赣南石头坪超大型重稀土矿床的成因机制:风化壳矿物学、地球化学约束

杨婉贞 ,  何川 ,  王运 ,  李满根 ,  王先广 ,  陈麒如 ,  龚良信 ,  钟文

地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1335 -1352.

PDF (13539KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (04) : 1335 -1352. DOI: 10.3799/dqkx.2023.200

赣南石头坪超大型重稀土矿床的成因机制:风化壳矿物学、地球化学约束

作者信息 +

Genesis of Giant Shitouping Heavy Rare Earth Element Deposit, in Southern Jiangxi Province: Constraints from Mineralogy and Geochemistry of Regolith

Author information +
文章历史 +
PDF (13863K)

摘要

稀土是重要的战略性关键金属资源.离子吸附型稀土矿床是全球重稀土资源的主要供给来源,其成因机理备受瞩目.石头坪重稀土矿床是赣南地区新近发现的超大型离子吸附型重稀土矿床,其成因机制仍不清楚.对该矿床施工了一个赣南钻自上至下系统取样,运用X射线粉晶衍射、扫描电镜、X射线荧光光谱和电感耦合等离子质谱等分析,研究风化壳剖面的矿物学、元素地球化学和pH值特征等.结果表明,风化壳剖面的黏土矿物种类和形态表现出分带性,表土层至全风化层中上部主要为较自形的高结晶度高岭石,全风化层中下部至半风化层黏土矿物主要为短管状埃洛石和低结晶度高岭石,反映了风化壳剖面由下至上黏土矿物结晶度由低向高的转变过程,由此导致吸附能力差异,进而控制着对稀土元素吸附-解吸行为的转变.稀土元素由上至下表现为先增加后降低的“弓背式”富集特征以及“上轻下重”分异特征.稀土元素的富集特征与不同风化阶段的风化程度具有显著的相关性,当风化强度<85时,风化强度与稀土含量呈正相关关系;当风化强度>85时,风化强度与稀土含量则呈负相关关系.“上轻下重”分异特征与风化剖面中pH值变化、黏土矿物组成及结构变化密切相关,风化剖面pH值自上而下的逐渐升高,稀土离子迁移能力逐步减弱,向下迁移速率相对更高的HREE更容易在剖面下部富集,并且在高pH值环境下,HREE会被优先吸附.因此,风化壳剖面的矿物组成及结构属性共同制约着石头坪离子吸附型重稀土矿的形成.

Abstract

Rare earth elements (REE) are strategic metals worldwide. Regolith-hosted heavy rare earth element (HREE) deposits are the world’s main HREE producer, and their genesis is widely debated.The Shitouping HREE deposit is a newly discovered giant regolith-hosted HREE deposit in Ganzhou, Jiangxi, and its genesis is still unclear.Therefore, it carried out systematic sampling within a weathered crust profile from top to bottom using the Gannan drill, and revealed the mineralogy, elemental geochemistry, and pH characteristics of the profile using the X-ray diffraction, scanning electron microscopy, X-ray fluorescence spectroscopy, and inductively coupled plasma mass spectrometry. The results show that the species and morphology of clay minerals in the regolith profile exhibit zonality.Topsoil layer and upper completely weathered zone are mainly composed of highly crystalline kaolinite, while lower completely weathered zone and semi-weathered zone are mainly composed of short-tubular halloysite and low-crystalline kaolinite, reflecting the transformation process of clay mineral crystallinity from low to high in the regolith profile from bottom to top. The zonality of clay minerals leads to differences in adsorption capacity which controls the transformation of REE’s adsorption-desorption behavior. The enrichment feature of REE shows increasing followed by decreasing from top to bottom, their shape resembles as a “bow”. The differentiation characteristics of REE present as light rare earth elements (LREE) accumlating in upper regolith and HREE gathering in lower regolith (upper LREE-lower HREE).The enrichment characteristics of the REE have a significant correlation with the weathering degree at different weathering stages. When the weathering intensity is less than 85, there is a positive correlation between weathering intensity and the quantities of the REE, whereas the weathering intensity is greater than 85, there is a negative correlation.The upper LREE-lower HREE differentiation characteristic is closely related to the variations on pH values and clay minerals’ species and morphology in regolith. The pH values in the profile gradually increase from top to bottom, and the mobilization ability of the REE ions gradually decreases. The HREE ions with relatively higher downward migration rates are more prone to accumulate in the lower regolith, and the HREE ions are preferentially adsorbed under high pH conditions. Therefore, the genesis of Shitouping HREE deposit is controlled by the mineralogy and structural characteristics of the regolith.

Graphical abstract

关键词

石头坪重稀土矿床 / 花岗岩风化壳 / 黏土矿物 / 离子吸附型稀土 / 赣南 / 矿床学 / 地球化学.

Key words

Shitouping HREE deposit / granitic regolith / clay mineral / regolith-hosted REE / in southern Jiangxi Province / mineral deposits / geochemisty

引用本文

引用格式 ▾
杨婉贞,何川,王运,李满根,王先广,陈麒如,龚良信,钟文. 赣南石头坪超大型重稀土矿床的成因机制:风化壳矿物学、地球化学约束[J]. 地球科学, 2025, 50(04): 1335-1352 DOI:10.3799/dqkx.2023.200

登录浏览全文

4963

注册一个新账户 忘记密码

稀土元素是镧系元素和钪(Sc)、钇(Y)共17种元素的统称,因其独特的原子结构,使其具有优良的光、电、热、磁等物理特性和活泼的化学性质(Binnemans et al., 2015),广泛应用在新能源、通信、航空航天、国防军工等高新技术领域,被视为重要的战略资源,也是各国争夺未来高科技领域战略制高点的关键性原材料(Balaram,2019; 陈唯和蒋少涌,2022).近年来,为应对气候变化,全球范围内掀起绿色能源变革,导致全球市场对稀土资源特别是重稀土资源(HREE)的需求量迅速攀升,多国已将其列入关键矿产目录(毛景文等,2022; 苏慧敏等,2023; Liu et al., 2023).
我国南方的离子吸附型稀土矿床供应了全球市场15%的稀土产品以及90%以上的重稀土资源(付伟等,2024;Li and Zhou,2020).离子吸附型稀土矿床又称为风化壳淋积型稀土矿床,由多种岩石(如碱性镁铁质岩、超镁铁质岩、花岗岩、火山岩和变质岩等)在风化过程中稀土元素发生活化-迁移-分异-富集成矿形成(雒恺和马金龙,2022).在所有成矿母岩中花岗岩分布最为广泛(王登红等, 2017; Li et al., 2017; 周美夫等, 2020),典型花岗岩风化壳的发育厚度可以达到20~60 m(尚彦军等, 2008).因此,深入认识成矿花岗岩风化壳的物质组成是揭示离子吸附型稀土矿成因的关键途径之一.
南岭构造带横跨扬子地块、江南造山带以及华夏地块,是中国钨锡铅锌铀等有色金属和铌钽锂铯与稀土等关键金属成矿带(徐先兵等, 2021),赣南地区位于南岭构造带东段,是我国离子吸附型稀土的发源地和重要的成矿密集区,其重稀土资源更是享誉世界(Xu et al., 2017He et al., 2023).石头坪重稀土矿床是赣南地区新发现的超大型重稀土矿床,其重稀土资源储量十分可观,矿区共圈定7个重稀土矿段.2022年探获根背矿段推断类全相重稀土资源量XX.XX万吨,平均品位0.088%,浸出相重稀土资源量XX.XX万吨,品位0.060%(王先广等,2022).目前对该矿床的成因研究尚处于起步阶段(钟书松等,2021).本研究以石头坪矿区根背矿段的花岗岩风化壳剖面作为研究对象,对其开展系统的地球化学与矿物学研究,旨在揭示矿区内风化壳中的黏土矿物组成及其形貌变化特征,深入了解稀土元素在风化壳中的地球化学行为,进而分析稀土元素的富集分异规律,为查明离子吸附型稀土矿的成矿过程提供新的资料.

1 地质背景

1.1 区域地理概况

石头坪重稀土矿床位于江西省赣州市境内,地处安远县、会昌县、寻乌县三县交界地区(图1),属亚热带季风气候区,湿润多雨,降水丰沛,四季分明,环境适宜,植被覆盖率高,风化作用强烈.区内地形地貌主要以中低山丘陵为主,海拔多集中在300~500 m之间,山体坡度一般在8°~35°之间,局部地势较陡地区可达45°左右.石头坪风化壳发育程度较高,风化壳发育厚度约8~25 m,根据风化程度的高低自上而下可划分为:表土层、全风化层、半风化层,各层之间没有固定的分界线,呈似层状渐变过渡关系(尚彦军等,2008; 陆蕾等,2019).

1.2 成矿地质背景

赣州所辖地区,常被称为赣南地区,其东邻闽西,南接粤北.赣粤闽三省交界区是我国目前已知规模最大、分布最密集的离子吸附型稀土矿成矿密集区.赣南地区在大地构造上属于华南造山系南岭造山带赣南隆起(图2a),位于南岭纬向构造带东段与武夷山北东-北北东构造带南段的复合部位(杨明桂等, 2018),次级构造位于鹰潭-安远、河源-邵武北北东向深大断裂与全南-寻乌东西向断裂带、云霄-上杭北西向构造带交接复合的部位(彭琳琳等, 2020; 宋炉生等, 2020).区内岩浆活动频繁,离子吸附型稀土矿床的主要成矿母岩以加里东期和燕山期酸性花岗岩为主(Huang et al., 2021)(图2b).区内稀土矿床(点)数量众多,资源潜力较

好,区内已发现的离子吸附型稀土矿床/矿点多达133个(潘鑫等, 2021).

2 样品与测试方法

本文样品采集于安远县石头坪重稀土矿床根背矿段西缘的花岗岩风化剖面中(图2c),利用赣南钻揭露至半风化层上部,钻孔终孔深10 m,共采集11件样品,样品取样深度见图3.根据风化程度、矿物组成和结构特征,将风化剖面由上至下分为表土层(A层)、全风化层(B层)和半风化层(C层).各层特征主要表现为:表土层(A):厚0~1.7 m,呈土黄色,主要由石英颗粒、黏土矿物等组成,含植物根系,松散状结构,具粘性,顶部发育薄层腐殖质层;全风化层(B):厚1.7~9.8 m,呈肉红色,结构疏松,砂土状构造,主要由黏土矿物(约占57%)、石英(约占26%)、长石(15%)、黑云母(约占2%)等矿物组成,黏土矿物呈浅黄色土状粉末,石英无色透明,他形粒状,粒径3~7 mm,长石呈浅肉红色,他形粒状,风化程度较高,手捏易碎,黑云母呈黑色粉末状,风化程度高;半风化层(C):厚9.8~10.0 m,呈浅肉红色,部分结构较疏松,部分保留了中粗粒似斑状结构,碎裂块状构造,黏土矿物减少,风化程度较低的长石、黑云母含量逐渐增加,钾长石呈浅肉红色,半自形板柱状,约占47%,斜长石呈白色,半自形板柱状,约占10%,石英无色透明,他形粒状,粒径3~7 mm,占27%,黑云母呈黑色半自形板片状,约占3%,黏土矿物呈浅黄色粉末土状,约占13%,主要沿长石矿物边部发育.

本文对风化剖面不同层位采集的11件风化壳样品进行了矿物X射线粉晶衍射(XRD)分析、矿物扫描电镜形貌特征分析、主量和稀土元素地球化学分析和pH值测试.

风化壳样品的X射线粉晶衍射(XRD)分析和扫描电镜形貌分析在东华理工大学核资源与环境国家重点实验室完成,XRD采用仪器为德国布鲁克D8 ADVANCE X射线衍射仪,风化壳样品中各矿物的含量相对偏差<20%,黏土矿物含量相对偏差<10%.Cu靶X光管电压≤40 kV,电流≤40 mA;测距仪工作方式θ/θ方式;扫描范围:5°~80°;测角仪精度:0.000 1 °;准确度≤0.02°.扫描电镜实验仪器为Zeiss Gemini Sigma 300 VP SEM,工作条件为加速电压0.02~30 kV.

主量元素和稀土元素地球化学分析在澳实分析检测(广州)有限公司完成,主量元素使用X射线荧光光谱(XRF)测定,样品研磨至200目烘干,再加入助熔剂和氧化剂进行熔融,最后在PANalyticalMagix Fast型XRF上机测试,检出限>0.01%,分析精度优于2%.稀土元素分析采用电感耦合等离子体发射光谱与质谱(ICP-MS)测定,将200目的粉末样品加入酸中消熔,冷却后用2% HNO3稀释,并在ICP-MS上机测试.

风化壳样品pH测试实验在东华理工大学无机化学实验室使用雷磁PHS-3C pH计完成,按照土壤pH的测定(NY/T1377-2007)进行,每件风化壳样品独立进行两次测定,测定结果的绝对值差值不大于0.1.

3 分析测试结果

3.1 矿物组分与矿物形貌特征

对风化剖面从上至下不同风化层的11件样品分别进行X射线粉晶衍射(XRD)分析,其矿物组成及含量结果见表1,变化规律见图4.

表土层中,长石类与碳酸岩类矿物完全分解,主要由难风化的石英(~70%)和次生黏土类矿物高岭石(~23%)、伊利石(7%),下部层位有少量云母类矿物(~2%);全风化层中矿物组成主要为石英(42%~65%)、长石类矿物(13%~48%)、少量云母类矿物(1%~3%)和碳酸岩类矿物(~1%)以及次生黏土类矿物高岭石(4%~13%)、伊利石(4%~9%);半风化层矿物组成主要为石英(~43%)、长石类矿物(~44%)、少量云母类矿物(~3%)和碳酸岩类矿物(~1%)以及少量次生黏土类矿物高岭石(~4%)、伊利石(~5%).在风化剖面的矿物组成及含量由下至上,抗风化能力较强的石英含量表现为逐渐增加的趋势,长石类矿物随着风化程度的增高,含量逐步减少至完全消失,黏土类矿物呈现出逐步增加的趋势.

风化壳剖面中除抗风化能力较强的石英形貌基本没有改变外,其余矿物在不同层位具有显著不同的形貌特征.风化壳上部(表土层至全风化层上部)黏土矿物的含量占比显著增加,高岭石族矿物以结晶度更高的高岭石为主,与伊利石、埃洛石构成不规则的黏土矿物集合体(图5a, 5b),书页状集合体或微米级团粒(图5c, 5d).长石矿物结构疏松多孔,呈蜂窝状结构(图5e, 5f),其表面可见大量次生形成的黏土矿物,如蒙脱石、埃洛石等.风化壳中下部的长石、云母等易风化矿物风化程度相对较低,可见其原生结构,如云母的片状解理构造(图6a).长石矿物结构相对致密,孔隙较小,孔径大致在0.5~1.0 μm之间(图6b).高岭石族矿物以纳米级针状埃洛石为主,与伊利石构成不规则集合体或埃洛石团粒状集合体(图6c~6f).

3.2 地球化学组分特征与pH值

本文研究的风化壳剖面样品主量、稀土元素分析结果和pH值见表2.

分析结果表明风化壳样品SiO2含量最高,分布范围69.03%~75.99%,平均值为73.63%;Al2O3和TFe2O3含量分布范围分别为14.66%~19.56%和1.60%~2.54%,风化壳上部较下部富集;K2O的含量为0.95%~5.60%,风化壳上部较下部亏损;CaO、Na2O、MgO、MnO、P2O5含量均较低;风化壳含水率是风化壳的渗透性重要表征,风化壳样品中的全相烧失量(LOI)在一定程度上可以反映风化壳含水率.风化样品的烧失量(LOI)为自下而上逐步增加,由3.14%递增至6.67%.

为进一步准确反映风化壳中主量元素的亏损和富集特征,通过质量平衡计算可以得到各主量元素的标准化富集系数τ(Nesbitt and Young, 1984).计算公式表示如下:

τoj=CjACjO×CiOCiA-1,

式中:CjACiO表示具有一定活动性的元素j在风化壳和母岩中的浓度,CiOCiA表示在风化过程中相对稳定的指标元素i在风化壳和母岩中的浓度.如果τ>0,元素相对发生富集;如果τ=0,元素没有淋失和富集;如果τ<0,元素遭受一定程度淋失;如果τ=-1,则元素被完全淋失.Ti在风化过程中较为稳定,常被作为参比元素(谢明君等, 2022).因此,本文以Ti作为参比元素,由于本文研究样品缺少基岩数据,结合研究区内前人报道的基岩数据(钟书松等, 2021)计算主量元素标准化富集系数(图7).结果显示风化壳主量元素,SiO2、Al2O3和TFe2O3在风化壳中下部富集系数为正,呈现富集趋势,在风化壳上部呈现负的富集系数,表明遭受了一定程度的淋失;K2O和Na2O的富集系数在风化壳下部为正,上部为负,表明下部得到一定程度的富集,向上淋失程度逐渐增强;CaO、MgO、MnO、P2O5富集系数均为负值,且迁出量与迁出速率相似,均表明遭受淋失的程度相近.

稀土元素方面,风化壳不同深度样品的稀土元素总量(∑REE)为524×10-6~888×10-6,平均为685×10-6,总体呈现先增高后降低的“弓背式”特征(图8a);轻稀土总量(∑LREE)变化范围为219×10-6~552×10-6,LREE在风化壳上部富集增高,在H4层位达到最高而后整体逐渐降低(图8b);重稀土总量(∑HREE)变化范围为183×10-6~459×10-6,HREE在风化壳上部整体含量较少,到全风化

层中部逐渐富集增高,在H6达到最高而后逐渐降低(图8c).风化壳不同深度样品的轻重稀土分异程度较低,稀土元素整体配分特征相似,呈“海鸥”状展布(图9),Eu元素在整个风化剖面表现出强烈的负异常特征,但轻稀土部分不同层位表现明显的差异,表土层与全风化层上部稀土配分特征相近,呈现轻微Ce正异常(图9a,9b);全风化层中下部呈现显著的Ce负异常(图9c);半风化层与基岩稀土配分特征相近,具有轻微的Ce负异常(图9d).轻重稀土比值∑LREE/∑HREE为2.15~0.61,(La/Yb)N范围为3.12~1.76,LREE/HREE比值表土层及全风化层上部,明显大于全风化层下部及半风化层,呈现显著的“上轻下重”配分特征(图8d).据勘查单位内部资料,本文研究钻孔浸出相稀土氧化物含量介于0.027%~0.079%,平均品位为0.053%,整体高于最低工业品位0.035%.

从表土层到半风化层土壤pH值逐渐升高,由4.64增加到5.72(图8h),稀土总量和轻稀土总量在H4达到最高值,对应土壤pH值为4.76,重稀土在H6处最高,土壤pH值为4.83.

4 讨论

在表生风化过程中,稀土元素的行为受控于母

岩中含稀土矿物的溶解、黏土矿物和铁(氢)氧化物的吸附、pH值和氧化还原条件、有机质及微生物活动、风化作用强度、气候条件、地下水以及地形地貌等诸多因素的共同影响(Sanematsu et al., 2013Bray et al., 2015Li et al., 2017Fu et al., 2019Li and Zhou, 2020Ichimura et al., 2020Huang et al., 2021Li et al., 2022He et al., 2023).风化壳是风化作用过程的直接产物,也是记录风化作用过程和形成离子吸附型稀土矿的载体.基于本研究的分析测试结果,从风化壳的物质组分和结构属性两方面探讨其与稀土元素富集成矿的关系.

4.1 风化壳物质组成对石头坪重稀土矿床形成的制约

花岗岩类风化壳的主要物质组成为不同风化程度的硅酸盐矿物(如石英、长石和云母等)及其风化形成的次生矿物,如黏土类矿物、铁锰(氢)氧化物等.前人研究表明风化过程形成次生矿物对稀土成矿尤为密切,是稀土元素在风化壳中的重要载体(Yang et al., 2019; Li and Zhou, 2020; Borst et al., 2020).

自然条件下,风化壳中的黏土矿物带负电荷主要通过离子交换、静电吸引、表面络合和结构固定等方式实现对稀土元素的有效吸附(Zhou et al., 2021).黏土矿物的结构、组成和表面电荷差异造成对稀土元素吸附能力的不同(Wainipee et al., 2013).研究表明高岭石和埃洛石是离子态稀土的主要赋存载体(Yang et al., 2019; Li and Zhou, 2020; Borst et al., 2020),并且二者具有显著不同的结构特征(高岭石呈层状结构,埃洛石为管状结构),深层以埃洛石为主的黏土矿物组合的比表面积和孔隙度显著高于浅层以高岭石为主的黏土矿物组合,进而导致它们对稀土元素的吸附能力存在显著差异(Li and Zhou, 2020).由于高岭石和埃洛石同属于高岭石族,X射线衍射峰难以有效区分,因而XRD半定量测试未能有效识别出埃洛石.但高岭石和埃洛石具有显著的结构差异,通过微观形貌特征能够有效区分识别(图5图6).

研究表明稀土元素在次生黏土矿物表面的吸附-解吸行为与稀土矿体的形成息息相关(范晨子等,2015; 周美夫等, 2020; 梁晓亮等, 2022),因此,探究黏土矿物表面吸附-解吸行为的控制因素成为揭示离子型稀土成矿机理的关键路径之一.Li and Zhou(2020)基于对足洞稀土矿风化壳的研究发现风化剖面下部黏土矿物为纳米级短管状的埃洛石和结晶度很低的高岭石,而风化壳上部则主要为微米级自形高岭石,他们认为上述黏土矿物的种类和形态的变化反映了黏土矿物结晶度由低向高的转变过程,由于结晶度增加导致黏土矿物的吸附位置减少,加上黏土矿物的孔隙度和表面积均大幅减少,从而造成吸附能力显著下降,由此说明风化壳下部以埃洛石为主的黏土矿物组合能更有效地吸附重稀土元素.

本研究发现石头坪稀土矿床的风化壳剖面也具有上述转变过程,即半风化层至全风化层中下部黏土矿物主要为短管状的埃洛石和低结晶度的高岭石,全风化层中上部至表土层主要为由结晶度低的埃洛石和高岭石聚结并转变成的微米级高岭石.基于以上认识,笔者认为石头坪稀土矿床的形成与其风化壳中物质组分转变密切相关,即:在表土层,岩石风化程度最高,除较难风化的石英外其他矿物已风化殆尽,埃洛石与高岭石相结合形成团聚体(图5a,5b),固结相对紧密,对稀土元素的吸附能力降低,导致表土层中稀土元素解吸,在弱酸性介质条件下,随着淋溶作用的进行稀土离子进一步向下迁移;在全风化层,风化强度显著增加,使得原岩中的长石、黑云母等矿物转变成高岭石、伊利石、埃洛石等黏土矿物,易风化的富稀土矿物(氟碳铈矿、磷钇矿、独居石等)发生分解,由于埃洛石比高岭石具有更大的比表面积和更高的阳离子交换能力(Li et al., 2022),因此埃洛石具有更强的吸附能力.随着风化作用的加强,埃洛石逐渐聚结和展开,形成“册子状”高岭石,以前被埃洛石吸附的大量稀土元素在转化为高岭石的过程中被部分解吸并释放回风化流体中.脱附的稀土离子进一步被风化流体渗透到更深处(全风化层下部和半风化层上部),当环境pH值逐渐稳定,稀土离子再次被黏土矿物吸附或发生沉淀,形成富稀土次生矿物(Tang and Johannesson, 2005).而在半风化层底部以及风化早期阶段,岩石风化程度较弱,只有少量矿物发生溶解,次生黏土矿物的含量低,矿物分解释放的稀土离子也十分有限,因此稀土总量相对于全风化层变低,基本与母岩含量相当.

4.2 风化壳的结构属性及pH值对石头坪重稀土矿床形成的制约

前已述及风化壳剖面由上至下分为表土层(A)、全风化层(B)和半风化层(C)3个结构层,每个结构层具有不同的属性特征,包括风化强度、pH值和氧化还原条件和含水率等.

首先,风化作用强度能有效地反映风化壳剖面的风化特征,一般常用化学蚀变指数(chemical index of alteration,CIA)来表示(Nesbitt and Young, 1982; 傅寒晶等, 2021).前人根据化学蚀变指数将风化作用分为3个阶段:风化早期(CIA<65),风化中期(CIA为65~85)和风化晚期(CIA>85)(Nesbitt and Young, 1982; 冯连君等, 2003).本风化壳剖面中,半风化层CIA值为71.58,全风化层CIA值为72.00~87.89,表土层CIA值为93.89~94.56.据此可见,本风化壳剖面的半风化层、全风化层已进入风化中-晚期阶段,表土层已经达到风化晚期阶段.已有研究表明稀土元素在不同风化阶段的富集行为存在显著差异:风化早期-中期阶段(CIA<85)时,风化强度与稀土元素呈正相关关系,风化强度越高,越有利于稀土元素在风化壳中富集;风化晚期阶段(85<CIA<100),风化强度与稀土含量呈负相关关系,即风化强度越高,越不利于稀土的富集(王登红等, 2017).本剖面数据进一步证实了上述富集规律,即从底部半风化层到全风化层中上部,CIA值从71.58逐步增长至82.14,风化壳中稀土元素含量也从524×10-6增加到888×10-6,总体表现出风化强度与稀土含量之间的正相关关系;从全风化层顶部到表土层,CIA值从87.89增长至94.56,稀土元素含量从685×10-6减少到578×10-6,表现出风化强度与稀土含量之间的负相关关系(图10a).产生上述富集规律,推测其原因可能如下:(1)风化早期阶段,富稀土矿物溶解释放的稀土元素较少,次生形成的黏土矿物也较少,对稀土元素的吸附能力有限,因此该阶段稀土元素富集程度总体较低;(2)进入风化中期阶段,富稀土矿物大量分解,风化壳中下部接受了上部迁移下来的稀土元素,被大量黏土矿物有效吸附,由此造成稀土元素在该阶段显著富集;(3)风化晚期阶段,富稀土矿物分解殆尽,随着黏土矿物由低结晶度向高结晶度矿物相转变,对稀土矿物的吸附能力也随之减弱(Li and Zhou, 2020;周美夫等,2020),并且该阶段通常发育在风化壳上部,在强烈风化淋滤作用下极易发生解吸随风化流体向下迁移,导致该阶段稀土元素流失减少.

其次,大量研究表明花岗岩风化剖面的pH值自上至下逐步升高(马英军等, 2004; Li et al., 2017;雒恺等, 2022),主要原因在于风化壳上部一方面受弱酸性大气降水渗入和腐殖质层中的大量腐植酸共同影响,无机酸和有机酸叠加,H+含量较高;另一方面,长石、云母等矿物风化分解释放的碱质元素在土壤水溶液的淋滤作用下大量流失,因而风化壳上部总体呈现出酸性环境.伴随土壤水溶液向下淋滤,水-岩相互作用持续进行,矿物的化学风化作用使得H+被逐步消耗,同时碱质元素含量增加也导致风化壳下部pH值上升.由于pH值控制着矿物的溶解沉淀、配体络合以及吸附作用等,进而影响矿物的风化(黏土化)速率、REE的活化和迁移速率,因此风化壳pH值变化已被普遍认为是控制稀土元素淋滤迁移-分异富集和矿体定位的主要因素之一(马英军等, 2004; Yang et al., 2019).池汝安等(2007)研究表明在酸性、弱酸性介质条件下稀土主要以可溶性水合阳离子形式迁移,在风化淋滤作用过程中,随pH值的升高,稀土离子迁移能力逐步减弱.Yang et al.(2019)的吸附实验表明在高离子浓度下,高岭石和埃洛石等黏土矿物的吸附能力与pH值呈线性相关,即黏土矿物的吸附能力随着pH值的升高而逐步增强.因此,稀土元素逐渐在pH值较高的风化壳剖面下部沉淀富集.此外,前人研究表明在REE的向下迁移过程中,离子半径较小的HREE+向下迁移速率相对大于离子半径较大的LREE+(陈德潜等, 1990; Condie et al., 1995),轻重稀土元素由此发生分异.风化剖面如同离子交换柱(王伟, 2008),风化淋滤程度越强,REE+迁移距离越远,LREE+和HREE+之间分异程度也不断增强,LREE和HREE富集带位置差异越明显.在风化初期优先吸附LREE,HREE因向下迁移的速率相对较高更容易在剖面下部富集(Yang et al., 2019),所以呈现出上部富集轻稀土,下部富集重稀土的“上轻下重”赋存特征.本风化剖面呈现明显的“上轻下重”分异赋存特征,稀土元素在pH值更高的风化壳剖面下部富集程度更高,尤其是HREE,这些特征现象较好验证了前人的理论和实验认识,进一步表明pH值对离子吸附型稀土成矿具有重要的制约作用.

此外,通常风化壳剖面由上至下,随着松散度逐步降低、孔隙逐步减少等物理结构特征的改变,导致剖面氧化还原条件和含水率等条件也随之改变.氧化还原条件改变影响最为明显的是Ce元素的分异,即风化壳上部氧化环境下常见Ce正异常现象(图9a).主要原因归结于Ce3+被氧化为Ce4+,形成低溶解度的方铈石(CeO2),与其他REE3+分离(Bao and Zhao, 2008Sanematsuet al., 2013).风化壳含水率是指风化岩石或土壤中所含水分的百分比,反映风化岩石或土壤的湿度,对于岩石风化和土壤结构的稳定性具有重要影响.一般情况下,当风化壳含水率较高时,风化壳中的矿物质可以加速溶解和反应,加速风化作用促进稀土元素的释放和迁移.除此之外风化壳含水率还在一定程度上影响风化结构的稳定性.当含水率较高时,土壤颗粒之间的凝聚力增强,土壤结构更加稳定.这种稳定性可以减少稀土元素的流失和迁移,从而有利于稀土元素的富集.而风化壳的全相烧失量(LOI)在一定程度上可以反映风化壳的含水率.间接表明风化壳的全相烧失量(LOI)与稀土元素含量存在一定的相关关系,即当LOI= 6%~12%时,LOI与稀土含量表现为负相性,而当LOI=2%~6%时,LOI与稀土含量呈现正相关性(赵芝等, 2017).结合本剖面数据发现,当LOI=4.05%~6.67%时,LOI与稀土含量表现为负相关性,当LOI=3.14%~4.05%时,LOI与稀土含量呈现正相关性(图10b).表明风化壳中LOI与稀土含量存在一定的相关关系,不同风化壳剖面存在一定差异.

5 结论

本文以石头坪矿床根背矿段花岗岩风化壳剖面作为研究对象,对其开展矿物学、元素地球化学和pH值分析,得到如下认识:

(1)风化壳剖面中,半风化层至全风化层中下部黏土矿物主要为短管状埃洛石和低结晶度高岭石,全风化层中上部至表土层主要为由结晶度低的埃洛石和高岭石聚结转变成的微米级高岭石.上述矿物组分及结构转变过程,是形成石头坪稀土矿床的重要机制之一.

(2)风化壳剖面由下至上稀土元素表现为先增加后降低的“弓背式”富集特征与风化程度及风化阶段具有显著的相关性:风化壳中下部风化强度<85,表明风化壳进入中期风化阶段,稀土富集与风化强度呈正相关关系;中上部风化强度>85,风化壳进入风化晚期阶段,稀土富集与风化强度呈负相关关系.

(3)风化壳pH值从表土层到半风化层逐渐升高,由4.64增加到5.72.在风化淋滤作用过程中,稀土在酸性和弱酸性的介质条件下主要以可溶性的水合阳离子形式迁移,随pH值的升高,稀土离子迁移能力逐步减弱,黏土矿物的吸附能力反而逐步增强,导致稀土元素逐渐在剖面的下部位置沉淀富集.重稀土元素向下迁移过程中,较大的迁移速率和被黏土矿物优先吸附的属性,可能是造成石头坪稀土矿床“上轻下重”的重要原因.

参考文献

[1]

Balaram, V., 2019. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geoscience Frontiers, 10(4): 1285-1303. https://doi.org/10.1016/j.gsf.2018.12.005

[2]

Bao, Z. W., Zhao, Z. H., 2008. Geochemistry of Mineralization with Exchangeable REY in the Weathering Crusts of Granitic Rocks in South China. Ore Geology Reviews, 33(3/4): 519-535. https://doi.org/10.1016/j.oregeorev.2007.03.005

[3]

Binnemans, K., Jones, P. T., Blanpain, B., et al., 2015. Towards Zero-Waste Valorisation of Rare-Earth-Containing Industrial Process Residues: A Critical Review. Journal of Cleaner Production, 99: 17-38. https://doi.org/10.1016/j.jclepro.2015.02.089

[4]

Borst, A. M., Smith, M. P., Finch, A. A., et al., 2020. Adsorption of Rare Earth Elements in Regolith-Hosted Clay Deposits. Nature Communications, 11(1): 4386. https://doi.org/10.1038/s41467-020-17801-5

[5]

Bray, A. W., Oelkers, E. H., Bonneville, S., et al., 2015. The Effect of pH, Grain Size, and Organic Ligands on Biotite Weathering Rates. Geochimica et Cosmochimica Acta, 164: 127-145. https://doi.org/10.1016/j.gca.2015.04.048

[6]

Chen, D.Q., Wu, J.S., 1990.Metallogenic Mechanism of Ion Adsorption Rare Earth Deposits. Journal of the Chinese Society of Rare Earths, 8(2): 175-179 (in Chinese with English abstract).

[7]

Chen, W., Jiang, S. Y., 2022. What Type of Carbonate Rock can Form Large to Ultra Large Rare Earth Deposits? Earth Science, 47(10): 3891-3893 (in Chinese with English abstract).

[8]

Chi, R.A., Tian,J, 2007. Review of Weathered Crust Rare Earth Ore. Journal of the Chinese Society of Rare Earths, 25(6): 641-650 (in Chinese with English abstract).

[9]

Condie, K. C., Dengate, J., Cullers, R. L., 1995. Behavior of Rare Earth Elements in a Paleoweathering Profile on Granodiorite in the Front Range, Colorado, USA.Geochimica et Cosmochimica Acta, 59(2): 279-294. https://doi.org/10.1016/0016-7037(94)00280-Y

[10]

Fan, C.Z., Zhang, Y., Chen, Z.H., et al., 2015. The Study of Clay Minerals from Weathered Crust Rare Earth Ores in Southern Jiangxi Province. Acta Petrologica et Mineralogica, 34(6): 803-810 (in Chinese with English abstract).

[11]

Feng, L.J., Chu, X.L., Zhang, Q.R., et al., 2003. CIA (Chemical Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544 (in Chinese with English abstract).

[12]

Fu, H.J., Jian, X., Liang, H.H., 2021. Research Progress of Sediment Indicators and Methods for Evaluation of Silicate Chemical Weathering Intensity. Journal of Palaeogeography, 23(6): 1192-1209 (in Chinese with English abstract).

[13]

Fu, W., Dong, C. F., Xu, C., et al., 2024. Research on Prospecting Direction of Ion-Adsorption Type Heavy Rare Earth Element Resources in Guangxi and Progresses in Scientific Demonstration Exploration. Earth Science, 49(6): 1931-1945 (in Chinese with English abstract).

[14]

Fu, W., Li, X. T., Feng, Y. Y., et al., 2019. Chemical Weathering of S-Type Granite and Formation of Rare Earth Element (REE)-Rich Regolith in South China: Critical Control of Lithology. Chemical Geology, 520: 33-51. https://doi.org/10.1016/j.chemgeo.2019.05.006

[15]

Gong, L. X., Wang, X. G., Zhang, D. F., et al., 2023. Zircon as a Monitoring Tool for the Magmatic-Hydrothermal Process in the Granitic Bedrock of Shitouping Ion-Adsorption Heavy Rare Earth Element Deposit, South China. Minerals, 13(11): 1402. https://doi.org/10.3390/min13111402

[16]

He, Y. L., Ma, L. Y., Li, X. R., et al., 2023. Mobilization and Fractionation of Rare Earth Elements during Experimental Bio-Weathering of Granites. Geochimica et Cosmochimica Acta, 343: 384-395. https://doi.org/10.1016/j.gca.2022.12.027

[17]

Huang, J., He, H. P., Tan, W., et al., 2021. Groundwater Controls REE Mineralisation in the Regolith of South China. Chemical Geology, 577: 120295. https://doi.org/10.1016/j.chemgeo.2021.120295

[18]

Huang, Y.F., Tan, W., Bao, Z.W., et al., 2022. Constraints of Parent Rocks on the Formation of Ion Adsorption HREE Deposit in the Weathering Crust of the Shangyou Granite Batholith. Geotectonica et Metallogenia, 46(2): 303-317 (in Chinese with English abstract).

[19]

Ichimura, K., Sanematsu, K., Kon, Y., et al., 2020. REE Redistributions during Granite Weathering: Implications for Ce Anomaly as a Proxy for Paleoredox States. American Mineralogist, 105(6): 848-859. https://doi.org/10.2138/am-2020-7148

[20]

Li, M. X., Liu, H. B., Chen, T. H., et al., 2017. Adsorption of Europium on Al-Substituted Goethite. Journal of Molecular Liquids, 236: 445-451. https://doi.org/10.1016/j.molliq.2017.04.046

[21]

Li, M. Y. H., Kwong, H. T., Williams-Jones, A. E., et al., 2022. The Thermodynamics of Rare Earth Element Liberation, Mobilization and Supergene Enrichment during Groundwater-Regolith Interaction. Geochimica et Cosmochimica Acta, 330: 258-277. https://doi.org/10.1016/j.gca.2021.05.002

[22]

Li, M. Y. H., Zhou, M. F., 2020. The Role of Clay Minerals in Formation of the Regolith-Hosted Heavy Rare Earth Element Deposits. American Mineralogist, 105(1): 92-108. https://doi.org/10.2138/am-2020-7061

[23]

Liang, X.L., Tan, W., Ma, L.Y., et al., 2022. Mineral Surface Reaction Constraints on the Formation of Ion-Adsorption Rare Earth Element Deposits. Earth Science Frontiers, 29(1): 29-41 (in Chinese with English abstract).

[24]

Liu, S., Fan, H. R., Wang, Q. W., et al., 2023. Carbonatite-Related Delicate REE Mineralization Processes Revealed by Fluorocarbonates and Monazite: Insights from the Giant Bayan Obo REE-Nb-Fe Deposit, China. Ore Geology Reviews, 157: 105443. https://doi.org/10.1016/j.oregeorev.2023.105443

[25]

Lu, L., Wang, D.H., Wang, C.H., et al., 2019. Mineralization Regularity of Ion-Adsorption Type REE Deposits on Lincang Granite in Yunnan Province. Acta Geologica Sinica, 93(6): 1466-1478 (in Chinese with English abstract).

[26]

Luo, K., Ma, J.L., 2022. Recent Advances in Migration and Enrichment of Rare Earth Elements during Chemical Weathering of Granite. Advances in Earth Science, 37(7): 692-708 (in Chinese with English abstract).

[27]

Ma, Y.J., Huo, R.K., Xu, Z.F., et al., 2004. REE Behavior and Influence Factors during Chemical Weathering. Advance in Earth Sciences, 19(1): 87-94 (in Chinese with English abstract).

[28]

Mao, J.W., Song, S.W., Liu, M., et al., 2022. REE Deposits: Basic Characteristics and Global Metallogeny. Acta Geologica Sinica, 96(11): 3675-3697 (in Chinese with English abstract).

[29]

Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0

[30]

Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3

[31]

Pan, X., Wang, W.B., Zhang, G.L., 2021. Analysis of Metallogenic Granite Characteristics of Ion Adsorption Rare Earth Deposits in Southern Ganzhou. World Nonferrous Metals, (19): 160-161(in Chinese with English abstract).

[32]

Peng, L.L., Li, W., Liu, C.H., et al., 2020. Main Types, Metallogenic Regularity and Prospecting Potential of Tin Deposits in Southern Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(5): 463-471 (in Chinese with English abstract).

[33]

Sanematsu, K., Kon, Y., Imai, A., et al., 2013. Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437-451. https://doi.org/10.1007/s00126-011-0380-5

[34]

Shang, Y.J., Shi, Y.Y., Jin, W.J., et al., 2008. Discussion on Relationship between Weathering Crust Zonation and Basic Quality Classification of Rock Mass. Chinese Journal of Rock Mechanics and Engineering, 27(9): 1858-1864 (in Chinese with English abstract).

[35]

Song, L.S., Hu, Q.X., Chen, S.S., 2020. Characteristics of Radioactive Heat Generation Rate of Granites in the Southeastern Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(6): 514-520 (in Chinese with English abstract).

[36]

Su, H.M., Che, Y.Y., Yin, Y.L., et al., 2023. Present Situation and Research Direction of Strategic Critical Mineral Exploration: Taking Qinghai Province as an Example. Earth Science, 48(4): 1543-1550 (in Chinese with English abstract).

[37]

Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

[38]

Tang, J. W., Johannesson, K. H., 2005. Adsorption of Rare Earth Elements onto Carrizo Sand: Experimental Investigations and Modeling with Surface Complexation. Geochimica et Cosmochimica Acta, 69(22): 5247-5261. https://doi.org/10.1016/j.gca.2005.06.021

[39]

Wainipee, W., Cuadros, J., Sephton, M. A., et al., 2013. The Effects of Oil on As(V) Adsorption on Illite, Kaolinite, Montmorillonite and Chlorite. Geochimica et Cosmochimica Acta, 121: 487-502. https://doi.org/10.1016/j.gca.2013.07.018

[40]

Wang, D.H., Zhao, Z., Yu, Y., et al., 2017. A Review of the Achievements in the Survey and Study of Ion-Absorption Type REE Deposits in China. Acta Geoscientica Sinica, 38(3): 317-325 (in Chinese with English abstract).

[41]

Wang, W., 2008. Study on Weathering Crust of Permian Basalt in Western Guizhou and Its Rare Earth Enrichment Law (Dissertation).Guizhou University,Guiyang(in Chinese with English abstract).

[42]

Wang, X. G., Zhang, Y. W., Zou, J. P., et al., 2022. Discovery and Significance of the Shitouping Super Large Heavy Rare Earth Deposit. The 14th China Baotou Rare Earth Industry Forum and the 2022 Academic Annual Meeting of the China Rare Earth Society, Baotou (in Chinese with English abstract).

[43]

Wang, Z., Chen, Z.Y., Zhao, Z., et al., 2019. REE Mineral and Geochemical Characteristics of Neoproterozoic Metamorphic Rocks in South Jiangxi Province. Mineral Deposits, 38(4): 837-850 (in Chinese with English abstract).

[44]

Xie, M.J., Zhou, J., Wang, X.Q., et al., 2022. Research of Elements’Migration and Enrichment Characteristics of Ion-Adsorption Type REE Deposits in Southern Jiangxi Province. Journal of the Chinese Society of Rare Earths, 40(4): 697-710 (in Chinese with English abstract).

[45]

Xu, C., Kynický, J., Smith, M. P., et al., 2017. Origin of Heavy Rare Earth Mineralization in South China. Nature Communications, 8: 14598. https://doi.org/10.1038/ncomms14598

[46]

Xu, X.B., Liang, C.H., Chen, J.J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150 (in Chinese with English abstract).

[47]

Yang, M. J., Liang, X. L., Ma, L. Y., et al., 2019. Adsorption of REEs on Kaolinite and Halloysite: A Link to the REE Distribution on Clays in the Weathering Crust of Granite. Chemical Geology, 525: 210-217. https://doi.org/10.1016/j.chemgeo.2019.07.024

[48]

Yang, M.G., Zhu, P.J., Wang, G.H., 2018. Division of Tectonic-Metallogenetic Units in South China. Shanghai Land & Resources, 39(4): 13-18, 24(in Chinese with English abstract).

[49]

Zhao, Z., Wang, D.H., Chen, Z.H., et al., 2017. Progress of Research on Metallogenic Regularity of Ion-Adsorption Type REE Deposit in the Nanling Range. Acta Geologica Sinica, 91(12): 2814-2827 (in Chinese with English abstract).

[50]

Zhong, S. S., Han, Y. S., Huang, X. H., et al., 2021. Geological Characteristics and Genesis of Shitouping Ion Adsorption Heavy Rare Earth Mining Area in Anyuan County. The 11th Member Representative Conference of Jiangxi Geological Society and the 2021 Academic Annual Meeting of Jiangxi Geological Society, Yichun(in Chinese with English abstract).

[51]

Zhou, J. M., Li, M. Y., Yuan, P., et al., 2021. Partial Rehydration of Tubular Halloysite (7 Å) Immersed in La(NO3)3 Solution for 3 Years and Its Implication for Understanding REE Occurrence in Weathered Crust Elution-Deposited Rare Earth Ores. Applied Clay Science, 213: 106244. https://doi.org/10.1016/j.clay.2021.106244

[52]

Zhou, M.F., Li, X.X., Wang, Z. C., et al., 2020. The Genesis of Regolith-Hosted Rare Earth Element and Scandium Deposits: Current Understanding and Outlook to Future Prospecting. Chinese Science Bulletin, 65(33): 3809-3824 (in Chinese).

基金资助

江西省省级财政出资地质勘查项目(20220014)

AI Summary AI Mindmap
PDF (13539KB)

227

访问

0

被引

详细

导航
相关文章

AI思维导图

/