的基岩样品,其中两件用于锆石U-Pb定年及Hf同位素,13件用于地球化学分析,样品采集位置如图2.

2.1 LA⁃ICP⁃MS锆石U⁃Pb测年及Hf同位素测试

锆石的挑选、制靶、透反射光、阴极发光照相均在河北省区域地质调查研究所进行.分选过程遵循标准程序,经破碎、重磁分选之后,在双目镜下选择晶型完好纯净透明的锆石制靶.制靶之后磨蚀至锆石核部出露,并进行透射光、反射光和阴极发光(CL)照相.在原位分析之前,通过透反射光和CL图像详细研究锆石的晶体形貌和内部结构特征,选择无明显裂痕及包裹体的锆石进行测年.

锆石原位微区U-Pb同位素测试在武汉上谱分析科技有限责任公司激光剥蚀等离子质谱仪(LA-ICP-MS)上完成.激光剥蚀系统为GeoLas2005,ICP-MS为Agilent7500a,激光束斑直径32 μm.实验过程中用He气为载气,测试过程中选用91500作为内标对U-Th-Pb同位素进行校正,并选用GJ-1作为监测样,选用NIST610作为外标,29Si作为内标进行微量元素校正计算,详细的分析流程及仪器参数参见(Liu et al., 2008).锆石Hf同位素分析在上谱采用LA-MC-ICP-MS进行,激光剥蚀系统同上,测试点位置与U-Pb测试点一致或者在同一颗锆石相同环带内,激光束斑直径44 μm,详细分析流程、计算参数参照(Hu et al., 2012).锆石年龄数据及Hf同位素数据处理采用ICPMSDataCal12.8程序,普通铅校正采用Anderson推荐的方法(Andersen, 2002);U-Pb年龄谐和图和加权平均年龄的计算采用Isoplot4.15程序(Vermeesch, 2018).

2.2 全岩地球化学测试

在室内详细的岩相学鉴定的基础上,选取样品新鲜完整无蚀变的部分在切割机上将风化蚀变或者有裂隙的切割去除,清除其表面粉尘,粉碎至75 μm以下,然后送往澳实分析检测(广州)有限公司实验室进行全岩主量元素、微量元素测试分析.主量元素分析在X荧光光谱仪(PANalyticalPW2424)用熔融法(ME-XRF26d)分析完成.具体方法:试样加入含硝酸锂的硼酸锂-硝酸锂熔融助熔剂,充分混合后,高温熔融.熔融物倒入铂金模子形成扁平玻璃片后,再用X荧光光谱仪分析.同时称取另一份试样放入马弗炉中,于1 000 ℃灼烧.冷却后称重.样品加热前后的重量差即是烧失量.烧失量的结果和XRF测得的元素氧化物结果相加,就是本方法的加和(total).该方法精密度控制方面,相对误差<5%.稀土元素分析方法为ME-MS81,采用电感耦合等离子体质谱仪(ICP-MS)进行测试.具体方法:往试样中加入硼酸锂(LiBO2/Li2B4O7)熔剂,混合均匀,在熔炉中于1 025 °C熔融.待熔融液冷却后,用硝酸、盐酸和氢氟酸消解并定容,然后用等离子体质谱仪分析.该方法分析精密度控制方面,相对误差小于10%.详细的分析流程及分析精密度和准确度见文献(Liu et al., 2008).

3 分析结果

3.1 锆石U⁃Pb年代学

迈龙二长花岗岩和花岗闪长岩样品的锆石自形程度高,多为自形-半自形长柱状,锆石粒径为100~200 μm,长宽比在1∶1~3∶1之间,阴极发光显示具有明显的岩浆韵律振荡环带(图4),指示其是岩浆成因锆石(Hoskin and Schaltegger, 2003).每套岩石选取20个代表性的锆石进行U-Pb定年分析,U-Pb测试点位和测试结果见图5表1.二长花岗岩锆石U-Pb分析结果经校正后的有效数据共有13个点,在锆石U-Pb谐和图上(图5a),大部分数据点均落在谐和线上或其附近,单颗粒锆石206Pb/238U年龄介于437~440 Ma,其锆石U-Pb加权平均年龄为438±3 Ma(MSWD=1.18),代表了二长花岗岩的侵位年龄,为早志留世岩浆活动的产物,其余7个测点具有较老的206Pb/238U年龄,分布在1 442~477 Ma之间,可能代表岩体形成时捕获的继承锆石的年龄.花岗闪长岩锆石U-Pb分析结果经校正后的有效数据共有15个点,在锆石U-Pb谐和图上(图5c),大部分数据点均落在谐和线上,单颗粒锆石206Pb/238U年龄介于424~427 Ma,其锆石U-Pb加权平均年龄为426±2 Ma(MSWD=0.061),代表了花岗闪长岩的侵位年龄,为晚志留世岩浆活动的产物,其余5个测点年龄分布在903~518 Ma之间,可能代表岩体形成时捕获的继承锆石的年龄.

3.2 主量元素地球化学

迈龙二长花岗岩和花岗闪长岩全岩主量分析数据见表2.二长花岗岩具有较高的SiO2(71.86%~74.37%)和全碱(Na2O+K2O)含量(8.19%~8.57%),Na2O为2.75%~3.74%,平均为3.00%,K2O为4.67%~5.81%,平均为5.35%,K2O/Na2O为1.25~2.11,在TAS岩石分类图解上样品点主要集中在花岗岩区域(图6a),表现出高钾碱钙性特质(图6b~6c).样品的Fe2O3T含量较低(1.05%~2.36%),MgO的变化为0.20%~0.49%,Mg#的介于

18~38;Al2O3为13.75%~14.75%,CaO含量为0.96%~2.00%,A/CNK为1.01~1.08,在A/NK-A/CNK图解中投影点位于弱过铝质区域(图6d).花岗闪长岩SiO2的含量介于68.13%~70.9%,全碱(Na2O+K2O)含量为6.26%~6.56%,其中Na2O的含量较高,为4.57%~4.89%,平均为4.72%,K2O为1.38%~1.99%,平均为1.66%,K2O/Na2O为0.28~0.44,在TAS岩石分类图解上样品点主要集中在花岗闪长岩区域(图6a),呈现出中钾钙碱性的特征(图6b~6c).Al2O3的含量较高(在SiO2>70%的情况下Al2O3>15%),为15.90%~17.12%,A/CNK为1.04~1.08,在A/NK-A/CNK图解中投影点位于弱过铝质区域(图6d).花岗闪长岩Fe2O3T含量较低(2.07%~3.04%),CaO含量为2.91%~3.56%,MgO的变化为0.84%~1.12%,Mg#介于40~47(平均值为44).在岩石哈克图解中,两者的MgO、Al2O3、Fe2O3T、Na2O、TiO2、P2O5、CaO与SiO2大致成反比关系(图7),指示可能存在角闪石、黑云母、斜长石和磷灰石的分离结晶.

综上所述,迈龙花岗闪长岩具有中钾钙碱弱过铝质岩石的性质,二长花岗岩表现为高钾碱钙性弱过铝质岩石的性质,两者的主量元素有一定的差异.

3.3 微量元素地球化学

二长花岗岩稀土元素(ΣREE)总量介于46.4×10-6~324.0×10-6(平均值209.7×10-6),LREE/HREE值变化于9.97~27.60,平均值为16.41.岩石(La/Yb)N介于11.6~41.6,显示轻重稀土分异明显,

在稀土配分模式图(图8a)中,曲线呈明显右倾.岩石Eu/Eu*为0.26~1.13(平均为0.60),总体具有中等程度的负铕异常,个别样品具有正铕异常.原始地幔标准化的微量元素蛛网图(图8b)显示二长花岗岩富集大离子亲石元素(K、Rb、Sr、U、Th),相对亏损高场强元素(HFSE;Nb、Ta、P、Ti),总体上与平均地壳的地球化学特征一致.

花岗闪长岩稀土元素(ΣREE)总量较低,含量介于38.7×10-6~181.9×10-6(平均值78.3×10-6),LREE/HREE值变化于6.80~16.03,平均值为9.97.岩石(La/Yb)N介于8.3~31.3,在稀土配分模式图中(图8c),曲线也呈明显右倾,轻重稀土分异明显.此外,它们的Eu/Eu*为0.72~2.23,显示出弱负铕-正铕异常的特征.原始地幔标准化的微量元素蛛网图(图8d)显示花岗闪长岩富集大离子亲石元素(LILE;Rb、K、Sr、Th、U),而不同程度亏损高场强元素(HFSE;Ba、Nb、Ta、P、Ti),基本与下地壳的地球化学特征一致.

3.4 锆石Hf同位素

迈龙二长花岗岩和花岗闪长岩的锆石Hf同位素的结果见表3.二长花岗岩的13个分析点的176Yb/177Hf比值介于0.011 233~0.084 073,176Lu/177Hf比值介于0.000 281~0.002 123,176Hf/177Hf比值相对集中介于0.282 241~0.282 871,176Lu/177Hf比值均非常低,表明锆石形成后没有发生放射性Hf的大量富集(吴福元等, 2007),计算获得的εHft)值变化范围大,介于-9.2~12.7(图9),平均值为0.9,对应的二阶段模式年龄T2DM(Hf)变化于1 805~592 Ma之间.花岗闪长岩15个分析点的176Yb/177Hf比值介于0.012 573~0.113 611,176Lu/177Hf比值介于0.000 319~0.003 288,176Hf/177Hf比值相对集中介于0.282 379~0.282 498,176Lu/177Hf比值小于0.002,具有负的εHft)值,介于-4.9~-0.7(图9);基于大陆地壳176Hf/177Hf均值为0.015计算,对应的两阶段模式年龄T2DM(Hf)为11 322~559 Ma,Hf同位素二阶段模式年龄远大于花岗闪长岩的成岩年龄.

4 讨论

4.1 岩石成因

4.1.1 迈龙高分异二长花岗岩

根据地球化学成分和形成环境,花岗岩通常可以分为M型、I型、S型和A型花岗岩(Whalen et al., 1987).二长花岗岩εHft)同位素变化很大,并且含有少量的继承锆石,因此可以排除M型花岗岩的可能.样品具有高SiO2(71.86%~74.37%)、富K2O(4.67%~5.81%),贫CaO(0.96%~2.00%)、MgO(0.20%~0.49%)、低Fe2O3T(1.05%~2.36%)、TiO2(0.07%~0.24%)、P2O5(0.06%~0.07%)的特点,且样品具有较高的分异指数DI(84.99~90.55)和较低的固结指数SI(2.32~5.51),反映了岩石经历了高程度的分异演化作用.此外,二长花岗岩具有较低的FeOT/MgO(3.26~8.7,平均值为5.5)和的10 000×Ga/Al(2.0~2.7,平均值为2.2),Zr、Nb、Ce、Yb等高场强元素含量较低,Zr+Nb+Ce+Y值在93×10-6~428×10-6之间(平均值为283×10-6),大部分样品低于A型花岗岩的下限值(10 000×Ga/Al值为2.6、Zr+Nb+Ce+Y值为350×10-6),在A型花岗岩判别图解中(图10a~10c),落入I与A型花岗岩区域,但与吴福元等提出的高分异I/S型花岗岩演化趋势一致.迈龙二长花岗岩在镜下观察未见典型

的富铝矿物(白云母、堇青石和石榴子石等)和其他暗色碱性矿物,暗色矿物主要为黑云母,铝饱和指数A/CNK值(1.01~1.08)也不高,且Y和Rb含量呈明显的正相关关系(图10d),说明该其不是S型花岗岩.综上所述,本文认为迈龙二长花岗岩为高分异I型花岗岩.

研究表明,高分异I型花岗岩的成因主要有以下两种:(1)幔源岩浆底侵下地壳,发生部分熔融的壳源长英质岩浆结晶而成(Xiong et al., 2014Wang et al., 2014);(2)幔源的镁铁质岩浆底侵作用诱发下地壳物质发生部分熔融,下地壳的长英质岩浆和地幔的镁铁质岩浆之间的混合或同化(Clemens et al., 2011Castro, 2013).迈龙二长花岗岩具有较低的MgO含量(0.20%~0.49%)和Mg#(18~38,平均为27),并可见1 443 Ma的继承锆石,所以二长花岗岩的源区岩浆可能来源自于古老地壳的部分熔融.但其变化范围很大的εHft)(-9.2~12.7)和T2DM(Hf)(592~1 805 Ma)说明了迈龙二长花岗岩还受到一定程度的幔源物质的混染.因此笔者建议二长花岗岩形成于下地壳的长英质岩浆和少量地幔的镁铁质岩浆之间的混合或同化,并提供以下证据:(1)野外可见二长花岗岩中发育有暗色微粒包体(图3d);(2)二长花岗岩的不相容元素比值具有较大的变化范围,Nb/Ta比值为7.5~22.4(平均为13.7),介于地壳值(8~12)(Rudnick and Gao, 2003)与地幔值(17.5)(Sun and McDonough, 1989)之间,表明其并非起源于单一源区的部分熔融;(3)在Rb/Sr-Rb、La/Sm-La、1/V-Rb/V和Rb/La-Zr/Th图解中(图11),二长花岗岩的地球化学变化趋势与岩浆混合模型一致(Schiano et al., 2010),与沟里地区由岩浆混合作用形成的花岗岩具有一致的趋势(Dong et al., 2018Fu et al., 2022),并具有相似的地球化学成分和Hf同位素范围(图9);(4)而根据混合模型的要求,镁铁质端元是岩浆混合过程中重要的组成部分.这些镁铁质端元可以来自富集或者亏损的岩石圈地幔,富集岩石圈地幔的镁铁质端元的加入将导致形成具有低SiO2和高MgO含量的岩体,与本文的二长花岗岩不符,因此,岩浆混合的镁铁质单元应该为亏损的岩石圈地幔,其形成可能与原特提斯洋俯冲形成的熔体交代地幔楔熔融有关(Fu et al., 2022).研究区附近也发现了受俯冲板片流体交代地幔部分熔融形成的基性岩墙(438~436 Ma),并可能作为混合模式的基性端元(任军虎等, 2009; 刘彬等, 2013; Zhang et al., 2014).

然而,如果二长花岗岩仅仅是下地壳的长英质岩浆和少量地幔的镁铁质岩浆之间的混合并不能完全解释样品目前的主微量元素地球化学特征.本文的二长花岗岩具有较低的MgO、P2O5、高场强元素(Ba、Nb、Sr、Ti、Eu)含量,表明二长花岗岩原始岩浆可能经历了分离结晶作用(Dong et al., 2018).在哈克图解(图7)中显示MgO、Al2O3、Fe2O3T、Na2O、TiO2、P2O5、CaO与SiO2大致成反比关系,指示可能存在角闪石、黑云母、斜长石和磷灰石的分离结晶,Eu的负异常及镜下鉴定中未见角闪石和少量黑云母也支持这一观点.Nb、Ta和Ti的亏损可能是导致由于含钛矿物的分离结晶,Ba、Sr和Eu的亏损可能需要大量斜长石和钾长石的分离结晶.故本文的迈龙二长花岗岩的形成过程可以概括为:少量的幔源镁铁质岩浆和下地壳长英质岩浆在地壳深部混合,壳幔混源的母岩浆在上升过程中经历高程度的分离结晶作用.

4.1.2 迈龙埃达克质花岗闪长岩

迈龙花闪长岩具有较高的Sr含量(359×10-6~468×10-6),低Y(4.80×10-6~13.0×10-6)和Yb含量(0.83×10-6~0.95×10-6),以及高Sr/Y(33.2~87.5,平均值为49.5)和(La/Yb)N比值(11.6~43.7平均值为14.78)(图12a, 12b),表现出埃达克质岩石的特征(Stern and Kilian, 1996Petford and Atherton, 1996).关于埃达克质岩石的成因有以下几种解释:(1)玄武质岩浆的分离结晶作用(Li et al.,2009);(2)岩浆混合作用(Sun et al., 2010Fu et al., 2016);(3)拆沉玄武质下地壳熔融(Jenkyns et al., 2004Wang et al., 2006Huang et al., 2008);(4)加厚下地壳部分熔融(Condie, 2005Wang et al., 2007Huang et al., 2008);(5)俯冲洋壳部分熔融(Defant and Drummond, 1990).

玄武质岩浆分离结晶形成的埃达克质岩石通常具有高Mg#(>60)以及Cr和Ni的特征(Wang et al., 2007),拆沉下地壳部分熔融所形成的埃达克质岩石的源区以古老地壳成分为主,但熔体在拆沉过程易与地幔橄榄岩交代,从而使熔体中具有较高的Cr、Ni和MgO含量,这与迈龙花岗闪长岩明显不一致(Mg#平均为44,Cr含量为20×10-6~50×10-6,Ni含量为8×10-6~24×10-6),说明迈龙花岗闪长岩并不是由玄武质岩浆分离结晶和拆沉下地壳部分熔融所形成的.具有不同固体/液体分配系数(D)的不相容元素的模型已被认为是区分部分熔融(或岩浆混合)和分级结晶(图11)最有效的工具之一(Schiano et al., 2010).在La/Sm-La和Rb/Sr-Rb(CH/M-CH)的图解(图11a,11b),表明了迈龙地区埃达克质花岗闪长岩的化学变化在很大程度上受部分熔融或者岩浆混合过程控制,而不是受AFC作用控制.岩浆混合及幔源镁铁质端元的加入通常会导致熔体中SiO2含量低,MgO含量高.事实上,迈龙花岗闪长岩是具有高SiO2(68.13%~70.9%)、低MgO(0.69%~1.12%)和较低Mg#值(40~47)的特征,且未见暗色微粒包体(图3a),矿物中也不发育不平行结构,如斜长石的反环带结构、暗色矿物包裹浅色矿物等(图3b,3c).因此,迈龙花岗闪长岩不可能是由岩浆混合作用形成的.

根据以下证据,笔者得出迈龙花岗闪长岩是通过增厚下地壳部分熔融形成,而不是传统的俯冲板片成因:(1)迈龙花岗闪长岩具有高SiO2(68.13%~70.9%)、低MgO(0.69%~1.12%)含量和Mg#(平均为44)特征,微量元素蛛网图与REE模式图显示与下地壳一致(图7a,7b);(2)较高的Rb/Sr比值(0.20~0.37)和Th含量(1.70×10-6~19.1×10-6)表明了下地壳的重要贡献;(3)迈龙花岗闪长岩的Nb/Ta比值在5.6~21.5之间(平均10.13),与壳源岩石Nb/Ta比值一致(Nb/Ta=8~12)(Rudnick and Gao, 2003),远低于幔源岩石(Nb/Ta=17.5)(Sun and McDonough, 1989);(4)迈龙花岗闪长岩Th/Ce比值比较低,类似于增厚的下地壳产生的埃达克质岩石(Wang et al., 2007);(5)在Th/Ce-SiO2、Th-Rb/Sr、MgO-SiO2及Mg#-SiO2图解中,花岗闪长岩样品投点落入增厚下地壳部分熔融形成的埃达克质岩石区域中(图13a~13d);(6)前人通过高温高压实验表明,埃达克质熔体的Nb、Ta、Ti等元素的亏损是源区由于石榴石和金红石残留所导致的,这要求至少1.5 GPa的压力(地壳厚度达到50 km)和温度在750~950 ℃之间.本文通过对花岗闪长岩(La/Yb)N比值定量估算模型得出当时地壳厚度为45.45~73.72 km(平均值为55.52 km,大于平均地壳厚度40 km)(Profeta et al., 2015),说明当时的东昆北地体下地壳已经增厚,花岗闪长岩各样品的锆石饱和温度计算结果为773~857 ℃(平均为811 ℃),达到了增厚下地壳部分熔融的温度条件(Xiong, 2006).

迈龙花岗闪长岩样品的εHft)值(-4.9~-0.7),两阶段模式年龄T2DM(Hf)为1 559~1 322 Ma,与东昆仑造山带古老基底小庙组的锆石U-Pb年龄不完全一致(1.4~2.5 Ga)(陈有炘等, 2011),而样品εHft)值与东昆仑地区古老基底来源的花岗岩(935~914 Ma,εHft)为-4.53~+1.52)接近,且本样品中出现的继承锆石年龄为903~851 Ma.表明花岗闪长岩源区可能来源于古老基底被改造后的新生下地壳(He et al., 2018).此外,通过Sr/Y-Y和(La/Yb)N-YbN图解可以确定源区的残留相特征,在图12a和12b两个图解中迈龙花岗闪长岩均落入石榴子石角闪岩相平衡演化线附近,指示源区含石榴子石角闪岩相.

在岩石哈克图解中,显示MgO、Al2O3、Fe2O3T、Na2O、TiO2、P2O5、CaO与SiO2大致成反比关系(图7),指示岩浆过程中可能存在黑云母、斜长石、钛铁矿和磷灰石等矿物的分离结晶.综上所述,迈龙埃达克质花岗闪长岩的形成过程可以概括为:增厚新生下地壳的部分熔融形成了具有高Sr/Y和(La/Yb)N的埃达克质岩浆,其源区可能为含石榴石角闪岩相.岩浆在上升的过程中经历一定程度的分离结晶.

4.2 成岩的地球动力学背景

昆中断裂带是东昆仑造山带中一条复杂的缝合带,发育有与原特提斯洋有关的新元古代晚期-早古生代蛇绿岩.根据前人对昆中缝合带以及邻近地区的早古生代蛇绿岩(522~509 Ma)的研究,大多数学者认为早古生代的构造背景可能是以多岛弧和小洋盆沟-弧构造为特征,而昆中洋(原特提斯洋分支)便是该地质历史时期的一个小洋盆.昆中洋(原特提斯洋分支)的打开大约发生在新元古代晚期(祁晓鹏等, 2016),并在早寒武世(512 Ma)开始向北俯冲(Li et al., 2018),随后产生了一系列弧岩浆岩(485~440 Ma)(崔美慧等, 2011; Li et al., 2015; Xiong et al., 2015; Zhou et al., 2016; Yu et al., 2017; Dong et al., 2018).432~428 Ma的柯石英榴辉岩表明昆中洋已经闭合并演化到碰撞阶段(Bi et al., 2020,2022),但是目前关于东昆仑造山带早古生代碰撞造山的开始以及碰撞造山的演化过程仍然存在争议:(1)一种观点认为昆中洋在晚奥陶世闭合随后开始进入陆陆碰撞阶段,在早志留世进入后碰撞伸展阶段(莫宣学等, 2007; 王晓霞等, 2012; Fu et al., 2022);(2)另一种观点认为昆中洋在晚奥陶世-早志留世仍未闭合,最终闭合时间为中志留世,经历一个快速陆陆碰撞阶段后在晚志留世进入后碰撞伸展阶段(高晓峰等, 2010; Zhao et al., 2022).结合前人研究(变质作用、岩浆活动和沉积事件)以及本文数据的分析,笔者认为东昆仑造山带早古生代同碰撞造山阶段开始于约438 Ma,并在427~425 Ma之间受控于板片断裂,由同碰撞向后碰撞阶段转换.因此,东昆仑地区早古生代碰撞造山大致分为两个阶段的演化:(1)同碰撞阶段(440~427 Ma);(2)后碰撞伸展阶段(<427 Ma).

4.2.1 同碰撞阶段的开始时间

近年来在东昆北地体中发现出露了多处榴辉岩(440~425 Ma),其形成与陆壳俯冲变形作用有关,并构成了一条高压-超高压变质带(贾丽辉等, 2014; 孟繁聪等, 2015; 祁晓鹏等, 2016; Song et al., 2018).大陆碰撞开始的时间为洋壳闭合后两个大陆的拼贴开始,大陆俯冲发生超高压变质还需要一定的时间(宋述光等, 2015),因此东昆北地体与东昆南地体的初始碰撞时间应该可能大于440 Ma.本文的迈龙二长花岗岩具有较低的Nb和Yb含量,与岛弧花岗岩和同碰撞花岗岩类似.在Rb-(Ta+Yb)和Rb-(Yb+Nb)构造判别图解中,落在同碰撞花岗岩区域(图14a,14b),指示二长花岗岩形成于造山过程中的同碰撞构造环境.此外,二长花岗岩的锆石U-Pb年龄为早志留世(438 Ma),与前人发现最晚的与俯冲有关的弧花岗岩年龄(438 Ma)(刘彬等, 2013)和最年轻的壳型榴辉岩的变质年龄(440 Ma)(国显正等, 2018)相近,表明至少在早志留世(440 Ma)昆中洋(原特提斯洋分支)已经基本处于闭合状态(图15b).此时同碰撞造山阶段开始,东昆南地体与东昆北地体碰撞拼贴,形成了一系列与同碰撞作用有关的岩浆-构造活动(440~427 Ma),包括438~432 Ma的S型花岗岩(Zhang et al., 2014)和432~427 Ma形成的高压-超高压变质岩(Bi et al., 2020,2022).

4.2.2 同碰撞阶段到后碰撞阶段的构造体制转换时限

最近的研究发现,科赫特榴辉岩伴生的云母片岩(427 Ma)中发现了柯石英包裹体(Song et al., 2018Bi et al., 2020),表明陆壳可能俯冲至100~120 km深处.同时含柯石英云母片岩(427 Ma)具有顺时针型P-T轨迹(指从650~720 °C时3.0 GPa的峰值条件到650~700 °C时1.0 GPa的逆行条件,再到500~580°C时0.3~0.6 GPa低压条件的转变)(Bi et al., 2022),而东昆仑造山带发育的420~410 Ma退变质榴辉岩温压条件为550 °C和0.7 GPa(Song et al., 2018),说明了在427~410 Ma期间大陆岩石圈物质发生了折返,指示了东昆仑造山带同碰撞阶段在427 Ma左右就已经结束.A2型花岗岩通常被认为起源于地壳,就位于后碰撞伸展环境,反映局部或者区域尺度上的伸展环境(Eby, 1992Wu et al., 2002).东昆仑造山带广泛发育的A2型花岗岩(425~385 Ma)(Chen et al., 2020),指示东昆仑造山带在425 Ma可能已经进入后碰撞伸展阶段.区域上形成于后碰撞环境的毛牛山组的磨拉石建造(423~400 Ma)也支持了这一观点.因此笔者认为同碰撞到后碰撞阶段的转换时间在427~425 Ma之间.

软流圈地幔上涌可能是造成后碰撞阶段大范围A2型花岗岩的原因(图15c),并得到了同时期的镁铁质-超镁铁质岩(426~393 Ma)的支持(Peng et al., 2016Zhang et al., 2017Yan et al., 2019).而引发软流圈地幔上涌的因素包括加厚的岩石圈拆沉(Sun et al., 2017)和俯冲板片断离(Dokuz, 2011).岩石圈拆沉引发的岩浆活动通常呈现面状分布特征,与板片断离引起线性岩浆作用不同,且板片断离将导致地壳快速抬升(Xu et al., 2006Dokuz, 2011).以下证据表明俯冲板片的断离可能是造成软流圈上涌最合理的模型:(1)东昆仑地区的后碰撞岩浆活动大多沿东昆北地体呈NW-SE向展布,表现出狭窄的线性分布特征(刘彬等, 2023);(2)牦牛山组的磨拉石建造(423~400 Ma)指示了东昆仑地区的存在大陆地壳的快速隆升作用(Li et al., 2020);(3)在东昆仑三通沟地区发现的高镁闪长岩-花岗闪长岩(427 Ma)是板片断离的产物(Zhang et al., 2014);(4)地壳厚度未出现急速的减薄趋势(图16a).由此推断,俯冲板片的断离(并伴随着低密度的大陆地壳折返)引发了幔源物质的上涌,诱发了增厚下地壳的部分熔融形成了本文的迈龙晚志留世埃达克质岩石,并造成了区域上镁铁-超镁铁质岩以及A型花岗岩的侵入.

综上所述,结合区域地质资料,迈龙二长花岗岩形成于同碰撞的环境中,迈龙花岗闪长岩形成于同碰撞阶段向后碰撞伸展阶段转换的环境中.东昆仑地区至少在早志留世(440 Ma)进入同碰撞阶段,经历一个快速大陆碰撞期(440~427 Ma),并在427~425 Ma之间开始由同碰撞阶段向后碰撞伸展阶段转换,而俯冲板块断离是造成这种构造转换的合理模型.

4.3 地壳厚度变化与构造演化关系

某些矿物相的稳定性受压力影响较大,其相容元素与不相容元素的含量或比值可以指示岩浆源区的压力条件,从而反映岩浆源区深度,并以此提出了很多地壳厚度指标,如(La/Yb)N和 Sr/Y 比值(Profeta et al., 2015).本文利用(La/Yb)N比值估算岩浆作用时期的地壳厚度(图15a)(Profeta et al., 2015),并结合Hf同位素随时间的变化反映早古生代构造演化.同时为了尽可能地减少岩浆混合、混染和分离结晶等作用对其地球化学数据的影响,本文引用前人数据时将计算地壳厚度的岩浆地球化学数据进行了含量限制,即SiO2为55%~70%、MgO<6%及0.05<Rb/Sr<0.20.

图16(a)显示,东昆仑造山带在480~380 Ma期间表现出地壳厚度由增厚逐渐减薄,反映出俯冲-碰撞的构造演化过程.其中,在480~427 Ma期间发生了地壳显著增厚,且εHft)值同步升高(图16b)可能与原特提斯洋俯冲形成的熔体交代地幔楔部分熔融有关,之后由于地壳增厚阻碍了俯冲洋壳或软流圈到中上长英质大陆地壳的物质输入,εHft)值开始同步降低.在427 Ma左右地壳厚度开始逐渐减薄,表明此时东昆仑造山带开始由同碰撞向后碰撞环境转换,此阶段εHft)值的升高与板块断离引起的软流圈广泛上涌有关(图16b).

5 结论

(1)东昆仑沟里地区迈龙二长花岗岩和花岗闪长岩的LA-ICP-MS锆石U-Pb年龄为438±3 Ma和426±2 Ma,指示二长花岗岩和花岗闪长岩分别侵位于早志留世和晚志留世.

(2)迈龙二长花岗岩具有高分异I型花岗岩的地球化学特征,其形成与下地壳的长英质岩浆和少量地幔的镁铁质岩浆之间的混合有关,岩浆上升过程中伴随着角闪石、黑云母、斜长石和磷灰石等的分离结晶;迈龙花岗闪长岩具有埃达克质岩石的特征,形成与增厚新生下地壳部分熔融有关,岩浆在上升过程中也经历一定程度的分离结晶,其源区残留物可能为含石榴石角闪岩相的岩石.

(3)结合区域地质资料,迈龙二长花岗岩形成于同碰撞的环境中,迈龙花岗闪长岩形成于同碰撞阶段向后碰撞伸展阶段转换的环境中.东昆仑地区至少在早志留世(440 Ma)进入同碰撞阶段,经历一个快速大陆碰撞期(440~427 Ma),并在427~425 Ma之间开始由同碰撞阶段向后碰撞伸展阶段转换,而俯冲板块断离是造成这种构造转换的合理模型.

(4)东昆仑造山带在480~380 Ma之间表现出地壳的增厚到减薄的一个过程,与原特提斯洋在早古生代时期俯冲至同碰撞-后碰撞演化进程一致.

参考文献

[1]

Andersen, T., 2002. Correction of Common Lead in U–Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X

[2]

Bi, H. Z., Song, S. G., Yang, L. M., et al., 2020. UHP Metamorphism Recorded by Coesite-Bearing Metapelite in the East Kunlun Orogen (NW China). Geological Magazine, 157(2): 160-172. https://doi.org/10.1017/s0016756819000529

[3]

Bi, H. Z., Whitney, D. L., Song, S. G., et al., 2022. HP-UHP Eclogites in the East Kunlun Orogen, China: P-T Evidence for Asymmetric Suturing of the Proto-Tethys Ocean. Gondwana Research, 104: 199-214. https://doi.org/10.1016/j.gr.2021.04.008

[4]

Castro, A., 2013. Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis. Earth-Science Reviews, 124: 68-95. https://doi.org/10.1016/j.earscirev.2013.05.006

[5]

Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863-1882 (in Chinese with English abstract).

[6]

Chen, J. J., Fu, L. B., Wei, J. H., et al., 2020. Proto-Tethys Magmatic Evolution along Northern Gondwana: Insights from Late Silurian-Middle Devonian A-Type Magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos, 356: 105304. https://doi.org/10.1016/j.lithos.2019.105304

[7]

Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006

[8]

Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521 (in Chinese with English abstract).

[9]

Clemens, J. D., Stevens, G., Farina, F., 2011. The Enigmatic Sources of I-Type Granites: The Peritectic Connexion. Lithos, 126(3-4): 174-181. https://doi.org/10.1016/j.lithos.2011.07.004

[10]

Condie, K. C., 2005. TTGS and Adakites: Are They Both Slab Melts? Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001

[11]

Cui, M.H., Meng, F.C., Wu, X.K., 2011. Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun: Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks. Acta Petrologica Sinica, 27(11): 3365-3379 (in Chinese with English abstract).

[12]

Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0

[13]

Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006

[14]

Dong, G. C., Luo, M. F., Mo, X. X., et al., 2018. Petrogenesis and Tectonic Implications of Early Paleozoic Granitoids in East Kunlun Belt: Evidences from Geochronology, Geochemistry and Isotopes. Geoscience Frontiers, 9(5): 1383-1397. https://doi.org/10.1016/j.gsf.2018.03.003

[15]

Dong, Y. P., Sun, S. S., He, D. F., et al., 2024. Early Paleozoic Back-Arc Basin in the East Kunlun Orogen, Northern Tibetan Plateau: Insight from the Wutumeiren Ophiolitic Mélange. Lithos, 464: 107460. https://doi.org/10.1016/j.lithos.2023.107460

[16]

Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020&lt;0641: CSOTAT&gt;2.3.CO;2

[17]

Feng, D., Wang, C., Song, S. G., et al., 2023. Tracing Tectonic Processes from Proto- to Paleo-Tethys in the East Kunlun Orogen by Detrital Zircons. Gondwana Research, 115: 1-16. https://doi.org/10.1016/j.gr.2022.11.003

[18]

Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033

[19]

Fu, L.B., Bagas, L., Wei, J. H., et al., 2022. Growth of Early Paleozoic Continental Crust Linked to the Proto-Tethys Subduction and Continental Collision in the East Kunlun Orogen, Northern Tibetan Plateau. Geological Society of America Bulletin, 135(7-8):1709-1733.

[20]

Fu, L. B., Wei, J. H., Tan, J., et al., 2016. Magma Mixing in the Kalaqin Core Complex, Northern North China Craton: Linking Deep Lithospheric Destruction and Shallow Extension. Lithos, 260: 390-412. https://doi.org/10.1016/j.lithos.2016.06.018

[21]

Gao, X.F., Xiao, P.X., Xie, C.R., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China. Geological Bulletin of China, 29(7): 1001-1008 (in Chinese with English abstract).

[22]

Guo, F., Wang, P.X., Bian, X.D., et al., 2020. Geochronological and Geochemical Characteristics and Geological Significance of the Monzogranite in Xiarihamu Area of East Kunlun. Geological Survey of China, 7(6): 51-60 (in Chinese with English abstract).

[23]

Guo, X.Z., Jia, Q.Z., Li, J.C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12): 4300-4318 (in Chinese with English abstract).

[24]

Han, Z.H., Sun, F.Y., Tian, N., et al., 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30 (in Chinese with English abstract).

[25]

He, D. F., Dong, Y. P., Liu, X. M., et al., 2016. Tectono-Thermal Events in East Kunlun, Northern Tibetan Plateau: Evidence from Zircon U-Pb Geochronology. Gondwana Research, 30: 179-190. https://doi.org/10.1016/j.gr.2015.08.002

[26]

He, D. F., Dong, Y. P., Liu, X. M., et al., 2018. Zircon U-Pb Geochronology and Hf Isotope of Granitoids in East Kunlun: Implications for the Neoproterozoic Magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Research, 314: 377-393. https://doi.org/10.1016/j.precamres.2018.06.017

[27]

Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027

[28]

Hu, Y. M., Li, X. W., Mo, X. X., et al., 2023. Early Paleozoic Subduction Imprints of the Proto-Tethys Ocean: Evidence from the Appinite-Diorite-Granodiorite Complex in East Kunlun, Northern Tibet. Lithos, 452-453: 107215. https://doi.org/10.1016/j.lithos.2023.107215

[29]

Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/C2JA30078H

[30]

Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1-2): 1-13. https://doi.org/10.1016/j.chemgeo.2008.02.014

[31]

Jenkyns, H. C., Forster, A., Schouten, S., et al., 2004. High Temperatures in the Late Cretaceous Arctic Ocean. Nature, 432(7019): 888-892. https://doi.org/10.1038/nature03143

[32]

Jia, L.H., Meng, F.C., Feng, H.B., 2014. Fluid Activity during Eclogite-Facies Peak Metamorphism: Evidence from a Quartz Vein in Eclogite in the East Kunlun, NW China. Acta Petrologica Sinica, 30(8): 2339-2350 (in Chinese with English abstract).

[33]

Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x

[34]

Li, R. B., Pei, X. Z., Li, Z. C., et al., 2015. Geochemistry and Zircon U–Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution. Journal of Asian Earth Sciences, 105: 374-389. https://doi.org/10.1016/j.jseaes.2015.02.004

[35]

Li, R. B., Pei, X. Z., Li, Z. C., et al., 2018. Cambrian (~510 Ma) Ophiolites of the East Kunlun Orogen, China: A Case Study from the Acite Ophiolitic Tectonic Mélange. International Geology Review, 60(16): 2063-2083. https://doi.org/10.1080/00206814.2017.1405366

[36]

Li, R. B., Pei, X. Z., Li, Z. C., et al., 2020. Late Silurian to Early Devonian Volcanics in the East Kunlun Orogen, Northern Tibetan Plateau: Record of Postcollisional Magmatism Related to the Evolution of the Proto-Tethys Ocean. Journal of Geodynamics, 140: 101780. https://doi.org/10.1016/j.jog.2020.101780

[37]

Li, R. B., Pei, X. Z., Wei, B., et al., 2019. Constraints of Late Cambrian Mafic Rocks from the Qushi’ang Ophiolite on a Back-Arc System in a Continental Margin, East Kunlun Orogen, Western China. Journal of Asian Earth Sciences, 169: 117-129. https://doi.org/10.1016/j.jseaes.2018.08.006

[38]

Li, Y. J., Gao, Y. J., Zhou, H., et al., 2023. Early Paleozoic Collision-Related Structures in the Tarim Craton, NW China: Implications for the Proto-Tethys Evolution. Journal of Asian Earth Sciences, 241: 105458. https://doi.org/10.1016/j.jseaes.2022.105458

[39]

Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106 (in Chinese with English abstract).

[40]

Liu, B., Wu, L.H., Ma, C.Q., et al., 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414 (in Chinese with English abstract).

[41]

Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004

[42]

Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0

[43]

Meng, F.C., Cui, M.H., Jia, L.H., et al., 2015. Paleozoic Continental Collision of the East Kunlun Orogen: Evidence from Protoliths of the Eclogites. Acta Petrologica Sinica, 31(12): 3581-3594 (in Chinese with English abstract).

[44]

Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9

[45]

Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract).

[46]

Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745

[47]

Peng, B., Sun, F. Y., Li, B. L., et al., 2016. The Geochemistry and Geochronology of the Xiarihamu II Mafic-Ultramafic Complex, Eastern Kunlun, Qinghai Province, China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits. Ore Geology Reviews, 73: 13-28. https://doi.org/10.1016/j.oregeorev.2015.10.014

[48]

Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491

[49]

Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786

[50]

Qi, X.P., Fan, X.G., Yang, J., et al., 2016. The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance. Geological Bulletin of China, 35(11): 1771-1783 (in Chinese with English abstract).

[51]

Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145 (in Chinese with English abstract).

[52]

Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta Supplement, 67(18): 403.

[53]

Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2

[54]

Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089

[55]

Song, S. G.;Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Scientia Sinica (Terrae), 45(7): 916-940 (in Chinese).

[56]

Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155

[57]

Sun, J., Qian, Y., Li, Y., et al., 2021. Intermittent Subduction of the Paleo-Tethys Ocean in the Middle-Late Permian: Evidence from the Mafic-Intermediate Intrusive Rocks in the East Kunlun Orogenic Belt. Australian Journal of Earth Sciences, 68(2): 229-244. https://doi.org/10.1080/08120099.2020.1764623

[58]

Sun, J. F., Yang, J. H., Wu, F. Y., et al., 2010. Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Granitic Pluton, North China Craton: In Situ U-Pb Age and Sr-, Nd-, Hf- and O-Isotope Evidence. Lithos, 120(3/4): 421-438. https://doi.org/10.1016/j.lithos.2010.09.002

[59]

Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006

[60]

Sun, S. S., McDonough, W. F., et al., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[61]

Tong, H.K., Long, L.L., Wang, Y.W., et al., 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369 (in Chinese with English abstract).

[62]

Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001

[63]

Wang, B.Z., Zhang, J.M., Li, W.F., et al., 2023. Discovery of Two Stages of the Early Paleozoic Adakitic Intrusive Rocks in the Kunlun River Area, East Kunlun: Implications for Collisional Orogenic Processes. Acta Petrologica Sinica, 39(3): 763-784 (in Chinese with English abstract).

[64]

Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643

[65]

Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070

[66]

Wang, X. S., Bi, X. W., Leng, C. B., et al., 2014. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006

[67]

Wang, X.X., Hu, N.G., Wang, T., et al., 2012. Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin: Zircon SHRIMP U-Pb Age, Hf Isotope and Geochemistry. Acta Petrologica Sinica, 28(9): 2950-2962 (in Chinese with English abstract).

[68]

Wang, Y. L., Xue, S. C., Wang, X. M., et al., 2023. PGE Geochemical and Os-S-Sr-Nd Isotopic Constraints on the Genesis of the Shitoukengde Magmatic Sulfide Deposit in the East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 156: 105396. https://doi.org/10.1016/j.oregeorev.2023.105396

[69]

Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X

[70]

Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202

[71]

Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9

[72]

Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract).

[73]

Wu, F.Y., Liu, X. C., Ji, W.Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765 (in Chinese).

[74]

Xiong, F. H., Ma, C. Q., Wu, L., et al., 2015. Geochemistry, Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of an Ordovician Appinitic Pluton in the East Kunlun Orogen: New Evidence for Proto-Tethyan Subduction. Journal of Asian Earth Sciences, 111: 681-697. https://doi.org/10.1016/j.jseaes.2015.05.025

[75]

Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038

[76]

Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945. https://doi.org/10.1130/g22711a.1

[77]

Xu, Z. H., Xin, W., Zhou, X. D., et al., 2023. Triassic Granitoids in the East Kunlun Orogenic Belt, Northwestern China: Magmatic Source and Implications for Geodynamic Evolution. International Geology Review, 65(7): 983-999. https://doi.org/10.1080/00206814.2020.1848647

[78]

Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160-173. https://doi.org/10.1016/j.jseaes.2005.09.016

[79]

Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract).

[80]

Yan, J. M., Sun, G. S., Sun, F. Y., et al., 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis. Journal of Earth Science, 30(2): 335-347. https://doi.org/10.1007/s12583-018-1203-8

[81]

Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9

[82]

Yu, M., Feng, C. Y., Santosh, M., et al., 2017. The Qiman Tagh Orogen as a Window to the Crustal Evolution in Northern Qinghai-Tibet Plateau. Earth-Science Reviews, 167: 103-123. https://doi.org/10.1016/j.earscirev.2017.02.008

[83]

Zhang, J. Y., Lei, H. L., Ma, C. Q., et al., 2021. Silurian-Devonian Granites and Associated Intermediate-Mafic Rocks along the Eastern Kunlun Orogen, Western China: Evidence for a Prolonged Post-Collisional Lithospheric Extension. Gondwana Research, 89: 131-146. https://doi.org/10.1016/j.gr.2020.08.019

[84]

Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003

[85]

Zhang, Z. W., Tang, Q. Y., Li, C. S., et al., 2017. Sr-Nd-Os-S Isotope and PGE Geochemistry of the Xiarihamu Magmatic Sulfide Deposit in the Qinghai-Tibet Plateau, China. Mineralium Deposita, 52(1): 51-68. https://doi.org/10.1007/s00126-016-0645-0

[86]

Zhao, X., Fu, L. B., Santosh, M., et al., 2022. The Growth and Evolution of Continental Crust Contributed by Multiple Sources in the East Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233: 104190. https://doi.org/10.1016/j.earscirev.2022.104190

[87]

Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360: 105446. https://doi.org/10.1016/j.lithos.2020.105446

[88]

Zhou, B., Dong, Y. P., Zhang, F. F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011

[89]

Zhou, H.Z., Wei, J.H., Shi, W.J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated I-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164 (in Chinese with English abstract).

基金资助

国家自然科学基金项目(42172084)

AI Summary AI Mindmap
PDF (9297KB)

87

访问

0

被引

详细

导航
相关文章

AI思维导图

/