东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义
李斌 , 魏俊浩 , 高强 , 赖联新 , 李笑龙 , 张声桃 , 杜玉梅
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1417 -1442.
东昆仑东段沟里地区早古生代迈龙花岗岩年代学、岩石地球化学及地质意义
Geochronology, Geochemical Characteristics and Geological Significance of Early Paleozoic Mailong Granites in Eastern Section of East Kunlun
,
东昆仑造山带志留纪的岩浆岩对于确定原特提斯洋的碰撞演化过程具有重要意义.通过对东昆仑造山带东段沟里地区出露的迈龙二长花岗岩及花岗闪长岩开展岩相学、年代学、地球化学和锆石Hf同位素研究,探讨岩石成因及其形成的构造背景.结果表明,二长花岗岩和花岗闪长岩年龄分别为438±3 Ma和426±2 Ma,指示侵位时代为早志留世和晚志留世.二长花岗岩具有高硅(SiO2=71.86%~74.37%)、富钾(K2O=4.67%~5.81%)、贫钙、镁、钛和磷和弱过铝质(A/CNK=1.01~1.08),较富集大离子亲石元素(K、Rb、Sr、U和Th),亏损高场强元素(HFSE,如Nb、Ta和Ti)等特征,以及负Eu异常特征,锆石εHf(t)值在-9.2~12.7之间,二阶段模式年龄T2DM(Hf)为1 805~592 Ma.花岗闪长岩具有高铝(Al2O3=15.90%~17.12%)、高锶(Sr=359×10-6~468×10-6)、低钇、高Sr/Y(33.2~87.5)和(La/Yb)N(11.6~43.7)比值等特征.岩石稀土元素总量较低,轻重稀土分异明显,富集大离子亲石元素(LILE;Rb、K、Sr、Th、U),亏损Ba、Nb、Ta、P、Ti等元素,具有正Eu异常特征,锆石εHf(t)为-4.9~-0.7,二阶段模式年龄T2DM(Hf)为1 559~1 322 Ma.迈龙二长花岗岩具有高分异I型花岗岩的特征,是下地壳长英质岩浆和少量地幔镁铁质岩浆混合后经历高程度分离结晶作用的产物;与前者不同的是,花岗闪长岩具有埃达克岩的特征,由加厚的新生下地壳部分熔融后经过一定程度分离结晶作用形成.结合区域上报道的最新资料,二长花岗岩和花岗闪长岩可能分别形成于同碰撞环境和同碰撞向后碰撞伸展的转换环境.东昆仑地区至少在早志留世(440 Ma)开始进入同碰撞阶段,经历一个快速大陆碰撞期(440~427 Ma),并在427~425 Ma之间由于板片断离而由碰撞阶段向后碰撞伸展阶段转换.
The Silurian magmatic rocks of the East Kunlun Orogen are of great significance in determining the collisional evolution process of the proto-Tethys Ocean. In this study, the petrographic, chronological, geochemical and Hf isotope analysis were carried out for Mailong granodiorite and monzogranite exposed in the Gouli area of the eastern section of the East Kunlun orogenic belt, and the rock genesis and formation were discussed accordingly construction background. The results show that the zircon weighted mean ages of Mailong monzonite and granodiorite are 438±3 Ma and 426±2 Ma, which indicated it was formed in Early Silurian and Late Silurian. The granodiorite is characterized by high silic, enrichment of alkaline, but depletion in calcium, magnesium, titanium and phosphorus. The A/CNK values range from 1.01 to 1.08.The rock is obviously enriched in large ion lithophile elements (LILE;K, Rb, Sr, U, Th etc.) and depleted in high field strength elements (HFSE; Nb, Ta, Ti etc.), with negative Eu anomalies. The zircon εHf (t) value has a wide range (from -3.54 to -0.56),and the two-stage mode age T2DM (Hf) is 1 805 to 592 Ma. The granodiorite is characterized by high aluminum, high strontium content, high Sr/Y and (La/Yb)N ratio and lower yttrium content. The total amount of rare earth elements in the rock is low, the differentiation between light and heavy rare earth elements is obvious, with positive Eu anomaly characteristics. εHf(t) ranges from -4.9 to -0.7, and the two-stage model age T2DM (Hf) is 1 559 to 1 332 Ma. The monzonite showing characteristics of highly fractionated I-type granites, it is formed by a high degree of separation and crystallization after the mixing of felsic magma in the lower crust and mafic magma in the mantle. But the granodiorite has the characteristics of adakite, it is formed by subsequent crystallization after partial melting of the thickened juvenile lower crust. Combining with new regional studies, the monzonite and granodiorite may have been formed in a syn-collision environment and a transition environment from syn-collision to post-collision extension. It proposes that the East Kunlun area began to enter the syn-collision stage at least in the Early Silurian (440 Ma), experiencing a period of rapid continental collision (440-427 Ma), and due to slab break-off began to transform from the syn-collision stage to the post-collision extension stage between 427 to 425 Ma.
东昆仑造山带 / 原特提斯洋 / 早古生代 / 地球化学 / 埃达克质岩石 / 岩石学.
East Kunlun orogenic belt / Proto-Tethys Ocean / Early Paleozoic / geochemistry / adakitic rock / petrology
| [1] |
Andersen, T., 2002. Correction of Common Lead in U–Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X |
| [2] |
Bi, H. Z., Song, S. G., Yang, L. M., et al., 2020. UHP Metamorphism Recorded by Coesite-Bearing Metapelite in the East Kunlun Orogen (NW China). Geological Magazine, 157(2): 160-172. https://doi.org/10.1017/s0016756819000529 |
| [3] |
Bi, H. Z., Whitney, D. L., Song, S. G., et al., 2022. HP-UHP Eclogites in the East Kunlun Orogen, China: P-T Evidence for Asymmetric Suturing of the Proto-Tethys Ocean. Gondwana Research, 104: 199-214. https://doi.org/10.1016/j.gr.2021.04.008 |
| [4] |
Castro, A., 2013. Tonalite-Granodiorite Suites as Cotectic Systems: A Review of Experimental Studies with Applications to Granitoid Petrogenesis. Earth-Science Reviews, 124: 68-95. https://doi.org/10.1016/j.earscirev.2013.05.006 |
| [5] |
Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016. Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province: Implications on the Evolution of Proto-Tethys Ocean. Earth Science, 41(11): 1863-1882 (in Chinese with English abstract). |
| [6] |
Chen, J. J., Fu, L. B., Wei, J. H., et al., 2020. Proto-Tethys Magmatic Evolution along Northern Gondwana: Insights from Late Silurian-Middle Devonian A-Type Magmatism, East Kunlun Orogen, Northern Tibetan Plateau, China. Lithos, 356: 105304. https://doi.org/10.1016/j.lithos.2019.105304 |
| [7] |
Chen, J. J., Wei, J. H., Fu, L. B., et al., 2017. Multiple Sources of the Early Mesozoic Gouli Batholith, Eastern Kunlun Orogenic Belt, Northern Tibetan Plateau: Linking Continental Crustal Growth with Oceanic Subduction. Lithos, 292: 161-178. https://doi.org/10.1016/j.lithos.2017.09.006 |
| [8] |
Chen, Y.X., Pei, X.Z., Li, R.B., et al., 2011. Zircon U-Pb Age of Xiaomiao Formation of Proterozoic in the Eastern Section of the East Kunlun Orogenic Belt. Geoscience, 25(3): 510-521 (in Chinese with English abstract). |
| [9] |
Clemens, J. D., Stevens, G., Farina, F., 2011. The Enigmatic Sources of I-Type Granites: The Peritectic Connexion. Lithos, 126(3-4): 174-181. https://doi.org/10.1016/j.lithos.2011.07.004 |
| [10] |
Condie, K. C., 2005. TTGS and Adakites: Are They Both Slab Melts? Lithos, 80(1-4): 33-44. https://doi.org/10.1016/j.lithos.2003.11.001 |
| [11] |
Cui, M.H., Meng, F.C., Wu, X.K., 2011. Early Ordovician Island Arc of Qimantag Mountain, Eastern Kunlun: Evidences from Geochemistry, Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks. Acta Petrologica Sinica, 27(11): 3365-3379 (in Chinese with English abstract). |
| [12] |
Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662-665. https://doi.org/10.1038/347662a0 |
| [13] |
Dokuz, A., 2011. A Slab Detachment and Delamination Model for the Generation of Carboniferous High-Potassium I-Type Magmatism in the Eastern Pontides, NE Turkey: The Köse Composite Pluton. Gondwana Research, 19(4): 926-944. https://doi.org/10.1016/j.gr.2010.09.006 |
| [14] |
Dong, G. C., Luo, M. F., Mo, X. X., et al., 2018. Petrogenesis and Tectonic Implications of Early Paleozoic Granitoids in East Kunlun Belt: Evidences from Geochronology, Geochemistry and Isotopes. Geoscience Frontiers, 9(5): 1383-1397. https://doi.org/10.1016/j.gsf.2018.03.003 |
| [15] |
Dong, Y. P., Sun, S. S., He, D. F., et al., 2024. Early Paleozoic Back-Arc Basin in the East Kunlun Orogen, Northern Tibetan Plateau: Insight from the Wutumeiren Ophiolitic Mélange. Lithos, 464: 107460. https://doi.org/10.1016/j.lithos.2023.107460 |
| [16] |
Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641-644. https://doi.org/10.1130/0091-7613(1992)020<0641: CSOTAT>2.3.CO;2 |
| [17] |
Feng, D., Wang, C., Song, S. G., et al., 2023. Tracing Tectonic Processes from Proto- to Paleo-Tethys in the East Kunlun Orogen by Detrital Zircons. Gondwana Research, 115: 1-16. https://doi.org/10.1016/j.gr.2022.11.003 |
| [18] |
Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033-2048. https://doi.org/10.1093/petrology/42.11.2033 |
| [19] |
Fu, L.B., Bagas, L., Wei, J. H., et al., 2022. Growth of Early Paleozoic Continental Crust Linked to the Proto-Tethys Subduction and Continental Collision in the East Kunlun Orogen, Northern Tibetan Plateau. Geological Society of America Bulletin, 135(7-8):1709-1733. |
| [20] |
Fu, L. B., Wei, J. H., Tan, J., et al., 2016. Magma Mixing in the Kalaqin Core Complex, Northern North China Craton: Linking Deep Lithospheric Destruction and Shallow Extension. Lithos, 260: 390-412. https://doi.org/10.1016/j.lithos.2016.06.018 |
| [21] |
Gao, X.F., Xiao, P.X., Xie, C.R., et al., 2010. Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China. Geological Bulletin of China, 29(7): 1001-1008 (in Chinese with English abstract). |
| [22] |
Guo, F., Wang, P.X., Bian, X.D., et al., 2020. Geochronological and Geochemical Characteristics and Geological Significance of the Monzogranite in Xiarihamu Area of East Kunlun. Geological Survey of China, 7(6): 51-60 (in Chinese with English abstract). |
| [23] |
Guo, X.Z., Jia, Q.Z., Li, J.C., et al., 2018. Zircon U-Pb Geochronology and Geochemistry and Their Geological Significances of Eclogites from East Kunlun High-Pressure Metamorphic Belt. Earth Science, 43(12): 4300-4318 (in Chinese with English abstract). |
| [24] |
Han, Z.H., Sun, F.Y., Tian, N., et al., 2021. Zircon U-Pb Geochronology, Geochemistry and Geological Implications of the Early Paleozoic Wulanwuzhuer Granites in the Qimantag, East Kunlun, China. Earth Science, 46(1): 13-30 (in Chinese with English abstract). |
| [25] |
He, D. F., Dong, Y. P., Liu, X. M., et al., 2016. Tectono-Thermal Events in East Kunlun, Northern Tibetan Plateau: Evidence from Zircon U-Pb Geochronology. Gondwana Research, 30: 179-190. https://doi.org/10.1016/j.gr.2015.08.002 |
| [26] |
He, D. F., Dong, Y. P., Liu, X. M., et al., 2018. Zircon U-Pb Geochronology and Hf Isotope of Granitoids in East Kunlun: Implications for the Neoproterozoic Magmatism of Qaidam Block, Northern Tibetan Plateau. Precambrian Research, 314: 377-393. https://doi.org/10.1016/j.precamres.2018.06.017 |
| [27] |
Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 |
| [28] |
Hu, Y. M., Li, X. W., Mo, X. X., et al., 2023. Early Paleozoic Subduction Imprints of the Proto-Tethys Ocean: Evidence from the Appinite-Diorite-Granodiorite Complex in East Kunlun, Northern Tibet. Lithos, 452-453: 107215. https://doi.org/10.1016/j.lithos.2023.107215 |
| [29] |
Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. https://doi.org/10.1039/C2JA30078H |
| [30] |
Huang, F., Li, S. G., Dong, F., et al., 2008. High-Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 255(1-2): 1-13. https://doi.org/10.1016/j.chemgeo.2008.02.014 |
| [31] |
Jenkyns, H. C., Forster, A., Schouten, S., et al., 2004. High Temperatures in the Late Cretaceous Arctic Ocean. Nature, 432(7019): 888-892. https://doi.org/10.1038/nature03143 |
| [32] |
Jia, L.H., Meng, F.C., Feng, H.B., 2014. Fluid Activity during Eclogite-Facies Peak Metamorphism: Evidence from a Quartz Vein in Eclogite in the East Kunlun, NW China. Acta Petrologica Sinica, 30(8): 2339-2350 (in Chinese with English abstract). |
| [33] |
Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383-409. https://doi.org/10.1007/s00410-008-0341-x |
| [34] |
Li, R. B., Pei, X. Z., Li, Z. C., et al., 2015. Geochemistry and Zircon U–Pb Geochronology of Granitic Rocks in the Buqingshan Tectonic Mélange Belt, Northern Tibet Plateau, China and Its Implications for Prototethyan Evolution. Journal of Asian Earth Sciences, 105: 374-389. https://doi.org/10.1016/j.jseaes.2015.02.004 |
| [35] |
Li, R. B., Pei, X. Z., Li, Z. C., et al., 2018. Cambrian (~510 Ma) Ophiolites of the East Kunlun Orogen, China: A Case Study from the Acite Ophiolitic Tectonic Mélange. International Geology Review, 60(16): 2063-2083. https://doi.org/10.1080/00206814.2017.1405366 |
| [36] |
Li, R. B., Pei, X. Z., Li, Z. C., et al., 2020. Late Silurian to Early Devonian Volcanics in the East Kunlun Orogen, Northern Tibetan Plateau: Record of Postcollisional Magmatism Related to the Evolution of the Proto-Tethys Ocean. Journal of Geodynamics, 140: 101780. https://doi.org/10.1016/j.jog.2020.101780 |
| [37] |
Li, R. B., Pei, X. Z., Wei, B., et al., 2019. Constraints of Late Cambrian Mafic Rocks from the Qushi’ang Ophiolite on a Back-Arc System in a Continental Margin, East Kunlun Orogen, Western China. Journal of Asian Earth Sciences, 169: 117-129. https://doi.org/10.1016/j.jseaes.2018.08.006 |
| [38] |
Li, Y. J., Gao, Y. J., Zhou, H., et al., 2023. Early Paleozoic Collision-Related Structures in the Tarim Craton, NW China: Implications for the Proto-Tethys Evolution. Journal of Asian Earth Sciences, 241: 105458. https://doi.org/10.1016/j.jseaes.2022.105458 |
| [39] |
Liu, B., Ma, C.Q., Jiang, H.A., et al., 2013. Early Paleozoic Tectonic Transition from Ocean Subduction to Collisional Orogeny in the Eastern Kunlun Region: Evidence from Huxiaoqin Mafic Rocks. Acta Petrologica Sinica, 29(6): 2093-2106 (in Chinese with English abstract). |
| [40] |
Liu, B., Wu, L.H., Ma, C.Q., et al., 2023. Petrogenesis and Tectonic Implications of Silurian to Devonian Intermediate Rocks from East Part of East Kunlun Orogenic Belt. Earth Science, 48(6): 2398-2414 (in Chinese with English abstract). |
| [41] |
Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 |
| [42] |
Martin, H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 46(3): 411-429. https://doi.org/10.1016/S0024-4937(98)00076-0 |
| [43] |
Meng, F.C., Cui, M.H., Jia, L.H., et al., 2015. Paleozoic Continental Collision of the East Kunlun Orogen: Evidence from Protoliths of the Eclogites. Acta Petrologica Sinica, 31(12): 3581-3594 (in Chinese with English abstract). |
| [44] |
Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215-224. https://doi.org/10.1016/0012-8252(94)90029-9 |
| [45] |
Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007. Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract). |
| [46] |
Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 |
| [47] |
Peng, B., Sun, F. Y., Li, B. L., et al., 2016. The Geochemistry and Geochronology of the Xiarihamu II Mafic-Ultramafic Complex, Eastern Kunlun, Qinghai Province, China: Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits. Ore Geology Reviews, 73: 13-28. https://doi.org/10.1016/j.oregeorev.2015.10.014 |
| [48] |
Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491 |
| [49] |
Profeta, L., Ducea, M. N., Chapman, J. B., et al., 2015. Quantifying Crustal Thickness over Time in Magmatic Arcs. Scientific Reports, 5: 17786. https://doi.org/10.1038/srep17786 |
| [50] |
Qi, X.P., Fan, X.G., Yang, J., et al., 2016. The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance. Geological Bulletin of China, 35(11): 1771-1783 (in Chinese with English abstract). |
| [51] |
Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009. LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt. Acta Petrologica Sinica, 25(5): 1135-1145 (in Chinese with English abstract). |
| [52] |
Rudnick, R., Gao, S., 2003. The Role of Lower Crustal Recycling in Continent Formation. Geochimica et Cosmochimica Acta Supplement, 67(18): 403. |
| [53] |
Schiano, P., Monzier, M., Eissen, J. P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160(2): 297-312. https://doi.org/10.1007/s00410-009-0478-2 |
| [54] |
Song, S. G., Bi, H. Z., Qi, S. S., et al., 2018. HP-UHP Metamorphic Belt in the East Kunlun Orogen: Final Closure of the Proto-Tethys Ocean and Formation of the Pan-North-China Continent. Journal of Petrology, 59(11): 2043-2060. https://doi.org/10.1093/petrology/egy089 |
| [55] |
Song, S. G.;Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Scientia Sinica (Terrae), 45(7): 916-940 (in Chinese). |
| [56] |
Stern, C. R., Kilian, R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123(3): 263-281. https://doi.org/10.1007/s004100050155 |
| [57] |
Sun, J., Qian, Y., Li, Y., et al., 2021. Intermittent Subduction of the Paleo-Tethys Ocean in the Middle-Late Permian: Evidence from the Mafic-Intermediate Intrusive Rocks in the East Kunlun Orogenic Belt. Australian Journal of Earth Sciences, 68(2): 229-244. https://doi.org/10.1080/08120099.2020.1764623 |
| [58] |
Sun, J. F., Yang, J. H., Wu, F. Y., et al., 2010. Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Granitic Pluton, North China Craton: In Situ U-Pb Age and Sr-, Nd-, Hf- and O-Isotope Evidence. Lithos, 120(3/4): 421-438. https://doi.org/10.1016/j.lithos.2010.09.002 |
| [59] |
Sun, L. Q., Ling, H. F., Shen, W. Z., et al., 2017. Petrogenesis of Two Triassic A-Type Intrusions in the Interior of South China and Their Implications for Tectonic Transition. Lithos, 284-285: 642-653. https://doi.org/10.1016/j.lithos.2017.05.006 |
| [60] |
Sun, S. S., McDonough, W. F., et al., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 |
| [61] |
Tong, H.K., Long, L.L., Wang, Y.W., et al., 2023. Metallogenic Characteristics of Langmuri Copper Polymetallic Deposit in East Kunlun and Its Ore Prospecting Enlightenment. Earth Science, 48(12): 4349-4369 (in Chinese with English abstract). |
| [62] |
Vermeesch, P., 2018. IsoplotR: A Free and Open Toolbox for Geochronology. Geoscience Frontiers, 9(5): 1479-1493. https://doi.org/10.1016/j.gsf.2018.04.001 |
| [63] |
Wang, B.Z., Zhang, J.M., Li, W.F., et al., 2023. Discovery of Two Stages of the Early Paleozoic Adakitic Intrusive Rocks in the Kunlun River Area, East Kunlun: Implications for Collisional Orogenic Processes. Acta Petrologica Sinica, 39(3): 763-784 (in Chinese with English abstract). |
| [64] |
Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. Journal of Geology, 115(2): 149-161. https://doi.org/10.1086/510643 |
| [65] |
Wang, Q., Xu, J. F., Jian, P., et al., 2006. Petrogenesis of Adakitic Porphyries in an Extensional Tectonic Setting, Dexing, South China: Implications for the Genesis of Porphyry Copper Mineralization. Journal of Petrology, 47(1): 119-144. https://doi.org/10.1093/petrology/egi070 |
| [66] |
Wang, X. S., Bi, X. W., Leng, C. B., et al., 2014. Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 61: 73-95. https://doi.org/10.1016/j.oregeorev.2014.01.006 |
| [67] |
Wang, X.X., Hu, N.G., Wang, T., et al., 2012. Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin: Zircon SHRIMP U-Pb Age, Hf Isotope and Geochemistry. Acta Petrologica Sinica, 28(9): 2950-2962 (in Chinese with English abstract). |
| [68] |
Wang, Y. L., Xue, S. C., Wang, X. M., et al., 2023. PGE Geochemical and Os-S-Sr-Nd Isotopic Constraints on the Genesis of the Shitoukengde Magmatic Sulfide Deposit in the East Kunlun Orogenic Belt, NW China. Ore Geology Reviews, 156: 105396. https://doi.org/10.1016/j.oregeorev.2023.105396 |
| [69] |
Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2): 295-304. https://doi.org/10.1016/0012-821X(83)90211-X |
| [70] |
Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 |
| [71] |
Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/S0009-2541(02)00018-9 |
| [72] |
Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). |
| [73] |
Wu, F.Y., Liu, X. C., Ji, W.Q., et al., 2017. Highly Fractionated Granites: Recognition and Research. Scientia Sinica (Terrae), 47(7): 745-765 (in Chinese). |
| [74] |
Xiong, F. H., Ma, C. Q., Wu, L., et al., 2015. Geochemistry, Zircon U-Pb Ages and Sr-Nd-Hf Isotopes of an Ordovician Appinitic Pluton in the East Kunlun Orogen: New Evidence for Proto-Tethyan Subduction. Journal of Asian Earth Sciences, 111: 681-697. https://doi.org/10.1016/j.jseaes.2015.05.025 |
| [75] |
Xiong, F. H., Ma, C. Q., Zhang, J. Y., et al., 2014. Reworking of Old Continental Lithosphere: An Important Crustal Evolution Mechanism in Orogenic Belts, as Evidenced by Triassic I-Type Granitoids in the East Kunlun Orogen, Northern Tibetan Plateau. Journal of the Geological Society, 171(6): 847-863. https://doi.org/10.1144/jgs2013-038 |
| [76] |
Xiong, X. L., 2006. Trace Element Evidence for Growth of Early Continental Crust by Melting of Rutile-Bearing Hydrous Eclogite. Geology, 34(11): 945. https://doi.org/10.1130/g22711a.1 |
| [77] |
Xu, Z. H., Xin, W., Zhou, X. D., et al., 2023. Triassic Granitoids in the East Kunlun Orogenic Belt, Northwestern China: Magmatic Source and Implications for Geodynamic Evolution. International Geology Review, 65(7): 983-999. https://doi.org/10.1080/00206814.2020.1848647 |
| [78] |
Xu, Z. Q., Yang, J. S., Wu, C. L., et al., 2006. Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 28(2/3): 160-173. https://doi.org/10.1016/j.jseaes.2005.09.016 |
| [79] |
Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006. The Qinghai-Tibet Plateau and Continental Dynamics: A Review on Terrain Tectonics, Collisional Orogenesis, and Processes and Mechanisms for the Rise of the Plateau. Geology in China, 33(2): 221-238 (in Chinese with English abstract). |
| [80] |
Yan, J. M., Sun, G. S., Sun, F. Y., et al., 2019. Geochronology, Geochemistry, and Hf Isotopic Compositions of Monzogranites and Mafic-Ultramafic Complexes in the Maxingdawannan Area, Eastern Kunlun Orogen, Western China: Implications for Magma Sources, Geodynamic Setting, and Petrogenesis. Journal of Earth Science, 30(2): 335-347. https://doi.org/10.1007/s12583-018-1203-8 |
| [81] |
Yang, J. S., Robinson, P. T., Jiang, C. F., et al., 1996. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications. Tectonophysics, 258(1-4): 215-231. https://doi.org/10.1016/0040-1951(95)00199-9 |
| [82] |
Yu, M., Feng, C. Y., Santosh, M., et al., 2017. The Qiman Tagh Orogen as a Window to the Crustal Evolution in Northern Qinghai-Tibet Plateau. Earth-Science Reviews, 167: 103-123. https://doi.org/10.1016/j.earscirev.2017.02.008 |
| [83] |
Zhang, J. Y., Lei, H. L., Ma, C. Q., et al., 2021. Silurian-Devonian Granites and Associated Intermediate-Mafic Rocks along the Eastern Kunlun Orogen, Western China: Evidence for a Prolonged Post-Collisional Lithospheric Extension. Gondwana Research, 89: 131-146. https://doi.org/10.1016/j.gr.2020.08.019 |
| [84] |
Zhang, J. Y., Ma, C. Q., Xiong, F. H., et al., 2014. Early Paleozoic High-Mg Diorite-Granodiorite in the Eastern Kunlun Orogen, Western China: Response to Continental Collision and Slab Break-off. Lithos, 210: 129-146. https://doi.org/10.1016/j.lithos.2014.10.003 |
| [85] |
Zhang, Z. W., Tang, Q. Y., Li, C. S., et al., 2017. Sr-Nd-Os-S Isotope and PGE Geochemistry of the Xiarihamu Magmatic Sulfide Deposit in the Qinghai-Tibet Plateau, China. Mineralium Deposita, 52(1): 51-68. https://doi.org/10.1007/s00126-016-0645-0 |
| [86] |
Zhao, X., Fu, L. B., Santosh, M., et al., 2022. The Growth and Evolution of Continental Crust Contributed by Multiple Sources in the East Kunlun Orogen during Early Paleozoic. Earth-Science Reviews, 233: 104190. https://doi.org/10.1016/j.earscirev.2022.104190 |
| [87] |
Zhao, X., Wei, J. H., Fu, L. B., et al., 2020. Multi-Stage Crustal Melting from Late Permian Back-Arc Extension through Middle Triassic Continental Collision to Late Triassic Post-Collisional Extension in the East Kunlun Orogen. Lithos, 360: 105446. https://doi.org/10.1016/j.lithos.2020.105446 |
| [88] |
Zhou, B., Dong, Y. P., Zhang, F. F., et al., 2016. Geochemistry and Zircon U-Pb Geochronology of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau: Origin and Tectonic Implications. Journal of Asian Earth Sciences, 130: 265-281. https://doi.org/10.1016/j.jseaes.2016.08.011 |
| [89] |
Zhou, H.Z., Wei, J.H., Shi, W.J., et al., 2020. Late Triassic Post-Collision Extension at Elashan Magmatic Belt, East Kunlun Orogenic Belt: Insights from Suolagou Highly Fractionated I-Type Granite. Bulletin of Geological Science and Technology, 39(4): 150-164 (in Chinese with English abstract). |
国家自然科学基金项目(42172084)
/
| 〈 |
|
〉 |