基于深度学习的降水降尺度方法构建及优化
Improvement of Deep Learning Method for Daily Precipitation Downscaling
为了提高深度学习方法对全球气候模式(GCMs)日降水的降尺度效果,以长江流域为研究对象,基于20种GCMs输出的日降水数据,构建了4种深度学习降尺度模型,并与日偏差校正方法(DBC)结合,提出一种混合降尺度方法(DL-DBC).4种深度学习方法对GCMs日降水的降尺度表现接近;与日偏差校正方法相比,其降尺度后的多年平均日降水的平均绝对相对误差(MARE)更低,但多年平均月降水和多年平均年降水的MARE略高,与深度学习方法相比,DL-DBC得到的多年平均年降水的MARE降低了6.7%~11.3%,多年平均月降水的MARE降低了6.3%~7.6%,且在降水量频率分析等方面同样表现更好.混合方法DL-DBC能提高深度学习模型对GCMs日降水数据的降尺度效果,进一步减小GCMs日尺度降水数据的偏差.
To improve the downscaling effectiveness of deep learning methods for daily precipitation from global climate models (GCMs). Targeting at the Yangtze River basin, we constructed four deep learning downscaling models based on historical daily precipitation outputs from 20 GCMs. A hybrid method (DL-DBC) was proposed by integrating these models with the daily bias correction method. The four deep learning models exhibited comparable performance in daily precipitation downscaling. Compared to DBC, they achieved lower mean absolute relative error (MARE) for multi-year average daily precipitation but slightly higher MARE for multi-year average monthly and annual precipitation. The DL-DBC method outperformed standalone deep learning models, reducing MARE for multi-year average annual precipitation by 6.7%-11.3% and monthly precipitation by 6.3%-7.6%, while also demonstrating superior performance in precipitation frequency analysis. The DL-DBC method enhances the downscaling effectiveness of deep learning models and further reduces biases in daily precipitation data from GCMs.
降尺度 / 深度学习 / 降水 / 全球气候模式 / 长江流域 / 气候变化.
downscaling / deep learning / precipitation / global climate models / Yangtze River basin / climate change
| [1] |
Baño⁃Medina, J., Manzanas, R., Gutiérrez, J. M., 2020. Configuration and Intercomparison of Deep Learning Neural Models for Statistical Downscaling. Geoscientific Model Development, 13(4): 2109-2124. https://doi.org/10.5194/gmd⁃13⁃2109⁃2020 |
| [2] |
Bennett, J. C, Grose, M. R., Post, D. A., et al., 2011. Performance of Quantile⁃Quantile Bias⁃Correction for Use in Hydroclimatological Projections. In: Chan, F., Marinova, D., Anderssen, R.S., eds.,19th International Congress on Modelling and Simulation. Perth. https://doi.org/10.36334/modsim.2011.f5.bennett |
| [3] |
Cannon, A. J., 2018. Multivariate Quantile Mapping Bias Correction: An N⁃Dimensional Probability Density Function Transform for Climate Model Simulations of Multiple Variables. Climate Dynamics, 50(1): 31-49. https://doi.org/10.1007/s00382⁃017⁃3580⁃6 |
| [4] |
Chen, J., Brissette, F. P., Chaumont, D., et al., 2013. Performance and Uncertainty Evaluation of Empirical Downscaling Methods in Quantifying the Climate Change Impacts on Hydrology over Two North American River Basins. Journal of Hydrology, 479: 200-214. https://doi.org/10.1016/j.jhydrol.2012.11.062 |
| [5] |
Chen, J., Xu, C. Y., Guo, S. L., et al., 2016. Progress and Challenge in Statistically Downscaling Climate Model Outputs. Journal of Water Resources Research, 5(4): 299-313 (in Chinese with English abstract). |
| [6] |
Dickinson, R. E., Errico, R. M., Giorgi, F., et al., 1989. A Regional Climate Model for the Western United States. Climatic Change, 15(3): 383-422. https://doi.org/10.1007/BF00240465 |
| [7] |
Eden, J. M., Widmann, M., 2014. Downscaling of GCM⁃Simulated Precipitation Using Model Output Statistics. Journal of Climate, 27(1): 312-324. https://doi.org/10.1175/jcli⁃d⁃13⁃00063.1 |
| [8] |
Eum, H. I., Cannon, A. J., 2017. Intercomparison of Projected Changes in Climate Extremes for South Korea: Application of Trend Preserving Statistical Downscaling Methods to the CMIP5 Ensemble. International Journal of Climatology, 37(8): 3381-3397. https://doi.org/10.1002/joc.4924 |
| [9] |
Guo, Q., Chen, J., Zhang, X. C., et al., 2019. A New Two⁃Stage Multivariate Quantile Mapping Method for Bias Correcting Climate Model Outputs. Climate Dynamics, 53(5): 3603-3623. https://doi.org/10.1007/s00382⁃019⁃04729⁃w |
| [10] |
Harris, L., McRae, A. T. T., Chantry, M., et al., 2022. A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts. Journal of Advances in Modeling Earth Systems, 14(10): e2022MS003120. https://doi.org/10.1029/2022MS003120 |
| [11] |
He, X. G., Chaney, N. W., Schleiss, M., et al., 2016. Spatial Downscaling of Precipitation Using Adaptable Random Forests. Water Resources Research, 52(10): 8217-8237. https://doi.org/10.1002/2016WR019034 |
| [12] |
Huang, G., Liu, Z., Van Der Maaten, L., et al., 2017. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu. https://doi.org/10.1109/CVPR.2017.243 |
| [13] |
Kingma, D., Ba, J., 2014. Adam: A method for Stochastic Optimization. The 3rd International Conference for Learning Representations, San Diego. |
| [14] |
Legasa, M. N., Manzanas, R., Calviño, A., et al., 2022. A Posteriori Random Forests for Stochastic Downscaling of Precipitation by Predicting Probability Distributions. Water Resources Research, 58(4): e2021WR030272. https://doi.org/10.1029/2021WR030272 |
| [15] |
Li, W. T., Pan, B. X., Xia, J. J., et al., 2022. Convolutional Neural Network⁃Based Statistical Post⁃Processing of Ensemble Precipitation Forecasts. Journal of Hydrology, 605: 127301. https://doi.org/10.1016/j.jhydrol.2021.127301 |
| [16] |
Lim, B., Son, S., Kim, H., et al., 2017. Enhanced Deep Residual Networks for Single Image Super⁃Resolution. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu. https://doi.org/10.1109/CVPRW.2017.151 |
| [17] |
Liu, J., Chen, Q., Xu, Y., et al., 2024. Simulation of Phosphorus Inflow and Outflow Fluxes and Water Quality Prediction in Dongting Lake Area of the Yangtze River Basin: A Coupled Approach of Machine Learning and Traditional Hydrological Modeling. Earth Science, 49(11): 3995-4007 (in Chinese with English abstract). |
| [18] |
Liu, Y. H., Guo, W. D., Feng, J. M., et al., 2011. A Summary of Methods for Statistical Downscaling of Meteorological Data. Advances in Earth Science, 26(8): 837-847 (in Chinese with English abstract). |
| [19] |
Liu, Y. M., Ganguly, A. R., Dy, J., 2020. Climate Downscaling Using YNet: A Deep Convolutional Network with Skip Connections and Fusion. The 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. San Diego. https://doi.org/10.1145/3394486.3403366 |
| [20] |
Liu, Z., Mao, H., et al., 2022. A Convnet for the 2020s. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle. |
| [21] |
Mearns, L. O., Arritt, R., Biner, S., et al., 2012. The North American Regional Climate Change Assessment Program: Overview of Phase I Results. Bulletin of the American Meteorological Society, 93(9): 1337-1362. https://doi.org/10.1175/bams⁃d⁃11⁃00223.1 |
| [22] |
Meehl, G. A., Covey, C., Delworth, T., et al., 2007. THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bulletin of the American Meteorological Society, 88(9): 1383-1394. https://doi.org/10.1175/bams⁃88⁃9⁃1383 |
| [23] |
Mei, Y. W., Maggioni, V., Houser, P., et al., 2020. A Nonparametric Statistical Technique for Spatial Downscaling of Precipitation over High Mountain Asia. Water Resources Research, 56(11): e2020WR027472. https://doi.org/10.1029/2020WR027472 |
| [24] |
Monjo, R., Gaitán, E., Pórtoles, J., et al., 2016. Changes in Extreme Precipitation over Spain Using Statistical Downscaling of CMIP5 Projections. International Journal of Climatology, 36(2): 757-769. https://doi.org/10.1002/joc.4380 |
| [25] |
Pan, B. X., Anderson, G. J., Goncalves, A., et al., 2021. Learning to Correct Climate Projection Biases. Journal of Advances in Modeling Earth Systems, 13(10): e2021MS002509. https://doi.org/10.1029/2021MS002509 |
| [26] |
Pan, B. X., Hsu, K., AghaKouchak, A., et al., 2019. Improving Precipitation Estimation Using Convolutional Neural Network. Water Resources Research, 55(3): 2301-2321. https://doi.org/10.1029/2018WR024090 |
| [27] |
Pierce, D. W., Cayan, D. R., Maurer, E. P., et al., 2015. Improved Bias Correction Techniques for Hydrological Simulations of Climate Change. Journal of Hydrometeorology, 16(6): 2421-2442. https://doi.org/10.1175/jhm⁃d⁃14⁃0236.1 |
| [28] |
Pour, S. H., Shahid, S., Chung, E. S., 2016. A Hybrid Model for Statistical Downscaling of Daily Rainfall. Procedia Engineering, 154: 1424-1430. https://doi.org/10.1016/j.proeng.2016.07.514 |
| [29] |
Rodrigues, E. R., Oliveira, I., Cunha, R., et al., 2018. DeepDownscale: A Deep Learning Strategy for High⁃Resolution Weather Forecast. 2018 IEEE 14th International Conference on e⁃Science (e⁃Science)., Amsterdam. https://doi.org/10.1109/eScience.2018.00130 |
| [30] |
Sachindra, D. A., Kanae, S., 2019. Machine Learning for Downscaling: The Use of Parallel Multiple Populations in Genetic Programming. Stochastic Environmental Research and Risk Assessment, 33(8): 1497-1533. https://doi.org/10.1007/s00477⁃019⁃01721⁃y |
| [31] |
Schoof, J. T., Pryor, S. C., 2001. Downscaling Temperature and Precipitation: A Comparison of Regression⁃Based Methods and Artificial Neural Networks. International Journal of Climatology, 21(7): 773-790. https://doi.org/10.1002/joc.655 |
| [32] |
Sharma, S. C. M., Kumar, B., Mitra, A., et al., 2024. Deep Learning⁃Based Bias Correction of ISMR Simulated by GCM. Atmospheric Research, 309: 107589. https://doi.org/10.1016/j.atmosres.2024.107589 |
| [33] |
Sillmann, J., Kharin, V. V., Zhang, X., et al., 2013. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate. Journal of Geophysical Research: Atmospheres, 118(4): 1716-1733. https://doi.org/10.1002/jgrd.50203 |
| [34] |
Sun, L., Lan, Y. F., 2021. Statistical Downscaling of Daily Temperature and Precipitation over China Using Deep Learning Neural Models: Localization and Comparison with Other Methods. International Journal of Climatology, 41(2): 1128-1147. https://doi.org/10.1002/joc.6769 |
| [35] |
Taylor, K. E., Stouffer, R. J., Meehl, G. A., 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4): 485-498. https://doi.org/10.1175/bams⁃d⁃11⁃00094.1 |
| [36] |
Vandal, T., Kodra, E., Ganguly, A. R., 2019. Intercomparison of Machine Learning Methods for Statistical Downscaling: The Case of Daily and Extreme Precipitation. Theoretical and Applied Climatology, 137(1): 557-570. https://doi.org/10.1007/s00704⁃018⁃2613⁃3 |
| [37] |
Wang, F., Tian, D., 2022. On Deep Learning⁃Based Bias Correction and Downscaling of Multiple Climate Models Simulations. Climate Dynamics, 59(11): 3451-3468. https://doi.org/10.1007/s00382⁃022⁃06277⁃2 |
| [38] |
Wang, F., Tian, D., Lowe, L., et al., 2021. Deep Learning for Daily Precipitation and Temperature Downscaling. Water Resources Research, 57(4): e2020WR029308. https://doi.org/10.1029/2020WR029308 |
| [39] |
Wang, L., Chen, W., 2014. A CMIP5 Multimodel Projection of Future Temperature, Precipitation, and Climatological Drought in China. International Journal of Climatology, 34(6): 2059-2078. https://doi.org/10.1002/joc.3822 |
| [40] |
Wilby, R. L., Wigley, T. M. L., Conway, D., et al., 1998. Statistical Downscaling of General Circulation Model Output: A Comparison of Methods. Water Resources Research, 34(11): 2995-3008. https://doi.org/10.1029/98WR02577 |
| [41] |
Wood, A. W., Leung, L. R., Sridhar, V., et al., 2004. Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs. Climatic Change, 62(1): 189-216. https://doi.org/10.1023/B: CLIM.0000013685.99609.9e |
| [42] |
Wu, J., Gao, X. J., 2013. A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets. Chinese Journal of Geophysics, 56(4): 1102-1111 (in Chinese with English abstract). |
| [43] |
Yang, C. L., Wang, N. L., Wang, S. J., et al., 2018. Performance Comparison of Three Predictor Selection Methods for Statistical Downscaling of Daily Precipitation. Theoretical and Applied Climatology, 131(1): 43-54. https://doi.org/10.1007/s00704⁃016⁃1956⁃x |
| [44] |
Yang, W., Andréasson, J., Phil Graham, L., et al., 2010. Distribution⁃Based Scaling to Improve Usability of Regional Climate Model Projections for Hydrological Climate Change Impacts Studies. Hydrology Research, 41(3-4): 211-229. https://doi.org/10.2166/nh.2010.004 |
| [45] |
Zhang, Q., Wu, G. X., 2001. The Large Area Flood and Drought over Yangtze River Valley and Its Relation to the South Asia High. Acta Meteorologica Sinica, 59(5): 569-577 (in Chinese with English abstract). |
| [46] |
Zhang, Z. S., Li, S. L., Wang, H. J., et al., 2022. Introduction of Crossing Disciplines between Geology and Atmospheric Science. Earth Science, 47(10): 3569-3579 (in Chinese with English abstract). |
湖北省自然科学基金创新群体项目(2025AFA023)
国家自然科学基金长江水科学研究联合基金项目(U2240201)
/
| 〈 |
|
〉 |