源排放大气气溶胶中可溶性铁特性、影响因素及清单估算研究进展

孔少飞 ,  覃旭菁 ,  王婷婷 ,  向璇 ,  曹娟 ,  江惟缌 ,  王舒

地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3422 -3440.

PDF (1704KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3422 -3440. DOI: 10.3799/dqkx.2025.161

源排放大气气溶胶中可溶性铁特性、影响因素及清单估算研究进展

作者信息 +

Research Progress on Physical⁃Chemical Characteristics, Influencing Factors, and Emission Inventory Estimation of Soluble Iron in Anthropogenic Atmospheric Aerosols

Author information +
文章历史 +
PDF (1744K)

摘要

大气气溶胶中可溶性铁对海洋初级生产力、气候变化、大气二次污染和人体健康都具有重要影响.准确认知可溶性铁的来源,构建高精度可溶性铁的排放清单,是改进生物地球化学模式、模拟铁沉降量和海洋初级生产力、提升大气化学传输模式模拟二次气溶胶精度,以及揭示影响人体内可溶性铁的来源及其定量贡献的重要前提.本文总结分析了气溶胶中铁及可溶性铁的来源解析、气溶胶中铁的可溶性影响因素及作用机制,以及燃烧源排放气溶胶中铁的样品采集和测试方法研究进展,着重对燃烧源排放可溶性铁的清单构建方法和存在问题进行归纳总结,以期为精准评估铁的气候、环境和健康效应提供基础数据和理论支撑.

Abstract

Soluble iron in atmospheric aerosols substantially influences marine primary productivity, climate change, secondary atmospheric pollution, and human health. Identifying sources and developing high-accuracy emission inventories of soluble iron are fundamental for refining biogeochemical models to simulate iron deposition fluxes and marine productivity, improving atmospheric chemistry transport models for secondary aerosol simulations and quantifying the sources and contributions of soluble iron affecting human health. This study systematically reviews the source apportionment of iron and soluble iron in atmospheric aerosols, the key factors and underlying mechanisms governing iron solubility, and recent methodological advances in sampling and characterization of combustion-derived iron-containing aerosols. With particular focus on emission inventory development for combustion-related soluble iron, we critically examine current methodologies and identify persistent challenges. It is expected the summarization here provides a basic dataset and theoretical frameworks for accurate assessment of iron’s climatic, environmental and health impacts.

Graphical abstract

关键词

气溶胶 / 可溶性铁 / 理化特性 / 测试方法 / 影响因素 / 排放清单 / 大气化学.

Key words

aerosol / soluble iron / physicochemical properties / analytical method / influencing factors / emission inventory / atmospheric chemistry

引用本文

引用格式 ▾
孔少飞,覃旭菁,王婷婷,向璇,曹娟,江惟缌,王舒. 源排放大气气溶胶中可溶性铁特性、影响因素及清单估算研究进展[J]. 地球科学, 2025, 50(09): 3422-3440 DOI:10.3799/dqkx.2025.161

登录浏览全文

4963

注册一个新账户 忘记密码

铁对于海洋初级生产力和气候变化调控具有重要作用.20世纪90年代,Martin(1990)提出著名的“铁假说”.后续的人工铁加富实验和模拟研究证实,铁通过促进南大洋(Watson et al., 2000Weis et al., 2024)、赤道太平洋(Martin et al., 1994; Behrenfeld et al., 1996)、北太平洋(Pinedo⁃González et al., 2020)等“高营养盐、低叶绿素”海域表层海水浮游植物初级生产力的提升(Weis et al., 2024),增加对大气中CO2的吸收和固定(Watson et al., 2000),以调控海洋生态系统与全球气候变化(杜志恒等,2020).含铁物质能直接吸收短波辐射(Moteki et al., 2017Matsui et al., 2018),也可氧化气溶胶中的有机组分,形成强吸光的二次有机组分(Slikboer et al., 2015).对大气中铁的时空分布、沉降量和光学性质的精准模拟,是评估其生态和气候效应的关键.
可溶性铁可诱发活性氧物质生成,造成氧化损伤.可溶性铁具有高生物可利用性,是衡量人体健康风险的一个重要指标(Huang et al., 2018).它能通过芬顿反应产生活性氧物质(reactive oxygen species,ROS)(See et al., 2007Wei et al., 2019Alpert et al., 2021Wang et al., 2022a),进而与体内的关键生物大分子(如脱氧核糖核酸)发生反应,诱发氧化损伤(Hu et al., 2023).模拟实验表明,高浓度铁含量可促进ROS增加(Castranova et al., 1997);铁与有机物(如富里酸)的络合物表现出较强的协同效应,可提升其生成H2O2的能力(Wei et al., 2019).流行病学研究表明,PM2.5的组分中,水溶性铁对心血管疾病健康结局的影响最大(Ye et al., 2018).为精准防护人群健康,需要明晰可溶性铁的来源、性质和定量贡献.
可溶性铁会影响二次气溶胶生成和大气氧化性.光芬顿反应是颗粒中有机物氧化的重要机制(Nguyen et al., 2013Yang et al., 2020).Fe(III)与草酸在水溶液中络合生成强吸收性的草酸铁发色团,其吸收紫外辐射后,产生Fe2+和二氧化碳阴离子自由基,并导致乙醇醛快速氧化形成乙二醛、乙醇酸和乙醛酸(Thomas et al., 2016).同位素技术(Li et al., 2020Han et al., 2023)、数值模式(Tao et al., 2020Wang et al., 2021Shen et al., 2024)和烟雾箱模拟(Wang et al., 2021Zhang et al., 2024a)被广泛应用于探究过渡金属(Fe3+和Mn2+)催化氧化对于SO42-生成速率和浓度的影响.一次排放的Fe2+和HO x 非均相反应,可贡献H2O2的1/3生成和超过一半的消耗速率,进而对大气氧化性产生影响(Guo et al., 2014).但同位素方法无法区分具体是哪种过渡金属的作用(Li et al., 2020; Han et al., 2023);数值模式中对于过渡金属浓度、来源、可溶性等的约束和理解尚不充分,导致模拟的Fe3+浓度往往低于观测值(Tao et al., 2020).这些都需要源排放实测数据予以约束(Wang et al., 2021).
对源排放可溶性铁的估算,是理解其生物地球化学循环的基础. 矿尘和燃烧源是铁的两类重要来源.Luo et al. (2008)首次模拟了燃烧源排放铁的量以及传输和沉降过程,而在此之前的研究人员都认为开阔大洋铁的沉降主要来自于矿物尘. 其研究表明铁的工业过程燃烧源排放主要集中在东亚、欧洲、北美东海岸(年均排放0.66 Tg),生物质燃烧排放铁(年均排放 1.07 Tg)主要集中在热带地区,矿物尘铁的来源(年均排放55 Tg)主要集中在干旱的亚热带地区,如北非、阿拉伯半岛、澳大利亚和东亚,燃烧源贡献了全球海域可溶性铁沉降的20%~100%. Wang et al.(2015)估算了全球铁的燃烧源和矿尘源排放,发现燃烧源排放PM1、PM1~10、PM>10粒径段中铁的总量为5.3 Tg/a,远低于矿物尘(粒径段为(2.5±2) μm)排放铁的总量 (41 Tg/a),但其贡献了海洋可溶性铁沉降的79%.后续大量的研究也都表明,燃烧源排放铁可溶性高(Ito, 2015Conway et al., 2019Ito et al., 2019),占到偏远海洋地区可溶性铁沉降量的50%以上(Ito and Shi, 2016Matsui et al., 2018),尤其是亚洲的工业过程和燃煤排放(Resing and Barrett,2014).最新研究表明人为燃烧源贡献了西北太平洋/北大西洋和赤道中太平洋可溶性铁的30%~50%和20%~30%(Rathod et al., 2020).Matsui et al.(2018)模拟发现,将人为源排放磁铁矿的测量纳入模型后,人为源排放铁的量比之前的估算高8倍.Pinedo⁃González et al.(2020)基于同位素方法,发现人为源排放贡献了西北太平洋中可溶性铁的21%~59%,比模式模拟得到的贡献率(2%~70%)更加收敛,并证实了模式模拟的通量低估约2倍(Pinedo⁃González et al., 2020).上述结果的高不确定性以及参数选择(如粒径、铁溶解度等)引起的误差,亟待更多实测研究予以改进.
综上,本研究针对气溶胶中可溶性铁排放估算对效应模拟研究的影响(图1),系统总结了气溶胶中铁及可溶性铁的来源解析、可溶性影响因素及作用机制、样品采集和测试方法、燃烧源排放可溶性铁的清单构建方法和存在问题,为准确认知可溶性铁的来源,完善人为源排放气溶胶中可溶性铁的实测方法,构建高精度可溶性铁的排放清单,改进模式模拟铁沉降量和海洋初级生产力、二次气溶胶生成和环境效应、人体内可溶性铁的来源及定量贡献,提供新的科学认知和基础数据支撑.

1 气溶胶中铁及可溶性铁的来源解析研究进展

定性和定量识别不同排放源对大气气溶胶中铁及可溶性铁的贡献比例,是各类数值模式的基础输入数据和参数设置的依据.富集因子、因子分析、单颗粒表征、正定矩阵因子分解(PMF)、同位素混合模型解析、大气化学传输模型模拟等在铁的来源研究中被广泛应用(张天乐和郑玫,2024).

1.1 富集因子、因子分析和单颗粒表征方法

富集因子、因子分析和单颗粒表征是常用的定性识别铁来源的方法.王玥等(2023)对比杭州污染天和非污染天气溶胶中铁的富集因子,结合气团后向轨迹分析,发现非污染天气溶胶中铁受地壳源和人为源的混合影响,且地壳源影响更大;污染天气溶胶中的铁主要受人为源影响,主要来自本地机动车排放及市区周边的重工业排放.Takahashi et al.(2013)在筑波采集TSP(total suspended particle)样品,结合后向轨迹、水溶性离子、富集因子和矿物组成分析,推测硫酸铁主要来源于化石燃料燃烧,伊利石和针铁矿主要来自自然源.郭琳(2013)在东海花鸟岛采集TSP样品,结合组分和因子分析,发现主要影响源是沙尘、生物质燃烧、燃煤、海盐和石油燃烧.Li et al.(2017)采集大气单颗粒样品,经透射电镜‒能量色散X射线光谱分析发现,海洋大气中主要存在球形富铁颗粒、球形飞灰颗粒和不规则的矿物颗粒等3类含铁颗粒,并认为球形颗粒通过高温和快速冷却过程形成,与人为排放活动有关.这些研究只能笼统地将铁分为地壳源和人为源,无法给出更加精细的源类划分及其定量贡献.

PMF(positive matrix factorization)可定量解析不同源对气溶胶中铁的贡献,其依赖于站点长期数据积累或在线观测(张天乐和郑玫,2024).如表1所示,Zhang et al.(2024b)在西北太平洋海域对海洋气溶胶中的铁进行船载在线观测,利用PMF模型定量解析出沙尘、工业燃煤、船舶燃油和生物质燃烧对海洋大气PM2.5中铁的贡献率;再结合文献报道的沙尘、工业燃煤、船舶燃油和生物质燃烧排放铁的溶解度平均值,分别为1%(Oakes et al., 2012)、8%(Chen et al., 2012Fu et al., 2012Oakes et al., 2012)、65%(Schroth et al., 2009Fu et al., 2012Oakes et al., 2012)和18%(Bowie et al., 2009),得到各类源可溶性铁的贡献率,平均为13%、32%、27%和27%.Chen et al.(2024)通过离线方法,采集青岛大气中细粒子(dp<1 μm)和粗粒子(dp>1 μm)的滤膜样品,分析有机和无机组分含量,并将可溶性铁与离子、元素等24种组分纳入PMF模型,得到海洋源、二次源、燃烧源和工业源对细粒子中可溶性铁的四季贡献率范围分别为0.8%~5.8%、13.5%~85.5%、5.4%~52.3%和8.3%~28.4%.Zhu et al.(2022)Sun et al.(2024)采用同样方法研究发现,杭州灰霾期间,重油冶炼过程、钢铁工业、二次源、交通源、燃煤和沙尘对PM2.5中可溶性铁的贡献率分别为38.9%、26.5%、16.1%、10.6%、4.4%和3.5%(Zhu et al., 2022);青岛灰霾期间,废弃物燃烧是可溶性铁的最大贡献源(78.4%),其次为工业源、老化沙尘、燃煤、生物质燃料、交通源,而海盐、船舶排放和二次源的贡献可以忽略(Sun et al., 2024).上述研究得到的可溶性铁来源及贡献率存在明显差异. Zhi et al.(2025)的研究表明,受沙尘影响的气溶胶中铁的可溶性,随沙尘传输距离增加而增大,这对于沙尘传输路径上不同点位气溶胶中可溶性铁的来源解析产生的影响也不容忽视.Sun et al.(2024)指出,不同人为源排放铁的可溶性仍然是不清楚的,这是该领域的一个最根本挑战.

1.2 同位素技术应用于铁溯源

图2总结了不同地区研究中,气溶胶中δ56Fe的值. Conway et al.(2019)发现,靠近撒哈拉沙漠的北大西洋可溶性气溶胶中δ56Fe值接近于地壳中δ56Fe值,来自于北美和欧洲的可溶性气溶胶中δ56Fe值轻至-1.6‰.Kurisu et al.(2021)发现来自于东或北太平洋的粗、细粒子中δ56Fe值变化范围为0.0‰~0.4‰,与地壳物质的值接近;来自于东亚气团细粒子中δ56Fe值变化范围为-0.5‰~-2.2‰,粗粒子为(-0.02±0.12)‰,且δ56Fe值与铅和钒的富集因子相关,反映燃烧源排放铁的存在.Wang et al.(2022b)将粒径与δ56Fe同位素示踪结合,发现小于1.3 μm的颗粒物中铁的人为源占比高(24%~64%),大于1.3 μm的颗粒物中铁以尘源为主(约60%).Pinedo⁃González et al.(2020)发现西北太平洋海水中可溶性铁的δ56Fe(-0.23‰~-0.65‰)值低,认为其来自于人为源;结合同位素质量平衡模型给出人为源铁的贡献率为21%~59%.受限于源排放铁的同位素测量数据缺乏、同位素特征值重叠和大气传输过程中的同位素分馏等影响,同位素方法目前仅能区分出沙尘源和人为源,细分源类的识别尚未见报道.

1.3 大气化学传输模型应用于铁沉降通量模拟

Ito and Feng(2010)通过气溶胶化学输送模型模拟,发现春季北太平洋上空粉尘排放气溶胶中铁的沉降通量(5~20 pg·m-2·s-1)比燃烧源排放的铁通量(0.5~1.0 pg·m-2·s-1)高,表明亚洲沙尘是北太平洋总可溶性铁沉降的主要来源,但其指出需要更全面的数据以提高预测能力.Ito(2015)使用全球化学传输模型进行精细模拟发现,沙尘源、生物质燃烧和化石燃料燃烧对可溶性铁的沉降贡献分别为85%、8.7%和6.7%,不同区域的生物质燃烧和石油燃烧源对不同海域可溶性铁的贡献存在差异.Ito and Shi(2016)采用新的实验结果更新铁的排放量,模拟研究表明,化石燃料燃烧源和粉尘源对海洋可溶性铁的沉降贡献分别为28%~33%和67%~72%.随着清单和铁的可溶性参数更新,化石燃料燃烧对可溶性铁沉降贡献的重要性逐渐显现.上述研究中各类源对于铁沉降贡献率的较大差异,依赖于更加精细的源排放可溶性铁的实测和清单更新研究予以约束.

2 气溶胶中铁的可溶性影响因素研究进展

源排放气溶胶中铁的可溶性受气溶胶含水量和pH、矿物组成及铁的化学形态、气溶胶中有机和无机组分含量、气溶胶粒径、燃料理化特性和燃烧状态等因素的影响.前人针对不同因素的作用机制,已开展了相应的研究.

2.1 气溶胶含水量和pH

水是物质溶解的关键介质,其含量直接影响铁和其他化学组分的溶解性以及气溶胶pH值.随着气溶胶含水量增加,物质溶解的可能性会随之提升.酸性条件(低pH)能够促进铁氧化物和硅酸盐的溶解,显著增加铁的溶解性;相反,碱性条件(高pH)则会抑制铁的溶解(Cwiertny et al., 2008; López⁃García et al., 2017Lei et al., 2023).这与酸性环境中,质子攻击铁氧化物表面,破坏Fe⁃O键,从而将难溶的Fe转化为可溶性离子有关(唐钰婧等,2021).Journet et al.(2008)发现与正常大气条件相比(pH=4.7),在pH=2的条件下得到的矿物质中铁溶解度明显高估2个数量级,且铁的可溶性与溶液pH并非线性关系.Fu et al.(2012)发现,在pH=2时,燃油飞灰中铁的溶解性为74.1%~85.9%,是pH=7时溶解性(约10%)的7.4~8.5倍.谢婷婷(2021)发现,在pH≤1的强酸性条件下,煤燃烧排放含铁气溶胶的溶解速率和溶解度最高;在pH=4.7的溶解过程后期,无法检测出可溶性Fe2+.

在实际大气中, 气溶胶的pH通常很难小于3,但由于单个颗粒表面的非均相反应也会导致气溶胶中铁的溶解度增加.Sullivan et al. (2007)的研究表明,矿尘气溶胶对于大气中二次酸的吸收取决于其单个颗粒的矿物学组成,二次酸的积聚促进了沙尘中铁的溶解度增加.但不同单颗粒吸附的前体物和形成的酸存在差异,如富含钙的尘上积聚了大量的硝酸盐,大量硫酸盐则积聚在富含铝硅酸盐的尘上,并通过铁的催化,将四价硫氧化为六价硫. Li et al. (2025)通过观测发现,撒哈拉和亚洲沙尘大粒子的表面,水溶性有机碳(water⁃soluble organic carbon,WSOC)占到总WSOC的25%~51%,揭示了含水硝酸盐促进液相反应生成二次有机气溶胶的新机制;并指出如果老化沙尘中含有铁矿物质,液相的二次有机气溶胶能增加铁的溶解度. Zhi et al. (2025)指出,一些含铁的单颗粒没有与粉尘单颗粒中的碱性碳酸盐矿物混合.这些含铁(但不含碳酸盐)颗粒不受碳酸盐缓冲的影响,仍可通过表面催化反应的酸化作用,发生铁溶解;其发现,当气溶胶中钙的溶解度小于(45±5)%时,铁主要被硫酸盐溶解.

2.2 矿物组成及其中铁的化学形态

气溶胶中通常包含不同类型的矿物组成,各类矿物组成中铁的溶解度存在数量级的差异.Journet et al.(2008)的浸出实验(pH=2,时长60 min)研究表明,磁铁矿、针铁矿、赤铁矿、绿脱石、贝得石、正长石、伊利石、蒙脱石、高岭石和奥长石中铁的可溶性分别为0.003%、0.005%、0.01%、0.34%、0.34%、0.76%、0.95%~1.39%、2.6%、4.26%和5.25%,可溶性铁含量随着总铁含量的增加呈现指数递减规律.Cartledge et al.(2015)的研究表明磁铁矿(Fe₃O₄)和赤铁矿(α⁃Fe2O3)的溶解度比针铁矿(FeOOH)高1个数量级.而唐钰婧(2021)的研究表明,α⁃Fe2O3中铁的溶解度较低,FeOOH和Fe₃O₄中铁的溶解度相对较高.Rathod et al.(2020)总结指出,铁在固体燃料中的矿物组成,主要分为硫酸盐(包括硫酸亚铁和硫酸铁)、高岭石、伊利石、赤铁矿、针铁矿和磁铁矿,其溶解度分别为50%~90%、4.2%、1.5%~2.0%、0.01%、0.005%和0.003%.Ueda et al.(2023)认为,无定形或含Fe²⁺的颗粒易溶,具有稳定晶体结构的Fe3+矿物在没有强酸或络合剂的情况下呈难溶状态.

2.3 气溶胶中无机酸和有机酸含量

无机酸提供了溶解铁的基本驱动力,而有机酸则进一步增强和调节这一过程,尤其在酸不足或需要还原条件时发挥关键作用.无机酸(如硫酸、硝酸和盐酸)通过降低pH促进铁氧化物和硅酸盐的溶解(Paris et al., 2011Paris and Desboeufs, 2013Salazar et al., 2020),这些也是浸出实验常用的酸性溶液(Desboeufs et al., 2005Journet et al., 2008Schroth et al., 2009Chen et al., 2012; Fu et al., 2012; Oakes et al., 2012Li et al., 2022).谢婷婷(2021)的研究表明,由于H₂SO₄的强酸性和H+协同效应,H₂SO₄对绿泥石、伊利石、高岭石等黏土矿物的溶解能力强;HNO₃因其强氧化性促进硫化物氧化,使FeS₂的溶解性高.在pH=1的条件下,经48 h溶解后,H₂SO₄、HNO₃和HCl作用下产生的可溶性铁的比例分别为31.7%~80.4%、17.1%~62.6%和17.2%~88.5%.有机酸(如草酸、苹果酸、酒石酸等)能够通过络合作用与铁形成络合物,促进铁的溶解,其中草酸是最有效的有机配体;有机酸也可通过还原作用将Fe(III)还原为Fe(II),进一步提高铁的溶解性(Paris and Desboeufs, 2013Shi et al., 2022).Mahowald et al.(2018)指出,草酸可通过光化学还原和络合作用,促使铁溶解度增加75%.Paris and Desboeufs(2013)发现大气中草酸浓度与铁溶解度呈正相关,提高草酸浓度可使铁的溶解度提升6.5倍. Shi et al.(2022)采用深度学习神经网络模型发现,草酸与总铁的比值是影响铁可溶性的一个重要参数,草酸通过生成配体的机制促进铁的溶解,但前提是草酸的浓度必须足够高,以克服颗粒中可溶性铁的竞争. 然而Yang et al. (2023)在香港的研究,没有在PM2.5中发现金属‒有机络合物,由此表明有机配体促进的溶解可能在提高气溶胶中金属溶解度方面起着次要作用,原因在于有机配体促进的金属溶解是一个缓慢过程,在低pH条件(该研究中气溶胶pH范围为2~4)下对金属溶解的作用很小.由此可见,有机酸对铁溶解性的影响,并非单因素作用,而同时受到其他因素的制约.

2.4 气溶胶粒径

源排放气溶胶的初始粒径影响气溶胶在大气中的沉降速率和大气寿命,进而间接影响铁的大气化学过程和溶解性. Cartledge et al.(2015)针对赤铁矿、磁铁矿和针铁矿开展的浸出实验表明,随着粒径减小,铁的可溶性呈现显著增加趋势;当粒径从2.5~10.0 μm降低至0.25~2.50 μm时,铁的可溶性分别从0.25%、0.25%和0.02%,增加到2%、1%和0.13%,相差8、4和6.5倍. 酸性气体如盐酸与矿尘颗粒物的非均相反应受控于其表面积(Dentener et al., 1996).Baker and Jickells (2006)发现控制矿质气溶胶中铁溶解度的首要因素是气溶胶的表面积与体积的比值;由于大的矿质气溶胶在传输过程中优先被清除而浓度降低(从~100 μg/m3降低至~0.1 μg/m3),导致该比值从近源区域向远距离传输时,逐渐增大(从~0.1 μm-1到~10 μm-1),对应的铁溶解度从~0.8%增加到~20%. Ooki et al. (2009)通过不同粒径大气气溶胶的海水浸出实验发现,粒径为4.7~11.0 μm气溶胶中铁的溶解度为0.52%,远小于0.45~0.65 μm气溶胶中铁的溶解度(12%),其认为由于空气和人为排放物质的化学变化,易溶解的铁物种,如Fe(II),在较小粒径的颗粒中富集,导致较小粒径颗粒中铁的溶解速率和溶解度更高. Liu et al. (2024)采用不同的气溶胶中铁的粒径分布方案,模拟发现铁的大气寿命在1.4 d到3.0 d之间变化,小粒径段占比越多,铁的大气寿命越长,模拟得到的可溶性铁排放量越高,相差约3倍;小粒子(<1 μm)气溶胶由于其长的大气寿命(是大粒子的2倍),会延长其大气化学过程,进而使得全球可溶性铁的沉降模拟增加50%.

Liu et al.(2022)的研究表明,随着大气气溶胶粒径增大,铁的可溶性呈现出降低的趋势,霾天时细粒子(dp<1 μm)中铁的可溶性为10.9%,是粗粒子(dp>1 μm)中铁可溶性(2.4%)的4.5倍.Yang et al.(2023)的研究发现,0.056~18.0 µm大气气溶胶中可溶性铁的粒径峰值在0.6~ 1.0 µm之间.Chen et al.(2024)发现,春夏秋冬四季细粒子(dp<1 μm)铁的可溶性变化范围为0.24%~2.05%,均高于同季粗粒子(dp>1 μm)中铁的可溶性(0.15%~1.55%).然而Yang et al. (2023)研究了香港0.056~18.0 μm中11个粒径段气溶胶中可溶性铁的质量浓度,发现其峰值出现在0.56和1.00 μm这两个粒径段,高于或低于该粒径段的溶解铁的质量浓度都降低;该研究表明受气溶胶组分、金属矿物组成的影响,不同粒径段气溶胶中金属溶出速率和机制存在差异.

2.5 燃烧状态和燃料类型

不同燃烧源的燃料矿物组成、燃烧温度、污染控制措施等决定了排放烟气中铁的化学形态和影响铁可溶性的因子(如有机酸、无机酸等)的量,进而影响其初始排放的可溶性.高温燃烧通常会导致铁矿物转化为更稳定的形态,低温燃烧则产生更多可溶性的铁硫酸盐(Mahowald et al., 2018Zhu et al., 2022).Rathod et al.(2020)发现,铁可溶性高的硫酸盐化合物在700~1 000 K形成,铁可溶性低的赤铁矿和磁铁矿分别在1 000 K和1 400 K形成;在1 100 K时,100%含铁硫酸盐转化为赤铁矿;在 1 400 K时,30%赤铁矿转化为磁铁矿.陆炳等(2011)的研究表明,湿法除尘后烟气和下载灰中离子的含量高于干法除尘后离子的含量,反映了水溶性离子在湿度较大时更容易随水分吸附在颗粒物上. Oakes et al.(2012)的研究表明,矿物尘、燃煤飞灰、生物质燃烧、柴油车和汽油车排放的含铁单颗粒是Fe(II)和Fe(III)的混合物,氧化状态存在差异,通常Fe(III)的占比比Fe(II)高(平均占总铁的28%,范围是4.2%~48%);Fe(II)含量的中位值与气溶胶整体的铁溶解度关系不大,如粉煤灰颗粒中Fe(II)含量与机动车尾气和生物质燃烧排放颗粒中Fe(II)含量相似,但其铁的溶解度(<0.06%)远小于机动车尾气(<51%)和生物质燃烧排放颗粒(<46%). Fe(II)含量不足以解释PM2.5颗粒中铁溶解度的变化趋势.唐钰婧等 (2021)指出,燃煤充分燃烧的铁氧化物产物主要为Fe3+,其溶出速率较快;未充分燃烧排放的颗粒物中主要为以晶质硅铝酸盐形式存在的Fe2+,溶出速率较慢.而大部分燃油飞灰中铁与硫酸铁盐(Fe2(SO43·9(H2O))相结合,其在中性溶液中非常不稳定,铁会立即被浸出(Schroth et al., 2009).Fu et al.(2012)基于统一的Mössbauer光谱和透射电镜分析方法,发现燃煤飞灰中的铁以铁铝硅酸盐玻璃和氧化铁(Fe2O3和Fe3O4)形式存在,溶解度较低(约3 mg/g);燃油飞灰中的铁以纳米级Fe3O4聚集体和Fe/S复合物形式存在,溶解度高;玉米秸秆飞灰中,铁以非晶态铁与富钾颗粒混合的形态存在,而水稻秸秆燃烧排放的飞灰中几乎未检测出铁(Fu et al., 2012).Winton et al.(2016)指出,生物质燃烧排放较高浓度有机酸可提高铁的溶解度.Oakes et al.(2012)发现燃煤飞灰、生物质燃烧、柴油车和汽油车排放PM2.5中SO42-含量是铁可溶性的一个重要指标,Fe/SO42-与铁可溶性呈现指数负相关(Oakes et al., 2012).Rathod et al.(2020)总结强调,当前研究主要基于燃料的矿物学组成、燃烧温度、燃烧过程中的矿物转化,计算得到燃煤、燃油和生物质燃烧排放铁的可溶性;但大部分细节仍是未知.燃烧源排放气溶胶中铁的可溶性受多种因素的综合作用,需要更多的污染源实测予以深入研究.

综上,前人的单因素研究指出,这些因素并非独立变量,它们之间可能存在相互作用,比如有机和无机组分含量影响到气溶胶含水量和pH,反过来气溶胶pH也会影响气溶胶对有机和无机组分的吸附和溶解(图3).哪些因素对铁的可溶性起到主导作用,以及各因素之间对铁的可溶性是否存在协同或颉颃作用,尚没有统一的共识,其耦合作用机制也有待进一步深入研究.

3 燃烧源排放气溶胶中可溶性铁的采样和分析方法

在大气化学和生物地球化学模式中,人为源排放铁的可溶性是构建可溶性铁清单的一个重要参数,制约着可溶性铁沉降量和后续气候效应模拟的准确性.模式中通常采用的燃煤、生物质燃烧和燃油排放铁的可溶性范围分别为0.06%~25.00%、2.19%~46.00%和38%~81%(Zhang et al., 2024b).这些数据主要由以下三种方法得到.

3.1 飞灰浸出实验

通过收集除尘器下载灰或购买标准飞灰样品,设置不同的酸性条件,浸出一段时间后,测量溶液中可溶性铁的含量(表2).如Desboeufs et al.(2005)Journet et al.(2008)Schroth et al.(2009)Chen et al.(2012)Fu et al.(2012)分别研究了<100 μm和2~100 μm、<100 μm、10~50 μm、2~ 100 μm、1~50 μm和<50 μm燃煤或燃油飞灰中可溶性铁的浸出过程和含量.最近的一篇研究是Li et al.(2022)通过浸出实验,测试得到燃煤飞灰标准样品(10~20 μm)和废弃物燃烧排放飞灰标准样品(<10 μm)中铁的可溶性值分别为(0.24±0.28)%和(1.98±0.43)%,这些最新数据尚没有在可溶性铁的清单构建、沉降模拟和来源解析中得到应用.

表2可以看出,不同研究得到的矿物尘粒径变化范围普遍在2~50 μm之间,获取的燃煤/燃油飞灰/生物质燃烧颗粒粒径变化范围为1~100 μm;选用的溶液包括H2SO4、HCl、HNO3和醋酸钠,设置的溶液pH值范围为1.0~4.7,浸出时间范围为 45 min至1周,得到矿物尘中铁的溶解度范围为0.04%~5.25%,燃煤/燃油飞灰/生物质燃烧颗粒中铁的溶解度范围为0.2%~74.1%.Fu et al. (2012)也指出在光照条件和暗条件下,矿尘和燃烧源排放颗粒中铁的溶解度存在明显差异.由此可见,样品类型、矿物组成、粒径筛分、酸溶液选择和pH设定、浸出时间,以及光照条件都会对样品中铁的溶解度产生明显影响. 亟需对飞灰浸出实验的实验参数设置提出统一标准,以使得铁可溶性数据具有可比性.

3.2 从文献中引用数据

在数值模式中,由于缺少可溶性铁的测试数据,更多学者采用文献引用的方式获取该参数.如图4所示,文献中被广泛采用的人为源排放铁的可溶性数据(4%)(Ito and Feng, 2010Ito, 2013Luo et al., 2008Rathod et al., 2020),均来源于Chuang et al.(2005)的研究.Chuang et al.(2005)于2001年在韩国济州岛3月至5月采集总悬浮颗粒物(total suspended particle,TSP),测量其中铁的可溶性,通过扣除1个沙尘天和气团经海洋环境超过 96 h的2个非沙尘主导天的数据,拟合发现可溶性铁与EC浓度呈正相关(r2=0.7),并认为铁的可溶性受到东亚地区人为源排放影响.追踪文献引用的结果表明,一些参数在最原始的文献中,并不存在.另外模式中被广泛采用的生物质燃烧排放铁的可溶性数据(18%),来源于Bowie et al.(2009)于2007年在南大洋的观测研究,其发现可能受到生物质燃烧影响的气溶胶中铁的可溶性值为17.7%,并非生物质燃烧排放相应粒径气溶胶的直接测试结果. 这些参数被当作后续所有人为源排放不同粒径气溶胶中铁可溶性的依据.显然从前述影响铁可溶性因素(粒径、燃烧状态、燃料组成、气溶胶组成等)的总结中不难发现,这样的简单层层引用会对模式模拟结果造成较大的不确定性,其合理性也有待商榷.

3.3 源排放颗粒物样品采集和分光光度法

前人也通过采集源排放PM2.5滤膜样品,或采集除尘器下载灰后,通过气溶胶发生器得到PM2.5滤膜样品,用分光光度法测量铁的可溶性.Oakes et al.(2012)通过发动机定容采样系统和特氟龙滤膜,采集柴油车和汽油车排放的PM2.5样品;在受控生物质燃烧排放烟气上方1 m处,采集烟气中PM2.5样品;收集燃煤电厂除尘器下载灰并通过气溶胶发生器和旋风切割头采集燃煤飞灰PM2.5样品;样品采集后,将1/4或1/2滤膜萃取,并采用菲洛嗪分光光度法分别测量可溶性Fe(II)和总可溶性铁的含量,得到燃煤飞灰、生物质燃烧、柴油车、汽油车排放PM2.5中总铁的可溶性分别为0.06%、46%、51%和75%.

通过总结分析,本研究需要强调的是:(1)直接排放烟气中的飞灰和除尘器捕集到的下载灰化学成分差异明显,除尘器下载灰不能代表烟气中的飞灰(Smith,1980).除尘器下载灰粒径往往高于烟气中的飞灰,且没有经过烟囱中高湿、高酸环境的作用,铁的可溶性应该低于烟气飞灰中铁的可溶性.陆炳等(2011)发现,燃煤锅炉排放烟道飞灰和除尘器下载灰PM10的源谱分歧系数为0.38,存在明显差异;烟道灰PM10中铁的含量(2.64%)是除尘器下载灰PM10中的约1.6倍(1.63%).Chen et al.(2012)发现燃煤飞灰中的铁在高温燃烧和烟道酸性环境的冷凝作用下,70%转化为可溶态.(2)大气气溶胶样品中铁的可溶性数据,反映的是经过传输老化后的铁可溶性,显然其涵盖了大气化学老化过程和粗、细粒子大气沉降的影响,并非源排放初始状态的铁可溶性;(3)粒径对铁可溶性存在明显影响.如Rubasinghege et al.(2010)的研究揭示了颗粒粒径差异对α⁃FeOOH在低pH环境下铁溶解性的影响,发现在相同的实验条件下,纳米尺度α⁃FeOOH中铁的溶解性比微米尺度α⁃FeOOH中的高约2倍.前述飞灰浸出实验中,采用不同粒径的飞灰样品,会对铁的溶解性数据对比产生不可忽视的影响.

4 燃烧源排放可溶性铁的清单构建

4.1 可溶性铁清单构建方法和排放量对比

截至目前,仅有6篇文献报道了燃烧源排放可溶性铁的清单(表3),其构建思路分为如下4种:

(1)由铁的排放清单和铁的可溶性推算得到.根据已构建的基于排放和控制技术的PM排放清单,收集整理文献中报道的燃烧源排放铁在PM1和PM1~10中的占比,计算得到燃烧源铁的排放量(Luo et al., 2008Ito and Feng, 2010Ito, 2013).随后参考文献中铁的可溶性数据,计算得到可溶性铁的排放量,包括如下3种可溶性铁的数据来源:(a)根据铁在大气中的简化溶解过程(赤铁矿假说方法)和速率(只考虑赤铁矿中铁在pH=2和7.5时的溶解速率),直接模拟得到可溶性铁的排放量(Luo et al., 2008);(b)参考受人为源影响的大气气溶胶铁的可溶性(4%)、分燃料类型的铁可溶性(燃煤、燃油和木柴分别是21%、38%和15%)或分矿物类型的铁可溶性和温度决定的矿物可溶性(0.003%~90%)(Rathod et al., 2020);(c)参考浸出实验得到的燃煤飞灰和燃油飞灰铁的可溶性范围(燃煤4%~22%和燃油4%~79%)(Desboeufs et al., 2005Schroth et al., 2009Chen et al., 2012)和受生物质燃烧影响的气溶胶中铁的可溶性(17.7%)(Bowie et al., 2009)计算中位值,或给出可溶性范围(Ito, 2013).

(2)由BC清单和可溶性铁与BC比值推算得到.根据已构建的燃烧源BC清单,利用文献中报道的受人为源影响的大气气溶胶铁的可溶性(4%)或拟合得到的可溶性铁与BC比值(0.02),计算得到可溶性铁的排放清单(Luo et al., 2008Ito and Feng, 2010). Ito and Miyakawa (2023)采用类似方法,利用Community Emission Data System (CEDS)数据库中的BC排放量和BC在PM2.5不同源中的占比,估算出各类源排放PM2.5的量;再结合文献中总结的铁在不同粒径颗粒物中的占比(Reff et al., 2009Ito et al., 2018Kajino et al., 2020),估算出铁的排放量,但该研究并未给出可溶性铁的排放量.

(3)由铁在燃烧前后的质量平衡和铁的可溶性数据估算得到.根据燃料消耗量、铁在燃料中的含量、燃烧效率、污染控制技术对不同粒径铁的去除效率,以及燃烧过程中铁在残渣、除尘下载灰、飞灰中的分配系数等,计算得到燃烧源排放铁的量;随后参考文献中报道的可溶性铁数据(燃煤飞灰22.5%、燃油飞灰79%、生物质燃烧飞灰18%),计算得到可溶性铁的排放清单(Wang et al., 2015).

(4)由已构建的BC清单、磁铁矿/BC比值和磁铁矿占人为源铁比例估算得到.通过已构建的人为源(化石燃料+生物燃料)和生物质燃烧排放的BC清单,根据磁铁矿/BC比值(0.4)、磁铁矿占人为源铁的比例(40%),计算得到全球人为源和生物质燃烧铁的排放量;参考数值模拟得到的海洋上空平均的人为源和生物质燃烧排放铁的可溶性(7.7%和11%),估算可溶性铁的排放量(Matsui et al., 2018).其中Luo et al.(2008)Ito and Feng(2010)Ito(2013)Rathod et al.(2020)均是在Bond et al.(2004)构建的全球黑碳排放清单技术框架和数据基础上进行计算.Luo et al.(2008)采用2种方法(考虑源排放、考虑源排放+大气过程)估算出来的2001年全球燃烧源排放PM1中可溶性铁的量分别为0.211 6和0.231 4 Tg/a,与Ito and Feng(2010)Ito(2013)估算出的值0.048 Tg/a和0.041 3 Tg/a存在4~6倍的差距.Wang et al.(2015)的底层数据来源是北京大学的PKU⁃Fuel数据库(http://inventory.pku.edu.cn/home.html),其估算得到的1990至2007年全球年均燃烧源排放PM1中可溶性铁的总量是0.023 09 Tg/a. Matsui et al.(2018)估算得到2000年人为源和生物质燃烧源排放PM10中可溶性铁的量分别为0.261 8和0.11 Tg/a. Rathod et al.(2020)估算得到2010年全球人为源排放PM10中可溶性铁的量为0.020~0.440 Tg/a.这些清单中可溶性铁排放量的差异,除了受到清单构建的技术方法影响外,也与清单的底层源活动水平数据、颗粒物去除效率、铁在粗、细粒子中的占比、可溶性铁的比例和铁在大气中老化后的溶解性等有关.这些底层数据有待本地化调研以及实测数据予以完善.

4.2 可溶性铁排放清单估算存在的问题

(1)源排放分粒径气溶胶中铁可溶性数据的代表性问题.受限于源排放可溶性铁的直接测量数据缺乏,这些清单中所用的可溶性铁数据(不管是对于PM1还是对于PM1~10),通常只采用一个固定的铁溶解度值,且都是来自于前述飞灰浸出实验(除尘器下载灰或标准飞灰样品,粒径范围为<50 μm 或<100 μm,溶液pH通常为2)和受某种源主导影响的大气气溶胶样品中铁的可溶性数据(通常为TSP).其既不能反映烟气中飞灰的铁可溶性(导致现有清单被低估),也不能反映清单构建所需要的粗(<10 μm,>1 μm)、细粒子(<1 μm)中铁的可溶性(被低估),以及自然大气pH=4.7条件下铁的可溶性(被高估).Paris et al.(2010)在尼日尔首都尼亚美上空通过飞机观测发现,生物质燃烧期间采集到的气溶胶中可溶性铁的含量与BC的浓度没有相关性.这些事实证明,现有清单中可溶性铁的排放量估算的准确性和可靠性仍是值得怀疑的.

(2)粗、细颗粒物源谱的本地化和及时更新问题.这些清单中所引用的铁在粗、细粒子中占比的源谱文献,年份跨越为1979至2001年,均为国外研究,没有一篇中国本土研究;随着燃烧技术和污染控制技术的进步,燃烧源排放烟气中飞灰的粒径分布和化学组成是动态变化的,这些没有在现有清单中予以体现.

(3)清单空间分辨率的精度问题.上述清单的空间分辨率最细的为0.5°×0.5° (Matsui et al., 2018),最粗的为2.0°×2.5° (Ito and Feng, 2010; Ito, 2013),对于全球尺度铁的生物地球化学模拟研究而言,是足够的;但对于区域和城市尺度可溶性铁的健康效应和二次气溶胶生成模拟而言,空间分辨率太粗.

(4)清单构建参数的简化问题.现有清单构建引入了铁在不同粒径中的占比、粗细粒子中铁的可溶性、可溶性铁/BC比值、磁铁矿/BC比值和磁铁矿可溶性、飞灰对不同粒径铁的去除效率、铁在燃料‒飞灰‒灰渣中分配系数等多个参数,每个参数值的假设和层层引用均会带来误差.因而,如有分粒径气溶胶中可溶性铁的排放因子,上述参数可以直接被简化为1个,可有效降低清单的不确定性.Rathod et al.(2020)指出,正是由于源排放可溶性铁的不确定性,导致当前模式对于铁的可溶性模拟存在高不确定性.

5 结论

(1)本文对大气气溶胶中可溶性铁的来源解析方法以及铁沉降的数值模拟进行了总结与分析.现有定性识别铁来源的方法主要有富集因子、因子分析和单颗粒表征.可溶性铁含量与其他气溶胶组分被一并纳入PMF模型,在城市、海洋大气气溶胶中铁的源解析中得以应用,并得到沙尘、工业燃煤、船舶燃油、生物质燃料等的定量贡献.大气化学模式和生物地球化学模式模拟各类源对铁沉降贡献率存在较大差异.制约上述模型模拟精度的关键参数是各类源排放铁的可溶性.

(2)本文总结了影响气溶胶中铁可溶性的因素,包括燃料特性、燃烧状态、燃烧排放气溶胶理化特性等.单一因素的影响已经被研究并达成共识,但部分因素如有机酸对铁溶解性的影响,尚存在争议.一些因素如气溶胶pH与化学组分之间并非独立变量,存在相互影响.后续研究应结合烟气参数、燃烧参数、气溶胶理化特性表征等参数,采用大数据方法揭示复杂因素对铁可溶性的耦合作用,揭示协同或颉颃作用机制.

(3)本文汇总了燃烧源排放气溶胶中可溶性铁的采样和分析方法,主要包括飞灰浸出实验、源排放颗粒物样品采集和分光光度法两种.飞灰浸出实验采用标准飞灰样品或除尘器下载灰,选择的粒径多为小于50 μm,不能直接反映燃烧排放到大气中的飞灰理化特性.飞灰浸出实验所设置的溶液酸度大多为pH=2,不能反映真实大气环境条件下的气溶胶pH,导致铁的可溶性往往被高估.

(4)当前可溶性铁排放因子测试为空白,使得现有清单构建引入诸多参数,导致排放量估算和效应模拟的高不确定性.后续应采用主流稀释采样方法、碳平衡方法等,直接采集烟气飞灰中不同粒径(尤其是PM1.0、PM1.0~2.5和PM2.5~10)气溶胶样品,分析其可溶性铁和总铁含量,获得燃烧源排放分级气溶胶中可溶性铁排放因子.在可溶性铁清单构建方面,应跳出以往的间接构建思路框架,即先构建PM2.5或BC清单,再考虑铁在PM2.5中的比例、铁的可溶性或可溶性铁与BC比值、PM2.5和铁的去除效率和铁的燃烧释放效率等诸多参数,估算可溶性铁的清单;只考虑实测排放因子和燃料消耗量两个参数,以期显著提升清单精度,降低清单的不确定性.

参考文献

[1]

Alpert, P. A., Dou, J., Arroyo, P. C., et al., 2021. Photolytic Radical Persistence Due to Anoxia in Viscous Aerosol Particles. Nature Communications, 12(1): 1769. https://doi.org/10.1038/s41467⁃021⁃21913⁃x

[2]

Baker, A. R., Jickells, T. D., 2006. Mineral Particle Size as a Control on Aerosol Iron Solubility. Geophysical Research Letters, 33(17): L17608. https://doi.org/10.1029/2006GL026557

[3]

Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., et al., 1996. Confirmation of Iron Limitation of Phytoplankton Photosynthesis in the Equatorial Pacific Ocean. Nature, 383: 508-511. https://doi.org/10.1038/383508a0

[4]

Bond, T. C., Streets, D. G., Yarber, K. F., et al., 2004. A Technology⁃Based Global Inventory of Black and Organic Carbon Emissions from Combustion. Journal of Geophysical Research: Atmospheres, 109(D14): 2003JD003697. https://doi.org/10.1029/2003jd003697

[5]

Bowie, A. R., Lannuzel, D., Remenyi, T. A., et al., 2009. Biogeochemical Iron Budgets of the Southern Ocean South of Australia: Decoupling of Iron and Nutrient Cycles in the Subantarctic Zone by the Summertime Supply. Global Biogeochemical Cycles, 23(4): 2009GB003500. https://doi.org/10.1029/2009gb003500

[6]

Cartledge, B. T., Marcotte, A. R., Herckes, P., et al., 2015. The Impact of Particle Size, Relative Humidity, and Sulfur Dioxide on Iron Solubility in Simulated Atmospheric Marine Aerosols. Environmental Science & Technology, 49(12): 7179-7187. https://doi.org/10.1021/acs.est.5b02452

[7]

Castranova, V., Vallyathan, V., Ramsey, D. M., et al., 1997. Augmentation of Pulmonary Reactions to Quartz Inhalation by Trace Amounts of Iron⁃Containing Particles. Environmental Health Perspectives, 105: 1319-1324. https://doi.org/10.2307/3433554

[8]

Chen, H. H., Laskin, A., Baltrusaitis, J., et al., 2012. Coal Fly Ash as a Source of Iron in Atmospheric Dust. Environmental Science & Technology, 46(4): 2112-2120. https://doi.org/10.1021/es204102f

[9]

Chen, Y. Z., Wang, Z. Y., Fang, Z. Y., et al., 2024. Dominant Contribution of Non⁃Dust Primary Emissions and Secondary Processes to Dissolved Aerosol Iron. Environmental Science & Technology, 58(39): 17355-17363. https://doi.org/10.1021/acs.est.4c05816

[10]

Chuang, P. Y., Duvall, R. M., Shafer, M. M., et al., 2005. The Origin of Water Soluble Particulate Iron in the Asian Atmospheric Outflow. Geophysical Research Letters, 32(7): 2004GL021946. https://doi.org/10.1029/2004gl021946

[11]

Conway, T. M., Hamilton, D. S., Shelley, R. U., et al., 2019. Tracing and Constraining Anthropogenic Aerosol Iron Fluxes to the North Atlantic Ocean Using Iron Isotopes. Nature Communications, 10(1): 2628. https://doi.org/10.1038/s41467⁃019⁃10457⁃w

[12]

Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., et al., 2008. Characterization and Acid⁃Mobilization Study of Iron⁃Containing Mineral Dust Source Materials. Journal of Geophysical Research: Atmospheres, 113(D5): 2007JD009332. https://doi.org/10.1029/2007jd009332

[13]

Dentener, F. J., Carmichael, G. R., Zhang, Y., et al., 1996. Role of Mineral Aerosol as a Reactive Surface in the Global Troposphere. Journal of Geophysical Research: Atmospheres, 101(D17): 22869-22889 https://doi.org/10.1029/96JD01818

[14]

Desboeufs, K. V., Sofikitis, A., Losno, R., et al., 2005. Dissolution and Solubility of Trace Metals from Natural and Anthropogenic Aerosol Particulate Matter. Chemosphere, 58(2): 195-203. https://doi.org/10.1016/j.chemosphere.2004.02.025

[15]

Du, Z. H., Xiao, Z. D., Zhang, Z., 2020. Studies of the Iron Biogeochemical Cycle in Snow and Ice from the Three Poles. Chinese Journal of Nature, 42(5): 413-420 (in Chinese with English abstract).

[16]

Flament, P., Mattielli, N., Aimoz, L., et al., 2008. Iron Isotopic Fractionation in Industrial Emissions and Urban Aerosols. Chemosphere, 73(11): 1793-1798. https://doi.org/10.1016/j.chemosphere.2008.08.042

[17]

Fu, H. B., Lin, J., Shang, G. F., et al., 2012. Solubility of Iron from Combustion Source Particles in Acidic Media Linked to Iron Speciation. Environmental Science & Technology, 46(20): 11119-11127. https://doi.org/10.1021/es302558m

[18]

Guo, J., Tilgner, A., Yeung, C., et al., 2014. Atmospheric Peroxides in a Polluted Subtropical Environment: Seasonal Variation, Sources and Sinks, and Importance of Heterogeneous Processes. Environmental Science & Technology, 48(3): 1443-1450. https://doi.org/10.1021/es403229x

[19]

Guo, L., 2013. Effects of Asian Dust on the Atmospheric Input of Trace Elements over the East China Sea (Dissertation). Fudan University, Shanghai (in Chinese with English abstract).

[20]

Han, X. K., Dong, X. Y., Liu, C. Q., et al., 2023. Multiple Sulfur Isotopic Evidence for Sulfate Formation in Haze Pollution. Environmental Science & Technology, 57(49): 20647-20656. https://doi.org/10.1021/acs.est.3c05072

[21]

Hu, H., Liu, C., Yang, F., et al., 2023. Mechanism Changing Iron Solubility and Oxidative Potential Associated with PM2.5 during Outdoor⁃to⁃Indoor Transport. Atmospheric Environment, 308: 119879. https://doi.org/10.1016/j.atmosenv.2023.119879

[22]

Huang, R. J., Cheng, R., Jing, M., et al., 2018. Source⁃Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission as Major Contributors in Wintertime Beijing. Environmental Science & Technology, 52(19): 10967-10974. https://doi.org/10.1021/acs.est.8b02091

[23]

Ito, A., 2013. Global Modeling Study of Potentially Bioavailable Iron Input from Shipboard Aerosol Sources to the Ocean. Global Biogeochemical Cycles, 27(1): 1-10. https://doi.org/10.1029/2012gb004378

[24]

Ito, A., 2015. Atmospheric Processing of Combustion Aerosols as a Source of Bioavailable Iron. Environmental Science & Technology Letters, 2(3): 70-75. https://doi.org/10.1021/acs.estlett.5b00007

[25]

Ito, A., Feng, Y., 2010. Role of Dust Alkalinity in Acid Mobilization of Iron. Atmospheric Chemistry and Physics, 10(19): 9237-9250. https://doi.org/10.5194/acp⁃10⁃9237⁃2010

[26]

Ito, A., Lin, G., Penner, J. E., 2018. Radiative Forcing by Light⁃Absorbing Aerosols of Pyrogenetic Iron Oxides. Scientific Reports, 8: 7347. https://doi.org/10.1038/s41598⁃018⁃25756⁃3

[27]

Ito, A., Miyakawa, T., 2023. Aerosol Iron from Metal Production as a Secondary Source of Bioaccessible Iron. Environmental Science & Technology, 57(10): 4091-4100. https://doi.org/10.1021/acs.est.2c06472

[28]

Ito, A., Myriokefalitakis, S., Kanakidou, M., et al., 2019. Pyrogenic Iron: The Missing Link to High Iron Solubility in Aerosols. Science Advances, 5(5): eaau7671. https://doi.org/10.1126/sciadv.aau7671

[29]

Ito, A., Shi, Z., 2016. Delivery of Anthropogenic Bioavailable Iron from Mineral Dust and Combustion Aerosols to the Ocean. Atmospheric Chemistry and Physics, 16(1): 85-99. https://doi.org/10.5194/acp⁃16⁃85⁃2016

[30]

Journet, E., Desboeufs, K. V., Caquineau, S., et al., 2008. Mineralogy as a Critical Factor of Dust Iron Solubility. Geophysical Research Letters, 35(7): 2007GL031589. https://doi.org/10.1029/2007gl031589

[31]

Kajino, M., Hagino, H., Fujitani, Y., et al., 2020. Modeling Transition Metals in East Asia and Japan and Its Emission Sources. GeoHealth, 4(9): e2020GH000259. https://doi.org/10.1029/2020GH000259

[32]

Kurisu, M., Sakata, K., Uematsu, M., et al., 2021. Contribution of Combustion Fe in Marine Aerosols over the Northwestern Pacific Estimated by Fe Stable Isotope Ratios. Atmospheric Chemistry and Physics, 21(20): 16027-16050. https://doi.org/10.5194/acp⁃21⁃16027⁃2021

[33]

Kurisu, M., Takahashi, Y., Iizuka, T., et al., 2016. Very Low Isotope Ratio of Iron in Fine Aerosols Related to Its Contribution to the Surface Ocean. Journal of Geophysical Research: Atmospheres, 121(18): 11119-11136. https://doi.org/10.1002/2016jd024957

[34]

Labatut, M., Lacan, F., Pradoux, C., et al., 2014. Iron Sources and Dissolved⁃Particulate Interactions in the Seawater of the Western Equatorial Pacific, Iron Isotope Perspectives. Global Biogeochemical Cycles, 28(10): 1044-1065. https://doi.org/10.1002/2014gb004928

[35]

Lei, Y. L., Li, D., Lu, D., et al., 2023. Insights into the Roles of Aerosol Soluble Iron in Secondary Aerosol Formation. Atmospheric Environment, 294: 119507. https://doi.org/10.1016/j.atmosenv.2022.119507

[36]

Li, J., Zhang, Y. L., Cao, F., et al., 2020. Stable Sulfur Isotopes Revealed a Major Role of Transition⁃Metal Ion⁃Catalyzed SO2 Oxidation in Haze Episodes. Environmental Science & Technology, 54(5): 2626-2634. https://doi.org/10.1021/acs.est.9b07150

[37]

Li, R., Zhang, H. H., Wang, F., et al., 2022. Mass Fractions, Solubility, Speciation and Isotopic Compositions of Iron in Coal and Municipal Waste Fly Ash. Science of the Total Environment, 838: 155974. https://doi.org/10.1016/j.scitotenv.2022.155974

[38]

Li, W. J., Xu, L., Liu, X. H., et al., 2017. Air Pollution⁃Aerosol Interactions Produce More Bioavailable Iron for Ocean Ecosystems. Science Advances, 3(3): e1601749. https://doi.org/10.1126/sciadv.1601749

[39]

Li, W., Ito, A., Wang, G., et al., 2025. Aqueous⁃phase Secondary Organic Aerosol Formation on Mineral Dust. National Science Review, 12(7): nwaf221. https://doi.org/10.1093/nsr/nwaf221

[40]

Liu, L., Li, W. J., Lin, Q. H., et al., 2022. Size⁃Dependent Aerosol Iron Solubility in an Urban Atmosphere. NPJ Climate and Atmospheric Science, 5: 53. https://doi.org/10.1038/s41612⁃022⁃00277⁃z

[41]

Liu, M., Matsui, H., Hamilton, D.S., et al., 2024. Representation of Iron Aerosol Size Distributions of Anthropogenic Emissions is Critical in Evaluating Atmospheric Soluble Iron Input to the Ocean. Atmospheric Chemistry and Physics, 24(22): 13115-13127. https://doi.org/10.5194/acp⁃24⁃13115⁃2024

[42]

López⁃García, P., Gelado⁃Caballero, M. D., Collado⁃Sánchez, C., et al., 2017. Solubility of Aerosol Trace Elements: Sources and Deposition Fluxes in the Canary Region. Atmospheric Environment, 148: 167-174. https://doi.org/10.1016/j.atmosenv.2016.10.035

[43]

Lu, B., Kong, S. F., Han, B., et al., 2011. Source Profile of TSP and PM10 from Coal⁃Fired Boilers. Journal of China Coal Society, 36(11): 1928-1933 (in Chinese with English abstract).

[44]

Luo, C., Mahowald, N., Bond, T., et al., 2008. Combustion Iron Distribution and Deposition. Global Biogeochemical Cycles, 22: 2007GB002964. https://doi.org/10.1029/2007gb002964

[45]

Mahowald, N. M., Hamilton, D. S., MacKey, K. R. M., et al., 2018. Aerosol Trace Metal Leaching and Impacts on Marine Microorganisms. Nature Communications, 9(1): 2614. https://doi.org/10.1038/s41467⁃018⁃04970⁃7

[46]

Majestic, B. J., Anbar, A. D., Herckes, P., 2009, Elemental and Iron Isotopic Composition of Aerosols Collected in a Parking Structure, Science of the Total Environment, 407(18): 5104-5109, https://doi.org/10.1016/j.scitotenv.2009.05.053.

[47]

Martin, J. H., 1990. Glacial⁃Interglacial CO2 Change: The Iron Hypothesis. Paleoceanography, 5(1): 1-13. https://doi.org/10.1029/pa005i001p00001

[48]

Martin, J. H., Coale, K. H., Johnson, K. S., et al., 1994. Testing the Iron Hypothesis in Ecosystems of the Equatorial Pacific Ocean. Nature, 371: 123-129. https://doi.org/10.1038/371123a0

[49]

Matsui, H., Mahowald, N. M., Moteki, N., et al., 2018. Anthropogenic Combustion Iron as a Complex Climate Forcer. Nature Communications, 9(1): 1593. https://doi.org/10.1038/s41467⁃018⁃03997⁃0

[50]

Mead, C., Herckes, P., Majestic, B. J., et al., 2013. Source Apportionment of Aerosol Iron in the Marine Environment Using Iron Isotope Analysis. Geophysical Research Letters, 40(21): 5722-5727. https://doi.org/10.1002/2013gl057713

[51]

Moteki, N., Adachi, K., Ohata, S., et al., 2017. Anthropogenic Iron Oxide Aerosols Enhance Atmospheric Heating. Nature Communications, 8: 15329. https://doi.org/10.1038/ncomms15329

[52]

Nguyen, T. B., Coggon, M. M., Flagan, R. C., et al., 2013. Reactive Uptake and Photo⁃Fenton Oxidation of Glycolaldehyde in Aerosol Liquid Water. Environmental Science & Technology, 47(9): 4307-4316. https://doi.org/10.1021/es400538j

[53]

Oakes, M., Ingall, E. D., Lai, B., et al., 2012. Iron Solubility Related to Particle Sulfur Content in Source Emission and Ambient Fine Particles. Environmental Science & Technology, 46(12): 6637-6644. https://doi.org/10.1021/es300701c

[54]

Ooki, A., Nishioka, J., Ono, T., et al., 2009. Size Dependence of Iron Solubility of Asian Mineral Dust Particles. Journal of Geophysical Research: Atmospheres, 114(D3): D03202. https://doi.org/10.1029/2008JD010804

[55]

Paris, R., Desboeufs, K. V., 2013. Effect of Atmospheric Organic Complexation on Iron⁃Bearing Dust Solubility. Atmospheric Chemistry and Physics, 13(9): 4895-4905. https://doi.org/10.5194/acp⁃13⁃4895⁃2013

[56]

Paris, R., Desboeufs, K. V., Formenti, P., et al., 2010. Chemical Characterisation of Iron in Dust and Biomass Burning Aerosols during AMMA⁃SOP0/DABEX: Implication for Iron Solubility. Atmospheric Chemistry and Physics, 10(9): 4273-4282. https://doi.org/10.5194/acp⁃10⁃4273⁃2010

[57]

Paris, R., Desboeufs, K. V., Journet, E., 2011. Variability of Dust Iron Solubility in Atmospheric Waters: Investigation of the Role of Oxalate Organic Complexation. Atmospheric Environment, 45(36): 6510-6517. https://doi.org/10.1016/j.atmosenv.2011.08.068

[58]

Pinedo⁃González, P., Hawco, N. J., Bundy, R. M., et al., 2020. Anthropogenic Asian Aerosols Provide Fe to the North Pacific Ocean. Proceedings of the National Academy of Sciences, 117(45): 27862-27868. https://doi.org/10.1073/pnas.2010315117

[59]

Rathod, S. D., Hamilton, D. S., Mahowald, N. M., et al., 2020. A Mineralogy⁃Based Anthropogenic Combustion⁃Iron Emission Inventory. Journal of Geophysical Research: Atmospheres, 125(17): e2019JD032114. https://doi.org/10.1029/2019jd032114

[60]

Reff, A., Bhave, P. V., Simon, H., et al., 2009. Emissions Inventory of PM2.5 Trace Elements across the United States. Environmental Science & Technology, 43(15): 5790-5796. https://doi.org/10.1021/es802930x

[61]

Resing, J. A., Barrett, P. M., 2014. Ocean Chemistry: Fingerprints of a Trace Nutrient. Nature, 511(7508): 164-165. https://doi.org/10.1038/nature13513

[62]

Rubasinghege, G., Elzey, S., Baltrusaitis, J., et al., 2010. Reactions on Atmospheric Dust Particles: Surface Photochemistry and Size⁃Dependent Nanoscale Redox Chemistry. Journal of Physical Chemistry Letters, 1: 1729-1737. https://doi.org/10.1021/jz100371d

[63]

Salazar, J. R., Cartledge, B. T., Haynes, J. P., et al., 2020. Water⁃Soluble Iron Emitted from Vehicle Exhaust Is Linked to Primary Speciated Organic Compounds. Atmospheric Chemistry and Physics, 20(3): 1849-1860. https://doi.org/10.5194/acp⁃20⁃1849⁃2020

[64]

Schroth, A. W., Crusius, J., Sholkovitz, E. R., et al., 2009. Iron Solubility Driven by Speciation in Dust Sources to the Ocean. Nature Geoscience, 2: 337-340. https://doi.org/10.1038/ngeo501

[65]

See, S. W., Wang, Y. H., Balasubramanian, R., 2007. Contrasting Reactive Oxygen Species and Transition Metal Concentrations in Combustion Aerosols. Environmental Research, 103(3): 317-324. https://doi.org/10.1016/j.envres.2006.08.012

[66]

Shen, H. Q., Xue, L. K., Fan, G. L., et al., 2024. Trace Metals Reveal Significant Contribution of Coal Combustion to Winter Haze Pollution in Northern China. ACS ES&T Air, 1(7): 714-724. https://doi.org/10.1021/acsestair.4c00050

[67]

Shi, J. H., Guan, Y., Gao, H. W., et al., 2022. Aerosol Iron Solubility Specification in the Global Marine Atmosphere with Machine Learning. Environmental Science & Technology, 56(22): 16453-16461. https://doi.org/10.1021/acs.est.2c05266

[68]

Slikboer, S., Grandy, L., Blair, S. L., et al., 2015. Formation of Light Absorbing Soluble Secondary Organics and Insoluble Polymeric Particles from the Dark Reaction of Catechol and Guaiacol with Fe(III). Environmental Science & Technology, 49(13): 7793-7801. https://doi.org/10.1021/acs.est.5b01032

[69]

Smith, R. D., 1980. The Trace Element Chemistry of Coal during Combustion and the Emissions from Coal⁃Fired Plants. Progress in Energy and Combustion Science, 6(1): 53-119. https://doi.org/10.1016/0360⁃1285(80)90015⁃5

[70]

Sullivan, R. C., Guazzotti, S. A., Sodeman, D. A., et al., 2007. Direct Observations of The Atmospheric Processing of Asian Mineral Dust. Atmospheric Chemistry and Physics, 7: 1213-1236. https://doi.org/10.5194/ACP⁃7⁃1213⁃2007

[71]

Sun, M. G., Qi, Y. X., Li, W. S., et al., 2024. Investigation of a Haze⁃to⁃Dust and Dust Swing Process at a Coastal City in Northern China Part II: A Study on the Solubility of Iron and Manganese across Aerosol Sources and Secondary Processes. Atmospheric Environment, 328: 120532. https://doi.org/10.1016/j.atmosenv.2024.120532

[72]

Takahashi, Y., Furukawa, T., Kanai, Y., et al., 2013. Seasonal Changes in Fe Species and Soluble Fe Concentration in the Atmosphere in the Northwest Pacific Region Based on the Analysis of Aerosols Collected in Tsukuba, Japan. Atmospheric Chemistry and Physics, 13(15): 7695-7710. https://doi.org/10.5194/acp⁃13⁃7695⁃2013

[73]

Tang, Y. J., Jia, X. H., Li, R., et al., 2021. Dissolution Kinetics of Iron⁃Containing Particles: A Review. China Environmental Science, 41(4): 1555-1563 (in Chinese with English abstract).

[74]

Tao, W., Su, H., Zheng, G. J., et al., 2020. Aerosol pH and Chemical Regimes of Sulfate Formation in Aerosol Water during Winter Haze in the North China Plain. Atmospheric Chemistry and Physics, 20(20): 11729-11746. https://doi.org/10.5194/acp⁃20⁃11729⁃2020

[75]

Thomas, D. A., Coggon, M. M., Lignell, H., et al., 2016. Real⁃Time Studies of Iron Oxalate⁃Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. Environmental Science & Technology, 50(22): 12241-12249. https://doi.org/10.1021/acs.est.6b03588

[76]

Ueda, S., Iwamoto, Y., Taketani, F., et al., 2023. Morphological Features and Water Solubility of Iron in Aged Fine Aerosol Particles over the Indian Ocean. Atmospheric Chemistry and Physics, 23(17): 10117-10135. https://doi.org/10.5194/acp⁃23⁃10117⁃2023

[77]

Waeles, M., Baker, A. R., Jickells, T., et al., 2007. Global Dust Teleconnections: Aerosol Iron Solubility and Stable Isotope Composition. Environmental Chemistry, 4(4): 233-237. https://doi.org/10.1071/en07013

[78]

Wang, R., Balkanski, Y., Boucher, O., et al., 2015. Sources, Transport and Deposition of Iron in the Global Atmosphere. Atmospheric Chemistry and Physics, 15(11): 6247-6270. https://doi.org/10.5194/acp⁃15⁃6247⁃2015

[79]

Wang, W. G., Liu, M. Y., Wang, T. T., et al., 2021. Sulfate Formation Is Dominated by Manganese⁃Catalyzed Oxidation of SO2 on Aerosol Surfaces during Haze Events. Nature Communications, 12(1): 1993. https://doi.org/10.1038/s41467⁃021⁃22091⁃6

[80]

Wang, X., Shen, Z. X., Huang, S. S., et al., 2022a. Water⁃Soluble Iron in PM2.5 in Winter over Six Chinese Megacities: Distributions, Sources, and Environmental Implications. Environmental Pollution, 314: 120329. https://doi.org/10.1016/j.envpol.2022.120329

[81]

Wang, Y. T., Wu, L. B., Hu, W., et al., 2022b. Stable Iron Isotopic Composition of Atmospheric Aerosols: An Overview. NPJ Climate and Atmospheric Science, 5: 75. https://doi.org/10.1038/s41612⁃022⁃00299⁃7

[82]

Wang, Y., Zhang, Y.X., Qi, B., et al., 2023. Variation and Influencing Factors of Iron Solubility in Fine Particulate Matter in Hangzhou. China Environmental Science, 43(1): 115-121 (in Chinese with English abstract).

[83]

Watson, A. J., Bakker, D. C., Ridgwell, A. J., et al., 2000. Effect of Iron Supply on Southern Ocean CO2 Uptake and Implications for Glacial Atmospheric CO2. Nature, 407(6805): 730-733. https://doi.org/10.1038/35037561

[84]

Wei, J. L., Yu, H. R., Wang, Y. X., et al., 2019. Complexation of Iron and Copper in Ambient Particulate Matter and Its Effect on the Oxidative Potential Measured in a Surrogate Lung Fluid. Environmental Science & Technology, 53(3): 1661-1671. https://doi.org/10.1021/acs.est.8b05731

[85]

Weis, J., Chase, Z. N., Schallenberg, C., et al., 2024. One⁃Third of Southern Ocean Productivity Is Supported by Dust Deposition. Nature, 629(8012): 603-608. https://doi.org/10.1038/s41586⁃024⁃07366⁃4

[86]

Winton, V. H. L., Edwards, R., Bowie, A. R., et al., 2016. Dry Season Aerosol Iron Solubility in Tropical Northern Australia. Atmospheric Chemistry and Physics, 16(19): 12829-12848. https://doi.org/10.5194/acp⁃16⁃12829⁃2016

[87]

Xie, T. T., 2021. Geochemical Characteristics, Iron Dissolution and Biological Activity of Iron Bearing Minerals in Particulate Matters from Xuanwei Coal Combustion (Dissertation). Shanghai University, Shanghai (in Chinese with English abstract).

[88]

Yang, C., Zhang, C. Y., Luo, X. S., et al., 2020. Isomerization and Degradation of Levoglucosan via the Photo⁃Fenton Process: Insights from Aqueous⁃Phase Experiments and Atmospheric Particulate Matter. Environmental Science & Technology, 54(19): 11789-11797. https://doi.org/10.1021/acs.est.0c02499

[89]

Yang, J. W., Ma, L., He, X., et al., 2023. Measurement Report: Abundance and Fractional Solubilities of Aerosol Metals in Urban Hong Kong⁃Insights into Factors that Control Aerosol Metal Dissolution in an Urban Site in South China. Atmospheric Chemistry and Physics, 23(2): 1403-1419. https://doi.org/10.5194/acp⁃23⁃1403⁃2023

[90]

Ye, D. N., Klein, M., Mulholland, J. A., et al., 2018. Estimating Acute Cardiovascular Effects of Ambient PM2.5 Metals. Environmental Health Perspectives, 126(2): 027007. https://doi.org/10.1289/EHP2182

[91]

Zhang, S., Li, D. P., Ge, S. S., et al., 2024a. Elucidating the Mechanism on the Transition⁃Metal Ion⁃Synergetic⁃ Catalyzed Oxidation of SO2 with Implications for Sulfate Formation in Beijing Haze. Environmental Science & Technology, 58(6): 2912-2921. https://doi.org/10.1021/acs.est.3c08411

[92]

Zhang, T. L., Liu, J. Y., Xiang, Y. X., et al., 2024b. Quantifying Anthropogenic Emission of Iron in Marine Aerosol in the Northwest Pacific with Shipborne Online Measurements. Science of the Total Environment, 912: 169158. https://doi.org/10.1016/j.scitotenv.2023.169158

[93]

Zhang, T. L., Zheng, M., 2024. Atmospheric Iron in Chinese Marginal Seas and the Northwest Pacific: A Review. China Environmental Science, 44(2): 602-619 (in Chinese with English abstract).

[94]

Zhi, M. K., Wang, G. C., Xu, L., et al., 2025. How Acid Iron Dissolution in Aged Dust Particles Responds to the Buffering Capacity of Carbonate Minerals during Asian Dust Storms. Environmental Science & Technology, 59(12): 6167-6178. https://doi.org/10.1021/acs.est.4c12370

[95]

Zhu, Y. H., Li, W. J., Wang, Y., et al., 2022. Sources and Processes of Iron Aerosols in a Megacity in Eastern China. Atmospheric Chemistry and Physics, 22(4): 2191-2202. https://doi.org/10.5194/acp⁃22⁃2191⁃2022

基金资助

湖北省自然科学基金杰出青年项目(2022CFA040)

国家自然科学基金面上项目(42575130)

国家重点研发计划(2024YFC3713602)

国家重点研发计划(2023YFC3709802)

AI Summary AI Mindmap
PDF (1704KB)

94

访问

0

被引

详细

导航
相关文章

AI思维导图

/