基于人工地震的河西务断裂活动性及其设定地震模拟研究

高武平 ,  俞言祥 ,  彭远黔 ,  张文朋 ,  张安东 ,  闫成国

地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1499 -1513.

PDF (9335KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1499 -1513. DOI: 10.3799/dqkx.2024.018

基于人工地震的河西务断裂活动性及其设定地震模拟研究

作者信息 +

Activity Analysis of Hexiwu Fault Based on Artificial Earthquake and Its Set Earthquake Simulation Research

Author information +
文章历史 +
PDF (9558K)

摘要

河西务断裂是一条处于京津冀城市群腹地规模较大的第四纪断裂,围绕该断裂开展的一系列浅层人工地震及钻孔联合剖面勘探进一步揭示,该断裂为一条晚更新世早期活动断裂.近期天津市地震局跨该断裂完成的4条28T可控震源人工地震勘探测线,为研究该断裂的断裂特征及活动性提供了新证据.人工地震剖面显示:(1)该断裂倾向南东,视倾角55°~75°,向北延伸止于高王公路与京塘公路之间,在北端剖面上呈上陡下缓的单一断层,向南则呈雁列式或“Y”字型构造,总长度约50余千米;(2)不同剖面上显示的断层最浅上断点埋深存在差异,但普遍达到150 m以上,表明河西务断裂展布存在差异性,但断裂断错中更新统底界,并向上延伸至上更新统,活动时代为晚更新世早期断裂.区域资料显示,该断裂向南延伸与牛东断裂相接,二者共同组成了一条规模超100 km的断裂带,存在发生7级以上地震可能.从京津冀城市群防范大震风险需求出发,对该断裂设定地震Mw7.3进行了数值模拟,潜在的长周期地震动可能对京津冀地区具有重要影响.

Abstract

The Hexiwu fault is a large-scale Quaternary fault in the hinterland of the Beijing-Tianjin-Hebei urban agglomeration, and a series of shallow artificial seismic surveys and drillhole joint profiles have been carried out around the fault, which further revealed that the fracture is an active fracture in the early Late Pleistocene. Recently, Tianjin Seismological Bureau completed four 28T controlled-source artificial seismic surveys across the rupture, providing new evidence for the study of the rupture characteristics and activity of the rupture. The artificial seismic profiles show that: (1) the fracture extends northward and ends between Gaowang Highway and Jingtang Highway; (2) the depths of the shallowest upper fault point on different profiles vary, but generally reach more than 150 m, which indicates that the Heximo Fracture has a segmented distribution, but the rupture activity basically belongs to the same period. Regional data show that the fracture extends southward to connect with the Niudong Fault, which together form a 100 km-long fracture zone, and there is a possibility of earthquakes of magnitude 7 or above. From the demand of Beijing-Tianjin-Hebei urban agglomeration to prevent the risk of large earthquakes, numerical simulation of the rupture setting earthquake Mw7.3 is carried out to analyze the impacts of potential long-period ground shaking on the Beijing-Tianjin-Hebei region.

Graphical abstract

关键词

河西务断裂 / 冀中坳陷 / 人工地震 / 京津冀城市群 / 地球物理学.

Key words

Hexiwu fault / Jizhong depression / artificial earthquake / Beijing-Tianjin-Hebei urban agglomeration / geophysics

引用本文

引用格式 ▾
高武平,俞言祥,彭远黔,张文朋,张安东,闫成国. 基于人工地震的河西务断裂活动性及其设定地震模拟研究[J]. 地球科学, 2025, 50(04): 1499-1513 DOI:10.3799/dqkx.2024.018

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

华北盆地北部是中国东部地震活动最强烈的地区,历史上发生过多次7级大震并造成了大量的伤亡损失(谢卓娟等,2019).在地质构造上,华北北部在古近纪发育了众多断陷盆地,形成了典型的盆岭构造,在新近纪整体下沉,在古近纪盆岭构造之上叠置发育,逐步成为了统一的大型坳陷盆地(高文学等,1993).盆地内部发育有数十条规模较大且活动性较强的隐伏断层,近30年里的城市活动断层探测工作在盆地内展开,基本摸清了城市及周边地区的活动断层分布及其活动性.

大量物探资料显示,华北盆地内部平原区地势平坦,浅部发育了1~2 km的第四系和新近系,地层起伏较缓,下伏起伏剧烈的古近系,在构造上表现为深达数千米、长近百千米的盆地构造组合.国内外多次大地震的震害资料表明,沉积盆地会增加地震动的持时,显著地放大长周期地震动,从而加重长输管线、大跨桥梁等自振周期较长的工程结构震害.1995年阪神地震中的大阪盆地(Pitarka et al., 1998)、1999年集集地震中的台北盆地和2008年汶川地震中的渭河盆地(王海云,2011)等均出现了由盆地内的沉积层引发的长周期地震动放大,从而导致了明显的震害加重现象.京津冀城市群拥有密集的人口及如高铁、南水北调等大量线性基础设施,也是我国高层、超高层最密集的地区之一,这些对长周期地震动敏感的工程安全一直是地震工程界关注的焦点,特别是大型隐伏断裂潜在大震及可能的长周期地震动影响,对京津冀城市群的长周期结构安全的不利影响尤其值得关注.

河西务断裂带是一条处于京津冀城市群腹地规模较大的断裂,也是控制廊固凹陷和武清凹陷的分界断裂(图1).该断裂向北延伸至桐柏断裂附近,向南延伸与牛东断裂、高阳-博野断裂断续相接,构成了华北平原区内部一条规模巨大的北东向断裂构造带.前人从油气勘探与预测角度出发,研究了河西务断裂带在新近系及以下层位的断裂分段、平面展布、构造演化等特征,但近地表的精确几何展布及活动特征研究成果还较少(赵红格等,2003;劳海港和吴孔友,2010;曾庆鲁,2010).近年来,围绕河西务断裂河北省地震局和天津市地震局开展了大量探测工作,特别是近期开展的高精度浅层人工地震勘探工作,对该断裂带的展布特征、断裂活动性研究都有了更清晰的认识,在此基础上笔者详细讨论了河西务断裂构造特征及活动性,并对设定大震的长周期地震动进行了模拟,初步评价了其潜在的长周期地震动影响.

1 河西务断裂活动性探测与断裂活动性

河西务断层是渤海湾盆地冀中坳陷北部地区一条重要的控盆断裂,总体走向NE,倾向SE,向北延伸至桐柏断裂附近,向南延伸与牛东断裂相接,为廊固凹陷与武清凹陷的分界断裂,隐伏于冀中凹陷覆盖层之下.新近纪-第四纪时期渤海湾盆地整体进入热沉降阶段后,该断层仍然存在构造活动,断层错断了新近系顶面,造成千米左右的落差,第四纪以来,河西务断裂继续活动,控制着武清凹陷的发育,致使武清凹陷成为冀中坳陷的沉降中心,第四系厚度超过 400 m(王少春等,2011).河西务断层新近纪以来具有右旋走滑的张扭特征,平面上具有分段性,主体上可分为3段,南段和北段的长度都为15 km左右,上、下盘沉降幅度差异在时间剖面显示达到约2 km,北段和南段兼具右旋走滑和拉张的特征;中段长度约20 km,上、下盘沉降幅度差异相对较小,在时间剖面显示差异约900 m,中段主要表现为右旋走滑特征(周月玲等,2018;毛黎光等,2019).

1.1 河西务断裂带的浅层地震探测

浅层地震勘探作为一种有效探测覆盖区隐伏活动断裂的地球物理探测手段,近年来在城市的活断层的探测中广泛应用,在第四系覆盖区的活动断裂定位和断裂活动性判定方面可起到关键性的作用.近年来围绕河西务断裂布设过一系列浅层人工地震测线,基本确定了该断裂的空间展布和断裂几何特征.河北省工程地震勘察研究院(2013, 河北省活断层探测与地震危险性评价项目(廊坊市)技术报告)曾在廊坊市活断层探测项目中,布设了LF03、LF04、LF05、LF05-1共4条测线(图2),4条测线主要布设在河西务断裂的中段,使用的震源主要是夯源,探测深度受一定限制.在此基础上,天津市地震局针对该断裂不同段落布置了hxw1、hxw2、hxw3、hxw4共4条人工地震勘探测线,进一步探察了该断裂的空间展布、浅部构造特征和活动性,测线位置见图2.人工地震采用25T可控震源激发,道间距3 m、单边300道接收、37次覆盖的观测系统,采样间隔1 ms,记录长度2 s.

1.2 河西务断裂带地震剖面特征及其活动性

1.2.1 地震剖面特征

(1)断裂北段人工地震剖面特征.hxw3和hxw4测线布设于河西务断裂带北段.依据各反射同相轴的反射特征,hxw4测线剖面各反射界面可连续追踪,无错断现象,没有断层存在.

hxw3测线剖面显示1 300 ms以上反射震相丰富,反射能量较强,地震反射轴清晰,反射震相能量横向差别不大,地震反射层位连续稳定,从上到下可以识别出11组反射震相(T01、T02、T03、TQ,T11~T15、Tg),识别出2条倾向相反正断层F3-1和F3-2图3).其中F3-2断层视倾向为南东,视倾角为55°~60°,在180 m、300 m、500 m、800 m、1 150 m等处两侧反射同相轴存在明显的错断现象,断层两侧地层产状明显不一致,断层最浅明显错断中更新统底(T03),止于上更新统(T02),断距3~5 m,上断点埋深在125~130 m,为一条上陡下缓正断层,根据区域地震构造资料认为F3-2为河西务断裂.

(2)断裂带中段人工地震剖面特征.hxw1布设于河西务断裂带中段,剖面1 200 ms以上反射震相丰富,反射能量较强,地震反射轴清晰,整条剖面上反射震相能量横向差别不大,地震反射层位连续稳定,从上到下可以识别出11组反射震相(T01~T04、TQ,T11~T15、Tg),识别出4条正断层F1-1、F1-2、F1-3和F1-4,各断点两侧反射同相轴存在明显的错断现象,断层可靠,主断层明显在剖面上呈正花状结构(图4),根据区域地震构造资料推测F1-1断层为河西务断裂带的主断裂,在250 m、500 m、850 m、1 200 m等处两侧反射同相轴存在明显的错断现象,其视倾向为NE,视倾角62°~67°,断层错断了中更新统底(T03),断距3~5 m,终止于上更新统(T02),上断点埋深125~130 m,F1-2 、F1-3和F1-4可能在深部归并于F1-1.

(3)断裂带南段人工地震剖面特征.hxw2测线布设在河西务断裂的南段,测线剖面1 300 ms以上反射震相丰富,地震反射轴清晰,反射能量较强,整条剖面上反射震相能量横向差别不大,从上到下可以识别出11组反射震相(T01~T04、TQ,T11~T15、Tg),别出2条正断层F2-1和F2-2,其中,F2-1断层在150 m、300 m、600 m、1 000 m、1 350 m等处两侧反射同相轴存在明显的错断现象,反射特征明显,为河西务断裂带的主断裂.该断层视倾角69°~74°,断层错断了中更新统底(T03),终止于上更新统(T02),断距3~5 m,上断点埋深115~120 m,与F2-1断层共同呈现为Y字型特征.

1.2.2 河西务断裂的活动时代

人工地震勘探剖面揭示的浅部地层水平起伏均非常小,故在地层解释上参考了测线周边第四纪钻孔地层资料.这里参考的第四纪地层剖面位于图1中LF04线上,根据其揭示的第四纪地层资料,全新统埋深大致27~28 m,晚更新世底板埋深大约168~173 m,周月玲等(2018)基于浅层人工地震和钻孔联合剖面的探测结果,河西务断裂上断点埋深约150 m或以浅,第四系底界面的垂直错距为20~45 m,断裂的最新活动时代为晚更新世早期,晚更新世以来的平均垂直滑动速率为0.03 mm/a.本次探测工作为河西务断裂的活动性提供了新的证据.河西务断裂北段的hxw3测线揭示河西务断裂(F3-1断层)上断点埋深130~135 m,错断中更新统底,断距3~5 m;位于河西务断裂带中段的hxw1测线上河西务断裂带的主断层F1-1上断点埋深125~130 m,错断中更新统底,断距3~5 m;位于河西务断裂带南段的hxw2测线上河西务断裂带的主断层F2-1上断点埋深115~120 m,错断中更新统底,断距3~5 m.上述结果表明,河西务断裂错断中更新统底,上断点埋深在115~135 m间,与周月玲等(2018)的钻孔联合剖面揭示结果一致,揭示出河西务断裂不同段落在发育上虽有差异但基本属于同期活动,为一条晚更新世早期活动正断层.

1.3 河西务断裂带的发震能力

华北盆地几个大震区地震构造的研究表明,华北地区大震区的地壳具独特的地质结构构造组合,即上地壳为能量调整单元,存在早第三纪发育的铲状和平面状正断裂及其控制的断陷盆地;中地壳为能量积累单元,存在低速、高导体(层);下地壳为能量传递单元,发育高角度深断裂(陈国光等,2003).河西务断裂深部结构清晰,断裂两侧地层角度不整合,褶皱和伴生断裂发育,断层上陡下缓呈铲形,在深部 12.0 s(38 km)左右与铲形一级大兴断裂汇聚向下延伸进入基底之中(何登发等,2017;刘冠伸等,2023).

2008年汶川8.0、2013年芦山7.0、2021年漾濞6.4级等地震的大地电磁探测揭示,中强地震及余震与地下介质电阻率结构具有较强的相关性,震源区均处于高、低阻过渡区附近且偏于高阻一侧(詹艳等,2013,2017,2021;赵凌强等,2019,2022;Sun et al.,2019,2020;叶涛等,2021;彭远黔等,2022).跨河西务断裂的大地电测剖面揭示河西务断裂下方电性异常差异带明显(图6),延展深度较深,并与中下地壳低阻层衔接,在断裂下盘存在壳内低阻带,即壳内高导体(层),具有中强地震震源区的介质组合和断裂发育的电性结构特征.根据河西务断裂带附近的中小震重定位结果显示,该区域地震的震源优势深度为5~20 km(温超等,2019).

同时,河西务断裂向南延伸后与牛东断裂相连接,二者共同组成了一条规模100 km的北东向断裂带.根据苗全芸等(2019)、张艺(2014)的研究,古近纪沙三期以来,牛东断层,河西务断层取代大厂断层及大兴断层继续活动,共同控制了武清-霸县断陷(带).汪新伟等(2023)分析认为垂直断距达7 000 m的牛东断裂带是一条导水导热的盆内隐伏型深断裂.雄安新区活动断层探测结果也显示,牛东断裂错断了埋深 80~85 m的地层,在晚更新世早期有过活动.由此可知,河西务断裂和牛东断裂的最新活动时代一致.

从深部孕震环境、断层带整体规模、断裂最新活动时代分析,认为河西务-牛东断裂带具有发生中强以上地震的构造特征.根据用Wesnousky (2008)提出的地震震级和破裂长度之间的经验关系式:

Mw=5.30+1.02·logL,

式中:Mw为矩震级,L为断裂破裂长度.根据张世民等(2006)的研究,河西务、牛东断裂带处于张家口-渤海断裂带与河北平原断裂带交汇区,均属坝县-束鹿-邯郸断裂带的主要断裂,二者断层长度超过100 km,活动时代为晚更新世,具有发生7 级以上地震的构造条件.对活动断层的总结性分析也显示,晚更新世断裂存在发生≥6.5级地震的风险(吴中海,2019).故笔者进一步假设河西务断裂上单次地震事件的破裂长度为50 km,断裂将会产生Mw7.0级地震;考虑河西务断裂向南延伸与牛东断裂相连接,构成一条规模100 km的断裂带,若单次地震事件100 km的断裂带破裂,将会产生Mw7.3级地震,从构造背景上及防范大震巨灾角度看,上述可能完全必要.

2 河西务断裂设定地震的长周期地震动影响

不少学者的研究表明,强震的长周期地震动分量相当大(谢礼立等,1990;俞言祥等,2005).河西务断裂处于京津冀腹地,是冀中坳陷内的一条重要断裂,一旦发生中强以上地震,京津冀城市群存在大量供水、供气、供油管道等基础设施,以及高层、超高层等重大工程建筑将受到严重威胁.为此,笔者根据目前的活动断层探测成果,从防大震角度出发,设定河西务断裂带发生Mw7.3级地震,利用现在成熟的有限差分方法模拟分析了其潜在的长周期地震动影响.

2.1 数值模拟参数

基于河西务断裂的活动断层探测成果,按照Somerville et al.(1999)给出的原则,参考其他学者对震源模型的相关研究成果(陈学忠等,2005;龙锋等,2006;付长华等,2012;张勇等,2013;朱耿尚,2014;刘成利等,2014),建立了设定地震Mw7.3级震源模型,相关参数见表1,震源平均滑动分布见图7.结合近30年河西务断裂周边区域的活动断层探测成果,以及华北地下三维结构分层模型HBcrust1.0模型(段永红等,2016),构建了本次模拟的地下三维结构模型,尺寸为:280 km×280 km×45 km,介质参数见表2,介质参数结果主要基于地区物探研究成果(王峻等,2009;姜文亮等,2012;段永红等,2016;闫成国等,2020;张文朋等,2022).丁振坤和夏祖讽(2013)的研究结果,基岩(沉积层底)剪切波速取为2.4 m/s,沉积层内有关界面见图8.采用可处理地形有限的曲线网格有限差分方法进行数值模拟计算(张伟,2006),网格步长80 m,采用指数衰减吸收层作为吸收边界(Cerjan et al.,1985),宽度为30层,衰减系数为0.05.根据网格步长和最低速度分析可知,模拟精确到的最小周期为1.6 s,满足对长周期的地震动作用分析.

2.2 长周期地震动响应分析

2.2.1 设定地震的PGV分布

地震动峰值速度(PGV)表征了地震动的中低频信息,对其进行研究对工程抗震设防有非常重要的作用(张斌,2019).图9给出了设定地震的地震动峰值速度(PGV)分布.图中黑色虚线为新构造单元边界.

图9可见,PGV分布呈北东向展布,显示出明显的方向性效应,其分布特征与杜晨晓等(2010)给出的1976年唐山地震模拟加速度分布特征基本一致,与朱耿尚(2014)给出的芦山地震模拟PGV分布特征也较相似,断层两侧附近区域的PGV最高接近2 m/s.PGV>0.35 m/s等值线包围区域,相当于地震烈度Ⅸ~Ⅹ度,明显受到东北部的燕山断块隆起和西北部的太行山隆起限制,主要限制在冀中坳陷内;PGV>0.1 m/s区域,相当于地震烈度Ⅶ~Ⅷ度(中国地震烈度表,GB/T17742~2020),覆盖了广大京津冀地区,北京、天津、保定等重要城市均处于该区域,在冀中坳陷内的延伸更为显著,一直接近衡水,根据贾晓辉(2019)、Michael and O’Rourke(1999)的研究,当峰值速度小于0.15 m/s时,管道基本不发生破坏,但≥0.15 m/s将破坏将呈线性递增,显然将给这些地区对峰值速度敏感的供水、供气管道等基础设施构成较大威胁.

2.2.2 长周期放大效应

河西务-牛东断裂所在的华北北部盆地大部分地区都覆盖了较厚的松散层,且其下方潜藏了数千米厚的古近系盆地结构,松散沉积层对长周期地震动的影响早已为大家认识,付长华等(2012)通过对北京盆地的长周期地震动放大作用数值模拟研究,指出盆地结构一直是控制3~10 s长周期地震动加速度反应谱放大的主导因素.为研究京津冀城市群所在的广大区域下方潜藏的盆地结构是否会进一步加剧长周期地震动的影响,笔者建立了平层模型予以对比,进一步分析其长周期地震动放大作用.平层模型仅各层界面埋深与真实模型由差异,各界面(IQ底、IN、G、C、Moho)取值分别为300 m、1 300 m、3 000 m、22 km和35 km,其他各层属性参数与真实模型完全一致(表2),网格剖分、计算范围及模拟计算参数也完全一致.这里,定义放大系数为真实盆地模型反应谱与平均模型反应谱之比.

图10给出了3~8 s周期地震动加速度反应谱放大系数分布.本文给出的北京地区模拟结果与付长华(2012)的模拟结果基本一致,大厂凹陷、武清凹陷都显示出明显的长周期地震动放大效应,仅在放大数值(这与放大系数定义有关)上有所不同.由图10可知,3 s以上长周期主要放大区域分布在A、B、C三个区域,A区呈较规则圆弧形分布,位于冀中坳陷内;B呈带状分布,位于沧县隆起中部里坦凹陷,并延伸到黄骅凹陷,C区呈团块状分布,位于黄骅坳陷东北角.对于不同周期地震动的放大作用强弱也有所变化,A区对3~4 s周期地震动放大作用较强,更长周期的则放大作用有所减弱,B区对6~8 s地震动放大作用较强,而C区对3~8 s有较强放大作用.与图3对比分析可知,放大作用显著区这些区域的沉降中心分布有较明显对应关系,A区基本与冀中坳陷第四纪和新近纪沉积中心相对应,B区对应的第四纪沉降特征不显著,但处于新近系小型沉积中心,C区在第四纪和新近纪都显示为显著的沉降中心.这充分表明华北平原盆地下方潜藏的新近纪、古近纪盆地结构会对长周期地震动产生显著的放大作用,盆地沉积中心可能达到2倍以上.从图中京津冀城市群的位置看,除沧州之外,其他较大城市均未明显处于盆地构造中心,其长周期放大作用并不会因为盆地结构的影响而显著增强.

3 结论

通过对浅层人工地震勘探剖面的分析和设定大震的数值模拟分析,主要获得如下认识:

(1)新开展的人工地震剖面进一步揭示出,河西务断裂是一条倾向南东,视倾角55°~75°的晚更新世早期活动断裂.其断裂不同段落的最浅上断点埋深存在差异,但普遍达到150 m以上,最浅上断点埋深达到了115 m,与周月玲等(2018)研究结果一致,由此推测河西务断裂展布存在差异性但断裂活动时间基本在中更新末期-晚更新世早期.

(2)人工地震勘探剖面显示,河西务断裂自别古庄镇西向北东经别北旺乡东延伸,止于高王公路与京塘公路之间,向南与同样活动的牛东断裂相接,共同组成了一条规模超100 km的北东向断裂带.根据华北地区地震活断层的震级-破裂长度的经验关系,结合深部构造环境认为,该断裂具有发生7级以上地震可能.

(3)基于设定河西务-牛东断裂发生Mw7.3地震的模拟分析结果,地震在广大京津冀地区激发显著的长周期地震动,PGV>0.15 m/s区域十分广泛,基本覆盖了京津冀城市群大部分区域,将对京津冀城市群中供水、供气管道以及城市间输油管道等基础设施造成严重威胁;但由于京津冀城市群核心城区均未处于古近系及新近系沉降中心地带,其长周期地震动放大作用不会受盆地结构影响而显著加剧.

参考文献

[1]

Cerjan, C., Kosloff, D., Kosloff, R., et al., 1985. A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations. Geophysics, 50(4): 705-708. https://doi.org/10.1190/1.1441945

[2]

Chen, G.G., Xu, J., Gao, Z.W., 2003. Seismotectonic Features of the Bohai Bay Basin in North China. North China Earthquake Sciences, 21(2): 7-15 (in Chinese with English abstract).

[3]

Chen, X.Z., Xu, X.T., Zhai, W.J., 2005. Variation of Stress during the Rupture Process of the 1995 ML=4.1 Shacheng, Hebei, China, Earthquake Sequence. Acta Seismologica Sinica, 27(3): 276-281 (in Chinese with English abstract).

[4]

Ding, Z.K., Xia, Z.F., 2013. Research on Definition of Hard Rock Shear Wave Velocity of Site for Nuclear Power Plant. Nuclear Techniques, 36(4): 300-303 (in Chinese with English abstract).

[5]

Du, C.X., Xie, F.R., Zhang, Y., et al., 2010.3D Modeling of Dynamic Fault Rupture and Strong Ground Motion of the 1976 Ms 7.8 Tangshan Earthquake. Chinese Journal of Geophysics, 53(2): 290-304 (in Chinese with English abstract).

[6]

Duan, Y.H., Wang, F.Y., Zhang, X.K., et al., 2016. Three Dimensional Crustal Velocity Structure Model of the Middle-Eastern North China Craton (HBCrust1.0). Scientia Sinica (Terrae), 46(6): 845-856 (in Chinese).

[7]

Fu,C.H.,Gao,M.T.,Chen,K.,2012.A Study on Long-Period Response Spectrum of Ground Motion Affected by Basin Structure of Beijing. Acta Seismologica Sinica, 34(3): 374-382, 425(in Chinese with English abstract).

[8]

Gao, W.X., Ma, J., 1993. Seismo-Geological Background and Earthquake Hazard in Beijing Area. Seismological Press, Beijing (in Chinese).

[9]

He, D.F., Li, D.S., Wang, C.S., et al., 2017. Advances and Challenge of Structural Geology of Deep Sedimentary Basins in China. Earth Science Frontiers, 24(3): 219-233 (in Chinese with English abstract).

[10]

Jia, X. H., 2019. Seismic Analysis of Urban Underground Gas Pipeline and Construction of Earthquake Disaster Scenario (Dissertation). Institute of Geophysics China Earthquake Administration, Beijing (in Chinese with English abstract).

[11]

Jiang, W.L., Zhang, J.F., 2012. Fine Crustal Structure beneath Capital Area of China Derived from Gravity. Chinese Journal of Geophysics, 55(5): 1646-1661 (in Chinese with English abstract).

[12]

Lao, H.G., Wu, K.Y., 2010. Accommodation Tectonic Analtsis in the Hexiwu Structuree Belt. Inner Mongolia Petrochemical Industry, 36(14): 30-32 (in Chinese).

[13]

Liu, C.L., Zheng, Y., Xiong, X., et al., 2014. Rupture Process of Ms6.5 Ludian Earthquake Constrained by Regional Broadband Seismograms. Chinese Journal of Geophysics, 57(9): 3028-3037 (in Chinese with English abstract).

[14]

Liu, G.S., He, D.F., Lu, R.Q., et al., 2023. Geological Structure and Tectonic Evolution of Yangshuiwu BuriedHill Belt in Langgu Sag, Bohai Bay Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 58(1): 226-239 (in Chinese with English abstract).

[15]

Long, F., Wen, X.Z., Xu, X.W., 2006. Empirical Relationships between Magnitude and Rupture Length, and Rupture Area, for Seismogenic Active Faults in North China. Seismology and Geology, 28(4): 511-535 (in Chinese with English abstract).

[16]

Mao, L.G., Tian, J.Z., Zhang, H.W., et al., 2019. Structures and Evolution of Hexiwu Fault, Northern Jizhong Depression since the Neogene. Geological Journal of China Universities, 25(4): 578-582 (in Chinese with English abstract).

[17]

Miao, Q.Y., Qi, J.F., Ma, B.S., et al., 2019. Differential Deformation and Control Mechanism of Paleogene Structures in Northern Jizhong Depression. Geotectonica et Metallogenia, 43(1): 46-57 (in Chinese with English abstract).

[18]

Michael, J., O’Rourke. 1999. Response of Buried Pipelines Subject to Earthquake Effects. The Multidisciplinary Center for Earthquake Engineering Research.

[19]

Peng, Y.Q., Sun, X.Y., Zhan, Y., et al., 2022.3D Deep Electrical Structure and Seismogenic Environment in Zhangbei Earthquake Region. Chinese Journal of Geophysics, 65(9): 3464-3480 (in Chinese with English abstract).

[20]

Pitarka, A., Irikura, K., Iwata, T., et al., 1998. Three-Dimensional Simulation of the Near-Fault Ground Motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, Earthquake. Bulletin of the Seismological Society of America, 88(2): 428-440. https://doi.org/10.1785/bssa0880020428

[21]

Somerville, P., Irikura, K., Graves, R., et al., 1999. Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1): 59-80. https://doi.org/10.1785/gssrl.70.1.59

[22]

Sun, X. Y., Zhan, Y., Unsworth, M., et al., 2020.3-D Magnetotelluric Imaging of the Easternmost Kunlun Fault: Insights into Strain Partitioning and the Seismotectonics of the Jiuzhaigou Ms7.0 Earthquake. Journal of Geophysical Research (Solid Earth), 125(5): e2020JB019731. https://doi.org/10.1029/2020JB019731

[23]

Sun, X. Y., Zhan, Y., Zhao, L. Q., et al., 2019. Electrical Structure of the Kunlun-Qinling Fault System, Northeastern Tibetan Plateau, Inferred from 3-D Inversion of Magnetotelluric Data. Journal of Asian Earth Sciences, 181: 103910. https://doi.org/10.1016/j.jseaes.2019.103910

[24]

Wang, H.Y., 2011. Amplification Effects of Soil Sites on Ground Motion in the Weihe Basin. Chinese Journal of Geophysics, 54(1): 137-150 (in Chinese with English abstract).

[25]

Wang, J., Liu, Q.Y., Chen, J.H., et al., 2009. Three-Dimensional S-Wave Velocity Structure of the Crust and Upper Mantle beneath the Capital Circle Region from Receiver Function Inversion. Chinese Journal of Geophysics, 52(10): 2472-2482 (in Chinese with English abstract).

[26]

Wang, S.C., Men, X.Y., Qian, Z., et al., 2011. Compound Characteristics of Oil and Gas Systems and Favorable Plays in the Wuqing Depression, Bohai Bay Basin. Natural Gas Industry, 31(11): 59-62, 124(in Chinese with English abstract).

[27]

Wang, X.W., Guo, S.Y., Gao, N.A., et al., 2023. Detection of Carbonate Geothermal Reservoir in Niudong Fault Zone of Xiongan New Area and Its Geothermal Exploration Significance. Geological Bulletin of China, 42(1): 14-26 (in Chinese with English abstract).

[28]

Wen, C., Zhu, K.J., Meng, L.P., et al., 2019. Deep and Shallow Structural Characteristics of Hexiwu Fault in Northeastern Jizhong Depression. Seismological and Geomagnetic Observation and Research, 40(5): 29-35 (in Chinese with English abstract).

[29]

Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111

[30]

Wu, Z.H., 2019. The Definition and Classification of Active Faults: History, Current Status and Progress. Acta Geoscientica Sinica, 40(5): 661-697 (in Chinese with English abstract).

[31]

Xie, L.L., Zhou, Y.N., Hu, C.X., et al., 1990. Characteristics of Response Spectra of Long-Period Earthquake Ground Motion. Earthquake Engineering and Engineering Vibration, 10(1): 1-20 (in Chinese with English abstract).

[32]

Xie, Z.J., Lü, Y.J., Fang, Y., et al., 2019. Research on the Seismic Activity of the Beijing-Tianjin-Hebei Region. Progress in Geophysics, 34(3): 961-968 (in Chinese with English abstract).

[33]

Xu, X.X., Chen, Y.K., Liu, J.C., et al., 2007. The Crust and Upper Mantle Electrical Conductivity Structure along the Profile of Hebei Langfang-Tianjin Dagang. China Earthquake Engineering Journal, 29(4): 364-370 (in Chinese with English abstract).

[34]

Yan, C.G., Cao, J.Q., Chen, Y.K., et al., 2020. Fine Crustal Structures of Zhangjiakou-Bohai Tectonic Zone in Tianjin Area Revealed by a Deep Seismic Reflection Profile. Chinese Journal of Geophysics, 63(12): 4431-4439 (in Chinese with English abstract).

[35]

Yang, D.X., Chen, Y., Li, X.D., et al., 2021. Evidence from Fluid Inclusions for Hydrocarbon Accumulation of Yangshuiwu Buried Hill in Langgu Sag, Bohai Bay Basin. Acta Petrolei Sinica, 42(10): 1325-1336 (in Chinese with English abstract).

[36]

Ye, T., Chen, X.B., Huang, Q.H., et al., 2021. Three-Dimensional Electrical Resistivity Structure in Focal Area of the 2021 Yangbi MS6.4 Earthquake and Its Implication for the Seismogenic Mechanism. Chinese Journal of Geophysics, 64(7): 2267-2277 (in Chinese with English abstract).

[37]

Yu, Y.X., Hu, Y.X., Pan, H., 2005. Study on Impact of Focal Mechanism on Long-Period Ground Motions. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3113-3118 (in Chinese with English abstract).

[38]

Zeng, Q.L., 2010. Faults Feature and Hydrocarbon Accumulation in Hexiwu Structural Belt of Langgu Depression. Inner Mongolia Petrochemical Industry, 36(17): 109-111 (in Chinese with English abstract).

[39]

Zhan, Y., Liang, M.J., Sun, X.Y., et al., 2021. Deep Structure and Seismogenic Pattern of the 2021.5.22 Madoi (Qinghai) Ms7.4 Earthquake. Chinese Journal of Geophysics, 64(7): 2232-2252 (in Chinese with English abstract).

[40]

Zhan, Y., Yang, H., Zhao, G.Z., et al., 2017. Deep Electrical Structure of Crust beneath the Madongshan Step Area at the Haiyuan Fault in the Northeastern Margin of the Tibetan Plateau and Tectonic Implications. Chinese Journal of Geophysics, 60(6): 2371-2384 (in Chinese with English abstract).

[41]

Zhan, Y., Zhao, G.Z., Martyn, U., et al., 2013. Deep Structure and Seismogenic Environment of Lushan Earthquake Zone with M = 7.0 of 4.20 in Southwest Section of Longmenshan Fault Zone. Chinese Science Bulletin, 58(20): 1917-1924 (in Chinese).

[42]

Zhang, B., 2019. Study on the Attenuation Relationship between Horizontal Peak Velocity and Peak Displacement (Dissertation). Institute of Geophysics, China Earthquake Administation,Beijing (in Chinese with English abstract).

[43]

Zhang, S.M., Lu, Y.J., Ren, J.J., 2006. Seismotectonics and Potential Seismic Source Zonation of the North China Plain. Technology for Earthquake Disaster Prevention, 1(3): 234-244 (in Chinese with English abstract).

[44]

Zhang, W., 2006. Finite Difference Algorithm for Seismic Wave Propagation in Three-Dimensional Inhomogeneous Media with Undulating Terrain and Its Application in Strong Ground Motion Simulation (Dissertation). Peking University, Beijing (in Chinese with English abstract).

[45]

Zhang, W.P., Zhang, C.L., Gao, W.P., et al., 2022. Quaternary Activity Characteristics of the Jiyunhe Fault Revealed by Shallow Seismic Prospecting Data. China Earthquake Engineering Journal, 44(1): 183-191 (in Chinese with English abstract).

[46]

Zhang, Y., 2014. Study on Cenozoic Fault Activity in Three-Dimensional Continuous Area of Jizhong Depression (Dissertation). China University of Petroleum (Huadong), Dongying(in Chinese with English abstract).

[47]

Zhang, Y., Xu, L.S., Chen, Y.T., 2013. Rupture Process of the Lushan 4.20 Earthquake and Preliminary Analysis on the Disaster-Causing Mechanism. Chinese Journal of Geophysics, 56(4): 1408-1411 (in Chinese with English abstract).

[48]

Zhao, H.G., Liu, C.Y., 2003. Detachment Gliding Structures of Langgu Sag. Journal of Northwest University (Natural Science Edition), 33(3): 315-319 (in Chinese with English abstract).

[49]

Zhao, L.Q., Sun, X.Y., Zhan, Y., et al., 2022. The Seismogenic Model of the Menyuan MS6.9 Earthquake on January 8, 2022, Qinghai Province and Segmented Extensional Characteristics of the Lenglongling Fault. Chinese Journal of Geophysics, 65(4): 1536-1546 (in Chinese with English abstract).

[50]

Zhao, L.Q., Zhan, Y., Sun, X.Y., et al., 2019. The Hidden Seismogenic Structure and Dynamic Environment of the 21 January Menyuan, Qinghai, MS6.4 Earthquake Derived from Magnetotelluric Imaging. Chinese Journal of Geophysics, 62(6): 2088-2100 (in Chinese with English abstract).

[51]

Zhou, Y.L., Peng, Y.Q., Chen, J.Q., et al., 2018. Comprehensive Survey and Study on the Activity of the Hexiwu Fault in Langfang Area, Hebei Province. Technology for Earthquake Disaster Prevention, 13(3): 610-618 (in Chinese with English abstract).

[52]

Zhu, G. S., 2014. Application of Finite Difference Method in Strong Ground Motion Simulation (Dissertation). University of Science and Technology of China, Hefei (in Chinese with English abstract).

基金资助

中国地震局地震科技星火计划项目(H23004YA)

河北省地震科技星火计划项目(DZ2023120500004)

AI Summary AI Mindmap
PDF (9335KB)

108

访问

0

被引

详细

导航
相关文章

AI思维导图

/