武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变

陈德靓 ,  吴剑 ,  孔少飞 ,  董浩宇 ,  江惟缌 ,  祁士华

地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3488 -3505.

PDF (4478KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3488 -3505. DOI: 10.3799/dqkx.2025.169

武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变

作者信息 +

Estimation of Emission Inventory with High⁃Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial⁃Temporal Evolution

Author information +
文章历史 +
PDF (4585K)

摘要

武汉城市圈的高时空分辨率大气细颗粒物(PM2.5)排放清单研究的暂时缺乏,制约着区域PM2.5污染的精确模拟和防控. 本研究采用排放因子法,融合高德地图兴趣点数据以及人口、路网和土地利用类型等代用指标,构建了2017-2023年该区域人为源排放PM2.5的高空间分辨率(1 km×1 km)排放清单,评估其不确定性,揭示其时空演变规律. 结果表明,武汉城市圈PM2.5排放总量在2018年达峰值(164.59 kt),2020年因疫情降至137.15 kt,2023年反弹至149.97 kt. 各源类排放PM2.5的不确定性为-31.7%~42.2%,化石燃料燃烧源(-13.2%~35.8%)和工艺过程源(-15.2%~34.3%)不确定性较高,扬尘源不确定性最低(-8.2%~15.4%). 工艺过程源和扬尘源为主要贡献源,占PM2.5总排放的46.5%~52.6%和26.7%~31.8%. 区域内PM2.5排放强度在城市中心区为600~800 t/km2,是郊区、农村区域排放强度的40~50倍. 本研究可为改进大气化学数值模拟精度提供可靠的高精度清单数据支撑.

Abstract

The lack of high spatio-temporal resolution emission inventories for atmospheric fine particulate matter (PM2.5) in the Wuhan metropolitan area limits the accurate simulation and control of regional PM2.5 pollution. In this study, the emission factor method was adopted, integrating point of interest data from Amap as well as relevant allocation indices including population, road network and land use type, etc., to construct a high-spatial-resolution (1 km×1 km) emission inventory of anthropogenic PM2.5 emissions in the region from 2017 to 2023. Its uncertainty was evaluated, and its temporal and spatial evolution patterns were revealed. Results show that the total PM2.5 emissions peaked in 2018 at 164.59 kt, dropped to 137.15 kt in 2020 due to the pandemic, and rebounded to 149.97 kt in 2023. The uncertainty of PM2.5 emissions from various source categories ranged from -31.7% to 42.2%, fossil fuel combustion sources (-13.2% to 35.8%) and process sources (-15.2% to 34.3%) have high uncertainty, while dust sources have the lowest uncertainty (-8.2% to 15.4%). Industrial and dust sources were the main contributors, accounting for 46.5%-52.6% and 26.7%-31.8% of total PM2.5 emissions, respectively. The emission intensity of PM2.5 in urban central area was 600-800 t/km2, which was 40-50 times that in suburban and rural areas. This study can provide reliable high-precision emission inventory data support for improving the accuracy of atmospheric chemistry numerical simulations.

Graphical abstract

关键词

武汉城市圈 / 细颗粒物 / 排放清单 / 高分辨率 / 时空演变 / 大气化学 / 大气污染.

Key words

Wuhan metropolitan area / fine particulate matter / emission inventory / high resolution / spatial⁃temporal evolution / atmospheric chemistry / air pollution

引用本文

引用格式 ▾
陈德靓,吴剑,孔少飞,董浩宇,江惟缌,祁士华. 武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变[J]. 地球科学, 2025, 50(09): 3488-3505 DOI:10.3799/dqkx.2025.169

登录浏览全文

4963

注册一个新账户 忘记密码

0 引言

高分辨率大气污染源排放清单是大气化学数值模式模拟精度提升的关键(Xia et al., 2025),制约着大气污染物预报的准确性、污染事件预测的时效性(Jena et al., 2021),以及大气细颗粒物(PM2.5)污染管控的精准性. 高分辨率排放数据能突破粗分辨率数据的局限,更清晰区分城市中心与周边、不同土地利用类型的排放差异,提升对大气污染物排放空间分布的认识(Zeng et al., 2024Chen et al., 2025),也可通过捕捉特定时间段内大气污染物排放随时间的变化,为政策的减排潜力及环境效益评估提供基础数据(Chen et al., 2025),帮助环境管理部门提升空气质量管理的决策效率(Jena et al., 2021). 超高时空精度排放清单构建和校验是清单领域的发展方向和研究热点.

在我国大气污染防控的重点区域,国内学者已开展高分辨率排放清单的构建研究.例如,针对京津冀地区,Qi et al. (2017)建立了2013年3 km× 3 km的排放清单,Zheng et al. (2019)针对工业源建立了2014年4 km×4 km的排放清单,这两项研究都表明工业部门排放的PM2.5是区域PM2.5排放的主要来源,占区域排放的56%~59.6%. Jiang et al. (2020)构建了华北平原机动车4 km×4 km的排放清单,研究显示中小型汽油乘用车和重型柴油卡车是PM2.5排放的主要来源,高排放强度集中在北京、郑州和天津等城市中心;不确定性主要来源于40~50 t的柴油重型卡车的排放因子和保有量,在-6.46%~7.16%之间.针对长三角地区,An et al. (2021)构建了2017年该区域4 km×4 km的排放清单,发现PM2.5排放集中在城市交通和施工区域,占PM2.5总排放的28%,清单不确定性水平在-30%~46%,主要在于活动水平数据不够全面. 在珠三角地区,Zhang et al. (2023)构建了广东省2018年 1 km×1 km的排放清单,发现PM2.5主要来源于扬尘源和工艺过程源,约占总排放的63%. Wu et al. (2024)构建了2017年澳门的大气污染物排放清单,清单空间分辨率提升到500 m×500 m,发现了船舶排放对于PM2.5排放的重要性,并指出清单的不确定性(-23.2%~46.98%)也主要源于活动水平数据的不完善. 在清单空间降尺度的过程中,受数据时空分辨率和精度影响,国家和区域尺度清单估算的污染物排放量差异可达7%~70%(Zhong et al., 2016). 也有研究表明,传统的基于人口密度和GDP的空间分配方法会在工业密集区低估点源排放,在城乡差异较大的区域引起污染物排放分布的误差(Milne et al., 2014Qiu et al., 2014Puliafito et al., 2015).

因而,如何提升排放清单的空间分辨率,成为当前研究的关注点. Zhang et al. (2020)结合农业活动持续时间与活动地理位置,将长三角地区的农业机械PM2.5排放的时空分辨率提升到30 m×30 m和日变化,发现收割和耕作是最大的排放源,且农忙时节部分区域农业机械PM2.5的日排放量是机动车PM2.5排放量的十倍. Lam et al. (2021) 利用14级缩放卫星图像,结合颜色分类技术识别蓝色屋顶的工业建筑,以此作为省级工业排放空间分配的指标,替代了传统基于人口密度的分配方法,将工业排放清单的分辨率从27 km×27 km降尺度到3 km× 3 km,有效提升了工业源排放的表征精度. Li et al. (2024)采用高分辨率的燃烧面积、生物量和土地利用类型数据,并根据植被类型动态调整计算过程,将黑龙江省生物质开放燃烧排放PM2.5的空间分辨率提升到250 m×250 m,并发现农作物秸秆燃烧和森林火灾是PM2.5主要排放源,占总排放量的26%~73%. 排放清单精度提升对于大气污染物浓度模拟准确性改进起到了重要推动作用. 郭文凯等(2021)研究发现将国家多尺度清单(multi⁃resolution emission inventory for China,MEIC,10 km ×10 km)替换为兰州市高分辨率清单后,模拟得到的PM2.5标准化平均误差降低了28.8%. Zheng et al. (2021)研究表明,用高分辨率(4 km×4 km)的清单替换MEIC清单后,PM2.5模拟偏差降低了22%,中心城区PM2.5模拟值与观测值相关性从0.37提升至0.56. Gu et al. (2023)研究发现,使用省级3 km×3 km分辨率清单替代国家多尺度10 km×10 km清单后,PM2.5模拟的归一化平均误差从53%降至43%.

武汉城市圈是我国大气污染防控的重点区域之一,但针对该区域大气污染物排放清单的研究起步较晚. 代伶文等(2021)构建了湖北省人为源VOCs排放清单,揭示了2009-2018年期间工艺过程源VOCs排放特征及变化趋势. 覃思等(2020)通过排放因子法结合GIS空间分配,对湖北省1996-2016年的10类人为源的氨排放进行分析,发现湖北省氨排放量年均增长1.2%,西部山区城市增长最快,农业源是主要贡献源. 倪紫琳等(2021)构建了鄂州市1 km×1 km大气污染物排放清单,发现工艺过程源对多数污染物贡献率最大,农业源对氨排放贡献超半数,且污染物空间分布集中在鄂城区. 孙辰等(2018)采用排放因子法建立了武汉市2014年人为源挥发性有机物排放清单,明确了工艺过程源、移动源和溶剂使用源为主要来源,中心城区排放强度高. 黄宇等(2018)估算了2016年武汉市扬尘源的排放量,建立了3 km×3 km的排放清单,识别出施工扬尘和道路扬尘是主要来源. 但是目前缺乏针对武汉城市圈高分辨率PM2.5排放清单的研究.

综合来看,国内在京津冀、长三角、珠三角等大气污染防控重点区域已开展了多项高分辨率PM2.5排放清单的构建研究,不仅明确了各区域主要排放源及其空间分布特征,也探索出了多种提升清单时空分辨率的有效方法,为区域大气污染精准管控提供了重要支撑. 然而,作为我国大气污染防控重点区域之一的武汉城市圈,目前相关研究仍较为零散,尤其缺乏针对整个城市圈的高分辨率PM2.5排放清单研究,这在一定程度上制约了对该区域PM2.5污染特征的深入理解和精准治理.

基于此,本研究通过收集2017-2023年武汉城市圈市级源活动水平数据,基于排放因子法,估算2017-2023年武汉城市圈人为源PM2.5排放量,结合最新的代用参数数据,对排放量进行空间网格分配,分析不同源排放PM2.5强度在中心城区、郊区和农村的差异和影响因素. 本研究可为揭示武汉城市圈PM2.5排放的时空演变、PM2.5模拟精度改善和大气污染精准防控提供科学认识和数据支撑. 本研究将研究范围聚焦于整个武汉城市圈,明确研究对象为人为源排放的PM2.5,突破了武汉城市圈现有研究多关注VOCs、氨等其他污染物的局限;在研究方法上,空间分配环节突破传统基于人口密度、GDP的方式,结合最新代用参数数据进行网格分配,减少工业密集区或城乡差异区域的误差;且时间跨度覆盖2017-2023年连续时段,可揭示排放的动态演变.

1 材料与方法

1.1 研究区域

研究区域为武汉城市圈,包括武汉市、黄石市、鄂州市、孝感市、黄冈市、咸宁市、仙桃市、潜江市和天门市. 本研究城市区域划分如下:中心城区为武汉市三环线内、其他地级市市辖区和市政府驻地到居民委员会的所辖区域;郊区为中心城区外围人口密集的区域;其他区域为农村.

1.2 清单构建和估算方法

1.2.1 活动水平数据搜集、整理和推算

图1所示,本研究将人为源分为化石燃料燃烧源、工艺过程源、生物质燃烧源、移动源、扬尘源和餐饮源六大类一级源(Zhao et al., 2011Sun et al., 2018Zhong et al., 2018),包含17类二级源.

PM2.5排放量估算采用排放因子法. 结合收集和整理的2017年活动水平数据,以各城市为单元推算出2018-2023年的活动水平数据,计算公式如下:

          Ai,j=Ai,2017×Mi,jMi,2017

公式(1)中,A表示各排放源活动水平数据,i表示行业,j表示年份,M表示各排放源活动水平推算指标,推算指标如图2所示,对于缺失的市级活动水平推算指标,将使用湖北省的活动水平推算指标替代. 其中规模以下工业因数量庞大、分布分散、监管难度大,其排放数据长期处于统计盲区,在本研究中不予考虑.

1.2.2 化石燃料燃烧源和工艺过程源

化石燃料燃烧源包括电力供热、工业锅炉和民用燃烧的排放,其中电力供热源包括电力、热力和燃气生产及供应业的排放;民用燃烧源指居民在日常生活中使用各类化石燃料的排放;工业锅炉源指各工业行业的锅炉在运行时的排放;工艺过程源包括钢铁、石化与化工、建材和其他工业的排放,即这些行业在生产物料时的PM2.5排放,其中其他工业包括纺织和非金属矿物制品行业. 计算公式如下:

          E=A×EF

公式(2)中,E为排放量;A为活动水平;EF为排放因子. 活动水平主要包括化石燃料燃烧源的燃料消耗量、燃烧设备技术类型和污染控制措施的去除效率,以及工艺过程源的产品产量和生产过程中的污染控制措施去除效率. 参考前人研究,根据燃料种类和产品种类选取排放因子,标准偏差为50%,如表1表2所示.

1.2.3 生物质燃烧源

生物质锅炉源指生物质能源企业的PM2.5排放,主要考虑生物质成型燃料的燃烧,其PM2.5排放量估算方法与化石燃料燃烧源的估算方法一致;生物质炉灶源指农村居民在日常生活中使用各类生物质燃料的PM2.5排放,排放量估算公式如下:

          E=BL×CE×EF

公式(3)BL表示不同生物质燃料的质量;CE表示生物质燃烧效率;EF是生物质燃烧的排放因子. 排放因子和燃烧效率如表3所示,考虑到不同燃烧效率下排放因子的差异,排放因子和燃烧效率的标准偏差分别为25%和50%(Wu et al., 2020).

生物质开放燃烧源主要为农作物露天焚烧和森林火灾的污染物排放,基于公式(4)的燃烧面积计算方法(Randerson et al., 2012),结合公式(5)的排放因子法进行估算(Wu et al., 2020),计算公式如下:

          BAx,t,j=BAMCD64A1(x,t,j)+BAMCD14ML(x,t,j)
          E=j=1nBAx,t,j×CEx×BLx×EF

公式(4)BAMCD64A1(x,t,j)表示来自MODIS⁃MCD64A1的燃烧面积数据(Giglio et al., 2021);BAMCD14ML(x,t,j)表示来自MODIS⁃MCD14ML的燃烧面积数据(https://modis.gsfc.nasa.gov/). 公式(5)BAx,t,j表示在位置x和时间t处生物质种类j的燃烧面积;CEx表示在不同位置x处生物质燃烧效率;BLx是位置x处的不同生物质燃料的质量;EF是生物质燃烧的排放因子. 排放因子和燃烧效率如表4所示,标准偏差分别为25%和50%(Wu et al., 2020).

1.2.4 移动源

移动源包括道路移动源和非道路移动源. 道路移动源指各类机动车的尾气中PM2.5排放;基于机动车年均行驶里程和单位公里排放系数进行估算. 计算公式如下:

          E=iPi×VKTi×BEF

公式(6)中,Pi为所在地区i类型机动车的保有量;VKTii类型机动车的年均行驶里程;BEF为机动车行驶单位距离排放系数,如表5所示,标准偏差为50%.

非道路移动源指非道路移动机械的尾气排放和船舶运行时的PM2.5排放,采用排放因子法,基于各种非道路移动机械、船舶和铁路内燃机车的燃油消耗量估算PM2.5排放量,估算方法和排放因子与化石燃料燃烧源的一致.

1.2.5 扬尘源

扬尘源包括土壤扬尘源、道路扬尘源、工地扬尘源和堆场扬尘源,计算方法和相关系数来自《扬尘源排放清单编制技术指南(试行) (000014672/2014-01379)》.

土壤扬尘源指裸土的PM2.5扬尘排放,主要受降水和温度的影响(赵光帅等, 2024),活动水平数据为土壤面积,计算公式如下:

          W=ESi×AS

公式(7)中,ESi为土壤扬尘源的PM2.5排放系数;AS为土壤扬尘源的面积.

道路扬尘源指道路的PM2.5扬尘排放,活动水平数据为道路长度和车流量,计算公式如下:

          W=ERi×LR×NR×10-6

公式(8)中,ERi为道路扬尘源中PM2.5平均排放系数;LR为道路长度;NR为道路扬尘源t时段内车辆在该段道路上的平均车流量.

工地扬尘源指工地的PM2.5扬尘排放,排放量通过四维通量法(田刚等, 2009; 杨柳林等, 2012)进行计算,计算公式如下:

          W=t×u×C×M×K×h0-1×η

公式(9)中,t为监测周期;ut时段内的平均风速;C为工地周长;M为降尘排放强度系数;K为TSP(total suspended particulates,总悬浮颗粒物)和降尘浓度的相关系数;h0为工地围挡高度;η表示PM2.5占TSP的比例.

堆场扬尘源指石材厂的PM2.5扬尘排放,活动水平数据来自物料装卸量,计算公式如下:

          W=i=1mEh×GY×10-3

公式(10)中,Eh为堆场扬尘的装卸运输过程的颗粒物排放系数;GY为每次装卸过程的物料装卸量.

1.2.6 餐饮源

餐饮源排放的PM2.5主要来自餐饮油烟,包括各类餐馆和小食店的餐饮油烟排放. 排放量采用产排污系数法进行估算,相关系数和计算方法来自王红丽等(2018)的研究和《城市大气污染物排放清单编制技术手册(T-CSES 144-2024)》,计算公式如下:

          E=n×V×H×EF×1-η

公式(11)中,n为固定炉头数;V为烟气排放速率;H为年总经营时间; η表示油烟净化器去除效率.

1.3 不确定性分析

排放清单的不确定性主要取决于活动水平数据和排放因子的可靠性.本研究采用蒙特卡洛模拟法,输入各排放源活动水平、排放因子和去除效率的平均值和标准偏差,将化石燃料燃烧源、工艺过程源、生物质燃烧源、移动源、扬尘源和餐饮源的活动水平数据不确定性分别设为5%、10%、20%、34%、5%和10%(Lu et al., 2020Zhu et al., 2023),使用Oracle Crystal Ball工具进行20 000次模拟,然后将参数的不确定性传递到清单计算结果,得到各个排放源的PM2.5排放量不确定性范围.

1.4 清单空间分配

基于GIS空间分析技术,结合全球人口分布数据集2017-2023年的人口空间分布(https://landscan.ornl.gov/about)和国家地球系统科学数据中心2017-2023年的土地利用类型(https://www.geodata.cn/data/)等空间特征标准数据,以及美国国家航空航天局2017-2023年的卫星火点数据(https://firms.modaps.eosdis.nasa.gov/download/create.php)和2017-2023年武汉城市圈POI(point of interest,兴趣点)点源分布数据(https://ditu.amap.com/),将2017-2023年武汉城市圈人为源PM2.5排放量通过ArcGis软件分配到1 km×1 km的网格. 具体分配方法如公式(12)所示.

          Egrid=Emn

公式(12)中,Egrid表示每个1 km×1 km网格的PM2.5排放量;Em表示二级源m的PM2.5排放量;n表示二级源的分配参数,分配参数如表6所示.

2 结果与讨论

2.1 武汉城市圈人为源PM2.5排放量的年际变化

武汉城市圈2017-2023年人为源PM2.5排放量如图3所示. 从排放总量看,武汉城市圈的人为源PM2.5排放量年变化率为-11.6%~8%,呈现先上升后下降的趋势. 从2017年的161.9 kt(-14.6%~14.9%)上升至2018年的164.6 kt(14.8%~14.6%),然后降至2020年的137.2 kt(13.4%~13.3%),PM2.5排放量下降明显,王瑶等(2022)的研究指出,疫情管控后,PM2.5浓度范围从42~83 µg/m3降至37~63 µg/m3,降低了23.4%. Huang et al. (2021)将元素碳(EC)作为PM2.5一次排放的示踪物,研究表明封锁期间所有站点的EC浓度均下降,且封锁期间与封锁前的EC浓度比值低于1,最低至0.4,也反映出一次PM2.5排放降幅明显.2020年到2023年,PM2.5排放出现反弹,上升至150 kt.

本研究中扬尘源的不确定性为-8.2%~15.4%,2020年PM2.5排放总量降低了11.6%,这主要是受到扬尘源排放的影响,其贡献率相比2017年减少了4.2%,关于上海市和成都市在疫情期间PM2.5排放的研究也表明,扬尘源是PM2.5排放量降低的主要来源,分别减少了3.3%和3.1%的贡献率(Wang et al., 2022Jin et al., 2023);Wang et al. (2024)的研究显示扬尘管控使得大湾区PM2.5浓度下降了1.21 μg/m3,占PM2.5总减排量的10.9%;且疫情期间的紧急管控(比如工地停工),使PM2.5浓度减少了1.82 μg/m3,降幅2.0%. 2023年PM2.5排放总量的增加主要受到餐饮源排放的影响,排放量相比2020年增加了4.3 kt,占排放增加总量的33.8%. 这反映了疫情对经济社会活动的限制,以及疫情后经济社会复苏对大气污染物排放的贡献.

化石燃料燃烧源和工艺过程源的PM2.5排放量较稳定,在8.43~11.04 kt和70.4~78.45 kt之间,不确定性分别为-13.2%~35.8%和-15.2%~34.3%. 在疫情封锁期间,多数工业停产,但燃煤电厂和钢铁等基础工业因保障民生未受严格限制,能源产量维持在疫情前的三分之二(Li et al., 2021),因此PM2.5排放量并未显著削减. 其他地区也呈现出该趋势,长三角地区在疫情期间,燃煤电厂因保障基础能源供应,排放量减少不足10%,相对贡献率上升了10%;民用燃煤因居家需求,贡献占比从疫情前的10%升至35%(Ma et al., 2021);华北地区居民固定燃烧源因居家隔离需求,排放贡献率(8%~17%)显著低于同期的交通源(17.3%~58.1%)(Zhao et al., 2021);呼和浩特封锁期间,煤燃烧对PM2.5的贡献占比达30.5%,仍是主要来源(Zhou et al., 2022).

生物质燃烧源PM2.5排放量在6.21~12.17 kt之间,不确定性为-9.8%~18.2%,湖北省在“十三五”期间大力推进秸秆综合利用,2021年秸秆综合利用率超90%(Wu et al., 2021),本研究结果显示生物质燃烧源的PM2.5排放量在2021年最低,相比2017年降低了5.96 kt;Hong et al. (2023)的研究显示在“十三五”期间,全国因农作物秸秆焚烧产生的颗粒物排放量下降了21%~29%,主要空气污染物一氧化碳(CO)排放量下降了29%,呈现出显著的政策调控特征. 移动源PM2.5排放量在6.48~9.16 kt之间,不确定性为-31.7%~42.2%,2020年的排放量最低,较2019年减少了2.34 kt. 2020年封锁期间,交通流量骤减,其中武汉公共交通客流量下降超60%(Gao et al., 2021),尾气排放的污染物减少,同时区域传输加速本地污染物扩散,使PM2.5浓度下降25.0%~36.9%(Lian et al., 2020Zheng et al., 2020). 成都市在封锁期间机动车排放对PM2.5排放的贡献率下降了22.2%(Zhang et al., 2024a);长三角地区在疫情期间交通源排放对PM2.5的贡献率下降了40%(Ma et al., 2021),反映出移动源排放与交通密集程度紧密相关.

2.2 不同区域PM2.5源排放贡献率对比

不同区域PM2.5源排放贡献率与武汉城市圈的对比如表7所示. 本研究中工艺过程源贡献率(46.52%~52.64%)和扬尘源贡献率(26.71%~31.77%)占比最高;珠三角的研究表明各源排放贡献率相对均衡;江苏省和长三角地区的研究表明工艺过程源是两个地区PM2.5排放贡献率最高的源类,分别占比60%和40%;长三角的研究表明化石燃料燃烧源贡献率(22.4%)最高;成都市的研究表明移动源贡献率(25.6%)占比突出;西安市的生物质燃烧源贡献率(24.4%)和化石燃料燃烧源贡献率(20.6%)较为突出;扬尘源排放贡献率在广州市最高(45%),在长三角地区为次高(30%).

不同研究的时间、方法存在差异,但仍可看出PM2.5源排放贡献率与区域产业结构、能源模式和地理环境相关(Huang et al., 2014Li et al., 2016),其中2017年长三角地区的PM2.5排放源结构与武汉城市圈的PM2.5排放源结构较相近. 该现象可能与长三角与武汉城市圈的地理位置和产业结构相似有关:两地同处长江中下游平原且均以重工业和制造业为经济支柱,2023年武汉城市圈和长三角地区的第一、二、三产业占比分别为7.5∶38.5∶54.0和3.6∶39.8∶56.6. 另外相关研究显示东风方向的传输路径、冬季北方气团南下路径和春季江西北部‒安徽传输路径是长三角与武汉城市圈PM2.5传输的主要交集路径,且工业源和燃煤源的污染物在这些路径中存在区域共享的传输特征(Hu et al., 2022Zhan et al., 2023).

2.3 武汉城市圈二级源PM2.5排放量的年际变化

武汉城市圈2017、2020和2023年各二级源的排放量变化如图4所示. 在二级源里面,排放量贡献率最大的源类是钢铁源(28.01%~34.57%,不确定性为-21.6%~34.3%),其次是建材源(10.91%~15.79%,不确定性为-18.3%~34.3%)、工地扬尘源(8.78%~12.99%,不确定性为-13.3%~34.3%)和道路扬尘源(8.74%~14.16%,不确定性为-8.2%~34.3%).

钢铁行业的PM2.5排放是中国PM2.5排放的主要来源(段文娇等, 2018; Zhang et al., 2019),中国钢铁企业通过超低排放改造和燃料结构优化,可使PM2.5排放强度降低40%~60%(Lei et al., 2023). 根据2019年7月29日印发的《湖北省钢铁行业超低排放改造实施方案(鄂环发[2019]15号)》,到2023年底前,武汉市、襄阳市、宜昌市、黄石市、荆州市、鄂州市、咸宁市这七座城市钢铁企业基本完成超低排放改造工作,其他地区钢铁企业2025年底前基本完成超低排放改造. 武汉城市圈的钢铁产能占湖北省的80%以上,其钢铁行业的PM2.5排放呈下降趋势,2017年到2020年减少了2.29 kt,2020年到2023年减少了2.26 kt. 京津冀焦化行业通过超低排放技术使颗粒物排放因子平均下降46.9%,2015-2019年颗粒物排放量减少68.4%,使其对PM2.5的贡献率从0.9%降至0.4%(Cheng et al., 2024),表明钢铁行业的减排措施初见成效. 道路扬尘是城市颗粒物(PM2.5~10)的主要来源之一,占颗粒物排放的41.2%左右(Dai et al., 2024),并且道路扬尘排放的PM2.5在粉尘排放中占比62.2%~85.8%(Chen et al., 2023),而交通运输是影响道路扬尘排放的主要因素之一. 相关研究表明,2020年管控期间车辆密度与PM2.5排放量几乎呈线性关系(Jia et al., 2021),机动车流量减少导致道路扬尘排放显著降低,PM2.5浓度降幅达20.5%~35.0%(熊江荷等,2023). 本研究中,道路扬尘的PM2.5排放呈先下降后上升的趋势,2017年到2020年减少了9.21 kt,2020年到2023年增加了 9.25 kt,反映了疫情防控措施对PM2.5排放的影响.

2.4 武汉城市圈PM2.5排放强度的空间分布变化

为揭示武汉城市圈人为源排放对PM2.5空间分布的影响,图5依次展示了2017年至2023年PM2.5排放强度分布的演变.

从整体看,各城市的中心城区始终是高排放集中区(>10 t/km2),高排放区与人口空间分布高度一致(Feng et al., 2024). Xu and Chen(2021)的研究显示武汉市PM2.5浓度在市中心呈现同心圆状高值分布,并随着与市中心距离的增加而逐渐降低,与本研究结果一致. 并且武汉市三环内的高值排放点集中程度明显高于其他地级市,Sun and Li(2025)的研究表明社会经济因素对PM2.5污染的总解释力(0.788 1)大于自然条件因素(0.703 6),城市土地扩张会加剧PM2.5污染,说明PM2.5排放量与城市发展水平相关,反映出武汉城市圈内各城市发展水平差异较大. 武汉中心城区以金融、商贸、科创等低排放服务业为主,但人口密集且生产与生活活动发展迅速(顾延生等, 2023),PM2.5排放强度高 (>10 t/km2),而郊区(如江夏、黄陂部分区域)有汽车制造、光电子产业集群等工业,东湖高新区与鄂州葛店经开区形成产业协同,布局光电子信息、生物医药等相对清洁但有一定排放的产业,排放强度较低(1~10 t/km2). 相比其他工业城市,黄石在大冶湖周边、西塞山等区域集中了大量钢铁冶炼、建材等重工业区,这些区域产业布局密集且以传统重工业为主,生产过程中能源消耗大、污染物排放集中,高值区空间范围更集中(1~10 t/km2). 鄂州除与武汉协同的产业外,还存在部分传统制造业及港口物流关联的工业,以鄂城钢铁所在区域为例,钢铁生产属于高排放行业,产业布局集中且环保压力大,其排放强度在鄂州局部区域形成高值点(1~10 t/km2). 郊区排放强度相对较低(1~10 t/km2);农村多为蓝色的低排放区(<1 t/km2以下). 呈现“中心高、外围低”的空间分布特征.

从时间变化看,2017-2019年(图5a~5c)核心高排放区范围广、颜色深. 2017年(图5a),PM2.5排放强度整体较高,武汉市主城区为典型的高值核心区,排放强度在20 t/km2以上的红色区域广泛分布于中心城区及多条城市交通主干道,黄石、鄂州等地也存在明显的高排放区. Huang et al.(2019)对武汉市2017年3月至2018年2月的PM2.5浓度及其化学成分进行了连续在线监测,通过PMF模型识别出钢铁工业和交通排放分别贡献了26.3%和29.2%的PM2.5排放,本地源主要包括钢铁企业、建筑工地和城市主干道等,与本研究结果一致. 2017年到2020年正处于“十三五”收尾的最后三年,中国多数省份PM2.5浓度显著下降了12%~94%(Ali et al., 2023),可以看出2018年(图5b)至2019年(图5c),高排放区域有所缩减,说明武汉城市圈的大气污染防治政策初见成效. 2020年(图5d)PM2.5排放总量降低了11.64%,红色区域仅局限于各地级市的城区中心,周边地区的城市交通主干道点源PM2.5排放量都在5 t/km2以下,其余区域的PM2.5排放强度不足0.1 t/km2Gao et al. (2021)的研究表明,2020年武汉PM2.5浓度在封锁期间的下降,与交通流量减少等人类活动变化有关,与本研究结果一致. 2021年(图5e)PM2.5排放水平呈现一定反弹趋势,Feng et al. (2022)基于高分辨率卫星数据和地面监测网络,发现2021年东亚地区PM2.5排放量较2020年上升15%,其中我国贡献了约60%的增量,表明经济活动恢复后污染压力重新加剧. 武汉城市圈PM2.5排放量增加了8%,武汉及其周边城市高排放区域再次扩展,熊江荷等(2023)运用随机森林算法剥离排放与气象影响,发现武汉市在解除管控后,中心城区、郊区、工业区、三环线、交通点和城市背景点的PM2.5排放贡献量的降低值(3.80~7.30 μg/m3)显著小于管控期间(15.1~28.5 μg/m3),且郊区、三环线和交通点的排放贡献增加,高值区域再次扩展,与本研究结果一致. 2022年(图5f)至2023年(图5g)排放量(147.1~150.0 kt)趋于稳定.

武汉城市圈2017-2020年和2020-2023年PM2.5排放强度变化如图6所示. 2017-2020年(图6a),PM2.5排放强度的变化区间为增加6.1%至降低40.6%,降低部分集中在中心城区和道路,Yuan et al. (2021)的研究显示在城区和城市工业区,大气污染物浓度下降比例(27%~62%)高于郊区(25%~58%),说明空气污染物对封锁行动的反映在城区和城市工业区更明显,与本研究结果一致. 2020-2023年(图6b),中心城区和部分道路排放强度反弹区间为增加了7.3%至63.9%. Feng et al. (2022)提出了空气质量反弹指标,用于衡量疫情封锁后空气质量在达到低谷后,污染水平恢复的速度,研究显示疫情之后交通枢纽城市的反弹倍数在3以上,并且兼具交通枢纽和工业中心功能的大型城市的韧性指数较低(-0.42~-0.89),说明大型城市在疫情之后PM2.5排放反弹明显,与本研究结果一致.

2.5 排放清单的不确定性

武汉城市圈人为源PM2.5排放清单的不确定性分析如表8所示. 清单不确定性主要来自活动水平数据(燃烧效率、除尘效率和机动车车型等)和排放因子(Lu et al., 2020),将活动水平和排放因子分别假设为正态概率分布和对数正态分布(Zhao et al., 2011),通过模拟得到17类二级源PM2.5排放量不确定性范围.

道路移动源的不确定性最高(-31.7%~42.2%),本研究未考虑机动车的排放标准及车型分类,增加了排放因子的不确定性,Zhu et al. (2023)建立了2000年到2020年京津冀及周边地区机动车大气污染物排放清单,其中PM2.5不确定性为-29.51%~37.70 %,研究显示影响道路移动源排放不确定性的主要因素之一是机动车的排放因子,其次是电力供热源(-23.1%~35.8%),工地扬尘源的不确定性最低(-13.3%~12.1%). 一级源中,化石燃料燃烧源和工艺过程源的不确定性最高(-13.2%~35.8%和-15.2%~34.3%). 锅炉的燃烧技术(如燃烧阶段划分、分级配风)和设备特性(如炉灶运行模式、锅炉流场设计)的差异,是导致排放量不确定性的主要原因(Kuang et al., 2013Thompson et al., 2019),不同的燃烧技术和设备对燃料的PM2.5排放因子有所影响. 工艺过程源排放量在计算时未按照不同的工序收集对应的活动水平和排放因子,导致不确定性较高,Qi et al.(2017)编制了京津冀地区钢铁源的排放清单,其中PM2.5不确定性为-24%~23%,研究表明计算方法简化了实际排放过程的复杂性,会导致不确定性较高,与本研究的钢铁源PM2.5不确定性接近(-21.6%~34.3%),Liu et al. (2021)计算了中国水泥行业碳和空气污染物的排放量,其中PM2.5不确定性为-20%~22%,与本研究建材源PM2.5不确定性接近(-18.3%~32.4%). 扬尘源的不确定性最低(-8.2%~15.4%).

3 结论

(1)武汉城市圈2017-2023年人为源PM2.5排放总年变化率在-11.64%~8%之间,餐饮源排放量上升了4.6 kt,生物质燃烧源和扬尘源排放量分别下降了2.3 kt和10 kt,化石燃料燃烧源、工艺过程源和移动源排放量较稳定.

(2)一级源中工艺过程源贡献率(46.52%~52.64%)和扬尘源贡献率(26.71%~31.77%)最高,二级源里面,排放量贡献率最高的是钢铁源(28.01%~34.57%),其次是建材源(10.91%~15.79%)、工地扬尘源(8.78%~12.99%)和道路扬尘源(8.74%~14.16%).

(3)武汉城市圈2017-2023年PM2.5排放强度呈“中心高、外围低”的空间分布特征,中心城区为高排放集中区,且武汉市三环内高值集中程度更高(>10 t/km2),郊区和农村排放较低 (<10 t/km2). 时间上,2017-2019年核心高排放范围广,2020年因疫情排放量降低了11.64%,2021年经济活动恢复后排放量反弹了8%,2022-2023年排放量趋于稳定(147.1~150.0 kt).

(4)武汉城市圈人为源PM2.5排放清单的不确定性主要源于活动水平数据和排放因子. 二级源中,道路移动源不确定性最高(-31.7%~42.2%),其次是电力供热源(-23.1%~35.8%),工地扬尘源不确定性最低(-13.3%~12.1%). 一级源中,化石燃料燃烧源(-13.2%~35.8%)和工艺过程源(-15.2%~34.3%)不确定性较高,扬尘源不确定性最低(-8.2%~15.4%).

参考文献

[1]

Ali, M. A., Huang, Z. W., Bilal, M., et al., 2023. Long⁃Term PM2.5 Pollution over China: Identification of PM2.5 Pollution Hotspots and Source Contributions. Science of the Total Environment, 893: 164871. https://doi.org/10.1016/j.scitotenv.2023.164871

[2]

An, J. Y., Huang, Y. W., Huang, C., et al., 2021. Emission Inventory of Air Pollutants and Chemical Speciation for Specific Anthropogenic Sources Based on Local Measurements in the Yangtze River Delta Region, China. Atmospheric Chemistry and Physics, 21(3): 2003-2025. https://doi.org/10.5194/acp⁃21⁃2003⁃2021

[3]

Cao, J. J., Cui, L., 2021. Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review. Journal of Geophysical Research: Atmospheres, 126(11): e2020JD034472. https://doi.org/10.1029/2020JD034472

[4]

Chen, J. W., Man, H. Y., Cai, W. Y., et al., 2023. Evaluating City Road Dust Emission Characteristics with a Dynamic Method: A Case Study in Luoyang, China. Science of the Total Environment, 898: 165520. https://doi.org/10.1016/j.scitotenv.2023.165520

[5]

Chen, Y. F., Zhao, Y. H., Zhang, L., et al., 2025. High⁃Resolution Inventories for Reactive Nitrogen Emissions from China’s Livestock during 2005-2022. Scientific Data, 12: 1062. https://doi.org/10.1038/s41597⁃025⁃05394⁃x

[6]

Cheng, L., Wei, W., Cheng, S. Y., et al., 2024. Reductions of Multiple Air Pollutants from Coking Industry through Technology Improvements and Their Impacts on Air Quality and Health Risks in a Highly Industrialized Region of China. Science of the Total Environment, 908: 168360. https://doi.org/10.1016/j.scitotenv.2023.168360

[7]

Dai, L. W., Meng, J., Li, Q. Q., et al., 2021. VOCs Emission Inventory and Variation Characteristics of Artificial Sources in Hubei Province in the Yangtze River Economic Belt. Environmental Science, 42(3): 1039-1052 (in Chinese with English abstract).

[8]

Dai, T. J., Dai, Q. L., Yin, J. C., et al., 2024. Spatial Source Apportionment of Airborne Coarse Particulate Matter Using PMF⁃Bayesian Receptor Model. Science of the Total Environment, 917: 170235. https://doi.org/10.1016/j.scitotenv.2024.170235

[9]

Duan, W. J., Lang, J. L., Cheng, S. Y., et al., 2018. Air Pollutant Emission Inventory from Iron and Steel Industry in the Beijing⁃Tianjin⁃Hebei Region and Its Impact on PM2.5. Environmental Science, 39(4): 1445-1454 (in Chinese with English abstract).

[10]

Feng, M. L., Ren, J. F., He, J., et al., 2022. Potency of the Pandemic on Air Quality: An Urban Resilience Perspective. Science of the Total Environment, 805: 150248. https://doi.org/10.1016/j.scitotenv.2021.150248

[11]

Feng, X. Y., Tian, Y. Z., Zhang, T. F., et al., 2024. High Spatial⁃Resolved Source⁃Specific Exposure and Risk in the City Scale: Influence of Spatial Interrelationship between PM2.5 Sources and Population on Exposure. Science of the Total Environment, 926: 171873. https://doi.org/10.1016/j.scitotenv.2024.171873

[12]

Gao, C. C., Li, S. H., Liu, M., et al., 2021. Impact of the COVID⁃19 Pandemic on Air Pollution in Chinese Megacities from the Perspective of Traffic Volume and Meteorological Factors. Science of the Total Environment, 773: 145545. https://doi.org/10.1016/j.scitotenv.2021.145545

[13]

Gao, Y. B., Xing, Y. K., He, F., et al., 2021. Research on Co⁃Control Effectiveness Evaluation of Energy Saving and Emission Reduction Measures in China’s Iron and Steel Industry. Climate Change Research, 17(4): 388-399 (in Chinese with English abstract).

[14]

Giglio, L., Justice, C., Boschetti, L., et al., 2021. MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V06. NASA Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD64A1.061

[15]

Gu, C., Zhang, L., Xu, Z. D., et al., 2023. High⁃Resolution Regional Emission Inventory Contributes to the Evaluation of Policy Effectiveness: A Case Study in Jiangsu Province, China. Atmospheric Chemistry and Physics, 23(7): 4247-4269. https://doi.org/10.5194/acp⁃23⁃4247⁃2023

[16]

Gu, Y. S., Li, Y. N., Xie, S. C., et al., 2023. On the Establishment of Wuhan as an International Wetland City from the Perspective of Lake Evolution. Earth Science, 48(8): 3193-3204 (in Chinese with English abstract).

[17]

Guo, W. K., Li, G. Y., Chen, B., et al., 2021. Establishment of a High⁃Resolution Anthropogenic Emission Inventory and Its Evaluation Using the WRF⁃Chem Model for Lanzhou. Environmental Science, 42(2): 634-642 (in Chinese with English abstract).

[18]

He, M., Wang, X. R., Han, L., et al., 2015. Emission Inventory of Crop Residues Field Burning and Its Temporal and Spatial Distribution in Sichuan Province. Environmental Science, 36(4): 1208-1216 (in Chinese with English abstract).

[19]

Hong, X. H., Zhang, C. X., Tian, Y., et al., 2023. Quantification and Evaluation of Atmospheric Emissions from Crop Residue Burning Constrained by Satellite Observations in China during 2016-2020. Science of the Total Environment, 865: 161237. https://doi.org/10.1016/j.scitotenv.2022.161237

[20]

Hu, W. Y., Zhao, T. L., Bai, Y. Q., et al., 2022. Regulation of Synoptic Circulation in Regional PM2.5 Transport for Heavy Air Pollution: Study of 5⁃Year Observation over Central China. Journal of Geophysical Research: Atmospheres, 127(13): e2021JD035937. https://doi.org/10.1029/2021JD035937

[21]

Huang, F., Zhou, J. B., Chen, N., et al., 2019. Chemical Characteristics and Source Apportionment of PM2.5 in Wuhan, China. Journal of Atmospheric Chemistry, 76(3): 245-262. https://doi.org/10.1007/s10874⁃019⁃09395⁃0

[22]

Huang, X., Ding, A. J., Gao, J., et al., 2021. Enhanced Secondary Pollution Offset Reduction of Primary Emissions during COVID⁃19 Lockdown in China. National Science Review, 8(2): nwaa137. https://doi.org/10.1093/nsr/nwaa137

[23]

Huang, Y., Hu, C. J., Cheng, H. R., et al., 2018. Emission Inventory and Spatial Distribution Characteristics of Particulate Matters from Dust Source in Wuhan, China. Journal of Wuhan University (Natural Science Edition), 64(4): 354-362 (in Chinese with English abstract).

[24]

Huang, Y., Shen, H. Z., Chen, H., et al., 2014. Quantification of Global Primary Emissions of PM2.5, PM10, and TSP from Combustion and Industrial Process Sources. Environmental Science & Technology, 48(23): 13834-13843. https://doi.org/10.1021/es503696k

[25]

Jena, C., Ghude, S. D., Kumar, R., et al., 2021. Performance of High Resolution (400 m) PM2.5 Forecast over Delhi. Scientific Reports, 11: 4104. https://doi.org/10.1038/s41598⁃021⁃83467⁃8

[26]

Jia, C. Y., Li, W. D., Wu, T. C., et al., 2021. Road Traffic and Air Pollution: Evidence from a Nationwide Traffic Control during Coronavirus Disease 2019 Outbreak. Science of the Total Environment, 781: 146618. https://doi.org/10.1016/j.scitotenv.2021.146618

[27]

Jiang, P. Y., Zhong, X., Li, L. Y., 2020. On⁃Road Vehicle Emission Inventory and Its Spatio⁃Temporal Variations in North China Plain. Environmental Pollution, 267: 115639. https://doi.org/10.1016/j.envpol.2020.115639

[28]

Jin, Q., Luo, Y. N., Meng, X. R., et al., 2023. Short⁃ and Long⁃Term Impacts of the COVID⁃19 Epidemic on Urban PM2.5 Variations: Evidence from a Megacity, Chengdu. Atmospheric Environment, 294: 119479. https://doi.org/10.1016/j.atmosenv.2022.119479

[29]

Kuang, M., Li, Z. Q., Liu, C. L., et al., 2013. Overall Evaluation of Combustion and NOx Emissions for a Down⁃Fired 600 MWe Supercritical Boiler with Multiple Injection and Multiple Staging. Environmental Science & Technology, 47(9): 4850-4858. https://doi.org/10.1021/es304492j

[30]

Lam, Y. F., Cheung, C. C., Zhang, X. G., et al., 2021. Development of a New Emission Reallocation Method for Industrial Sources in China. Atmospheric Chemistry and Physics, 21(17): 12895-12908. https://doi.org/10.5194/acp⁃21⁃12895⁃2021

[31]

Lei, T. Y., Wang, D. P., Yu, X., et al., 2023. Global Iron and Steel Plant CO2 Emissions and Carbon⁃Neutrality Pathways. Nature, 622(7983): 514-520. https://doi.org/10.1038/s41586⁃023⁃06486⁃7

[32]

Li, B., Xu, Z. H., Liu, B. Y., et al., 2024. Development of a Finer⁃Resolution Multi⁃Year Emission Inventory for Open Biomass Burning in Heilongjiang Province, China. Scientific Reports, 14: 29969. https://doi.org/10.1038/s41598⁃024⁃81092⁃9

[33]

Li, G. D., Fang, C. L., Wang, S. J., et al., 2016. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environmental Science & Technology, 50(21): 11452-11459. https://doi.org/10.1021/acs.est.6b02562

[34]

Li, R., Zhao, Y. L., Fu, H. B., et al., 2021. Substantial Changes in Gaseous Pollutants and Chemical Compositions in Fine Particles in the North China Plain during the COVID⁃19 Lockdown Period: Anthropogenic vs. Meteorological Influences. Atmospheric Chemistry and Physics, 21(11): 8677-8692. https://doi.org/10.5194/acp⁃21⁃8677⁃2021

[35]

Lian, X. B., Huang, J. P., Huang, R. J., et al., 2020. Impact of City Lockdown on the Air Quality of COVID⁃19⁃Hit of Wuhan City. Science of the Total Environment, 742: 140556. https://doi.org/10.1016/j.scitotenv.2020.140556

[36]

Liu, J., Tong, D., Zheng, Y. X., et al., 2021. Carbon and Air Pollutant Emissions from China’s Cement Industry 1990-2015: Trends, Evolution of Technologies, and Drivers. Atmospheric Chemistry and Physics, 21(3): 1627-1647. https://doi.org/10.5194/acp⁃21⁃1627⁃2021

[37]

Lu, Y., Shao, M., Zheng, C. H., et al., 2020. Air Pollutant Emissions from Fossil Fuel Consumption in China: Current Status and Future Predictions. Atmospheric Environment, 231: 117536. https://doi.org/10.1016/j.atmosenv.2020.117536

[38]

Ma, J. L., Shen, J. Y., Wang, P., et al., 2021. Modeled Changes in Source Contributions of Particulate Matter during the COVID⁃19 Pandemic in the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 21(9): 7343-7355. https://doi.org/10.5194/acp⁃21⁃7343⁃2021

[39]

Milne, A. E., Glendining, M. J., Bellamy, P., et al., 2014. Analysis of Uncertainties in the Estimates of Nitrous Oxide and Methane Emissions in the UK’s Greenhouse Gas Inventory for Agriculture. Atmospheric Environment, 82: 94-105. https://doi.org/10.1016/j.atmosenv.2013.10.012

[40]

Ni, Z. L., Zhou, Y. D., Zhang, Y. J., et al., 2021. Establishment of High Resolution Atmospheric Emission Inventory in Ezhou City. Environmental Science & Technology, 44(2): 90-96 (in Chinese with English abstract).

[41]

Puliafito, S. E., Allende, D., Pinto, S., et al., 2015. High Resolution Inventory of GHG Emissions of the Road Transport Sector in Argentina. Atmospheric Environment, 101: 303-311. https://doi.org/10.1016/j.atmosenv.2014.11.040

[42]

Qi, J., Zheng, B., Li, M., et al., 2017. A High⁃Resolution Air Pollutants Emission Inventory in 2013 for the Beijing⁃Tianjin⁃Hebei Region, China. Atmospheric Environment, 170: 156-168. https://doi.org/10.1016/j.atmosenv.2017.09.039

[43]

Qin, S., Kong, S. F., Wu, J., et al., 2020. Spatial⁃Temporal Diversities of Ammonia Emissions and Impacting Factors in Hubei Province from 1996 to 2016. China Environmental Science, 40(4): 1403-1413 (in Chinese with English abstract).

[44]

Qiu, P. P., Tian, H. Z., Zhu, C. Y., et al., 2014. An Elaborate High Resolution Emission Inventory of Primary Air Pollutants for the Central Plain Urban Agglomeration of China. Atmospheric Environment, 86: 93-101. https://doi.org/10.1016/j.atmosenv.2013.11.062

[45]

Randerson, J. T., Chen, Y., van der Werf, G. R., et al., 2012. Global Burned Area and Biomass Burning Emissions from Small Fires. Journal of Geophysical Research: Biogeosciences, 117(G4): 2012JG002128. https://doi.org/10.1029/2012JG002128

[46]

Sun, B., Li, J. H., 2025. Asymmetric Effects of Natural and Socioeconomic Factors on PM2.5 Pollution in Chinese Counties. Scientific Reports, 15: 19128. https://doi.org/10.1038/s41598⁃025⁃03138⁃w

[47]

Sun, C., Zhan, L. X., Yin, H., et al., 2018. Establishment of Anthropogenic Volatile Organic Compounds Emission Inventory in Wuhan. Environmental Science & Technology, 41(4): 166-171 (in Chinese with English abstract).

[48]

Sun, X. W., Cheng, S. Y., Lang, J. L., et al., 2018. Development of Emissions Inventory and Identification of Sources for Priority Control in the Middle Reaches of Yangtze River Urban Agglomerations. Science of the Total Environment, 625: 155-167. https://doi.org/10.1016/j.scitotenv.2017.12.103

[49]

Thompson, R. J., Li, J. H., Weyant, C. L., et al., 2019. Field Emission Measurements of Solid Fuel Stoves in Yunnan, China Demonstrate Dominant Causes of Uncertainty in Household Emission Inventories. Environmental Science & Technology, 53(6): 3323-3330. https://doi.org/10.1021/acs.est.8b07040

[50]

Tian, G., Huang, Y. H., Li, G., 2009. Establishment and Application of Four⁃Dimensional Fluxes Emission Factor Model for Construction Fugitive Dust. Environmental Science, 30(4): 1003-1007 (in Chinese with English abstract).

[51]

Wang, H. L., Jing, S. A., Lou, S. R., et al., 2018. Estimation of Fine Particle (PM2.5) Emission Inventory from Cooking: Case Study for Shanghai. Environmental Science, 39(5): 1971-1977 (in Chinese with English abstract).

[52]

Wang, S., Wang, Q. Q., Zhu, S. H., et al., 2022. Hourly Organic Tracers⁃Based Source Apportionment of PM2.5 before and during the Covid⁃19 Lockdown in Suburban Shanghai, China: Insights into Regional Transport Influences and Response to Urban Emission Reductions. Atmospheric Environment, 289: 119308. https://doi.org/10.1016/j.atmosenv.2022.119308

[53]

Wang, S. Y., Zhu, Y., Jang, J. C., et al., 2024. Modeling Assessment of Air Pollution Control Measures and COVID⁃19 Pandemic on Air Quality Improvements over Greater Bay Area of China. Science of the Total Environment, 926: 171951. https://doi.org/10.1016/j.scitotenv.2024.171951

[54]

Wang, Y., Tang, X., Chen, K. Y., et al., 2022. Multidimensional Observation Analysis of the Air Quality Changes in Wuhan during the Coronavirus Disease⁃2019 Pandemic. Climatic and Environmental Research, 27(6): 756-768 (in Chinese with English abstract).

[55]

Wu, J., Kong, S. F., Wu, F. Q., et al., 2020. The Moving of High Emission for Biomass Burning in China: View from Multi⁃Year Emission Estimation and Human⁃ Driven Forces. Environment International, 142: 105812. https://doi.org/10.1016/j.envint.2020.105812

[56]

Wu, J., Kong, S. F., Zeng, X., et al., 2021. First High⁃Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non⁃Biomass Burning Sources in China. Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/acs.est.0c06675

[57]

Wu, Y. F., You, Y., Wang, Z. C., et al., 2024. Establishment of High Temporal⁃Spatial Resolution Anthropogenic Emission Inventory of Air Pollutants in 2017 for Macao, China. Atmospheric Environment, 337: 120735. https://doi.org/10.1016/j.atmosenv.2024.120735

[58]

Xia, L., Liu, R., Fan, W. X., et al., 2025. Emerging Carbon Dioxide Hotspots in East Asia Identified by a Top⁃Down Inventory. Communications Earth & Environment, 6: 10. https://doi.org/10.1038/s43247⁃024⁃01991⁃7

[59]

Xiong, J. H., Kong, S. F., Zheng, H., et al., 2023. Impacts of Emission and Meteorological Conditions on Air Pollutants at Various Sites around the COVID⁃19 Lockdown in Wuhan. Environmental Science, 44(2): 670-679 (in Chinese with English abstract).

[60]

Xiong, T. Q., Jiang, W., Gao, W. D., 2016. Current Status and Prediction of Major Atmospheric Emissions from Coal⁃Fired Power Plants in Shandong Province, China. Atmospheric Environment, 124: 46-52. https://doi.org/10.1016/j.atmosenv.2015.11.002

[61]

Xu, H. H., Chen, H., 2021. Impact of Urban Morphology on the Spatial and Temporal Distribution of PM2.5 Concentration: A Numerical Simulation with WRF/CMAQ Model in Wuhan, China. Journal of Environmental Management, 290: 112427. https://doi.org/10.1016/j.jenvman.2021.112427

[62]

Yan, D. J., Ding, Y. F., Yu, Y., et al., 2019. Inventory and Reduction Potential of Anthropogenic PM2.5 Emission in Xi’an City. Research of Environmental Sciences, 32(5): 813-820 (in Chinese with English abstract).

[63]

Yang, L. L., Wang, X. M., Chen, Q. J., 2012. New Method for Investigating Regional Interactions of Air Pollutants. Acta Scientiae Circumstantiae, 32(3): 528-536 (in Chinese with English abstract).

[64]

Yuan, Q., Qi, B., Hu, D. Y., et al., 2021. Spatiotemporal Variations and Reduction of Air Pollutants during the COVID⁃19 Pandemic in a Megacity of Yangtze River Delta in China. Science of the Total Environment, 751: 141820. https://doi.org/10.1016/j.scitotenv.2020.141820

[65]

Zeng, C. Y., Wu, S. H., Cheng, M., et al., 2024. High⁃Resolution Mapping of Carbon Dioxide Emissions in Guizhou Province and Its Scale Effects. Scientific Reports, 14: 20916. https://doi.org/10.1038/s41598⁃024⁃71836⁃y

[66]

Zhan, Y., Xie, M., Zhao, W., et al., 2023. Quantifying the Seasonal Variations in and Regional Transport of PM2.5 in the Yangtze River Delta Region, China: Characteristics, Sources, and Health Risks. Atmospheric Chemistry and Physics, 23(17): 9837-9852. https://doi.org/10.5194/acp⁃23⁃9837⁃2023

[67]

Zhang, J. K., Chen, C. Y., Su, Y. F., et al., 2024a. Characterization of Summertime Single Aerosol Particles in Chengdu (China): Interannual Evolution and Impact of COVID⁃19 Lockdown. Science of the Total Environment, 907: 167765. https://doi.org/10.1016/j.scitotenv.2023.167765

[68]

Zhang, J. L., Huang, Y. Y., Zhou, N., et al., 2024b. Contribution of Anthropogenic Emission Changes to the Evolution of PM2.5 Concentrations and Composition in the Pearl River Delta during the Period of 2006-2020. Atmospheric Environment, 318: 120228. https://doi.org/10.1016/j.atmosenv.2023.120228

[69]

Zhang, J., Liu, L., Zhao, Y., et al., 2020. Development of a High⁃Resolution Emission Inventory of Agricultural Machinery with a Novel Methodology: A Case Study for Yangtze River Delta Region. Environmental Pollution, 266: 115075. https://doi.org/10.1016/j.envpol.2020.115075

[70]

Zhang, J. K., Su, Y. F., Chen, C. Y., et al., 2024c. Chemical Composition, Sources and Formation Mechanism of Urban PM2.5 in Southwest China: A Case Study at the Beginning of 2023. Atmospheric Chemistry and Physics, 24(5): 2803-2820. https://doi.org/10.5194/acp⁃24⁃2803⁃2024

[71]

Zhang, L., Niu, M. C., Zhang, Z., et al., 2023. A New Method of Hotspot Analysis on the Management of CO2 and Air Pollutants, a Case Study in Guangzhou City, China. Science of the Total Environment, 856: 159040. https://doi.org/10.1016/j.scitotenv.2022.159040

[72]

Zhang, Q., Zheng, Y. X., Tong, D., et al., 2019. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463-24469. https://doi.org/10.1073/pnas.1907956116

[73]

Zhang, X. C., Wang, W. J., Wang, M. Y., et al., 2022. Emission Inventory and Spatial Distribution Characteristics of Anthropogenic Air Pollutants in Basin City in China—A Case Study of Jincheng City. Environmental Chemistry, 41(12): 4016-4031 (in Chinese with English abstract).

[74]

Zhao, G. S., Pu, Z. G., Huang, Q. B., et al., 2024. A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release. Earth Science, 49(12): 4608-4621 (in Chinese with English abstract).

[75]

Zhao, X. Y., Wang, G., Wang, S., et al., 2021. Impacts of COVID⁃19 on Air Quality in Mid⁃Eastern China: An Insight into Meteorology and Emissions. Atmospheric Environment, 266: 118750. https://doi.org/10.1016/j.atmosenv.2021.118750

[76]

Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the Uncertainties of a Bottom⁃Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmospheric Chemistry and Physics, 11(5): 2295-2308. https://doi.org/10.5194/acp⁃11⁃2295⁃2011

[77]

Zheng, B., Cheng, J., Geng, G. N., et al., 2021. Mapping Anthropogenic Emissions in China at 1 km Spatial Resolution and Its Application in Air Quality Modeling. Science Bulletin, 66(6): 612-620. https://doi.org/10.1016/j.scib.2020.12.008

[78]

Zheng, H. T., Cai, S. Y., Wang, S. X., et al., 2019. Development of a Unit⁃Based Industrial Emission Inventory in the Beijing⁃Tianjin⁃Hebei Region and Resulting Improvement in Air Quality Modeling. Atmospheric Chemistry and Physics, 19(6): 3447-3462. https://doi.org/10.5194/acp⁃19⁃3447⁃2019

[79]

Zheng, H., Kong, S. F., Chen, N., et al., 2020. Significant Changes in the Chemical Compositions and Sources of PM2.5 in Wuhan since the City Lockdown as COVID⁃19. Science of the Total Environment, 739: 140000. https://doi.org/10.1016/j.scitotenv.2020.140000

[80]

Zhong, H., Zhao, Y., Muntean, M., et al., 2016. A High⁃Resolution Regional Emission Inventory of Atmospheric Mercury and Its Comparison with Multi⁃Scale Inventories: A Case Study of Jiangsu, China. Atmospheric Chemistry and Physics, 16(23): 15119-15134. https://doi.org/10.5194/acp⁃16⁃15119⁃2016

[81]

Zhong, Z. M., Zheng, J. Y., Zhu, M. N., et al., 2018. Recent Developments of Anthropogenic Air Pollutant Emission Inventories in Guangdong Province, China. Science of the Total Environment, 627: 1080-1092. https://doi.org/10.1016/j.scitotenv.2018.01.268

[82]

Zhou, H. J., Liu, T., Sun, B., et al., 2022. Chemical Characteristics and Sources of PM2.5 in Hohhot, a Semi⁃Arid City in Northern China: Insight from the COVID⁃19 Lockdown. Atmospheric Chemistry and Physics, 22(18): 12153-12166. https://doi.org/10.5194/acp⁃22⁃12153⁃2022

[83]

Zhou, Y., Xing, X. F., Lang, J. L., et al., 2017. A Comprehensive Biomass Burning Emission Inventory with High Spatial and Temporal Resolution in China. Atmospheric Chemistry and Physics, 17(4): 2839-2864. https://doi.org/10.5194/acp⁃17⁃2839⁃2017

[84]

Zhu, C. Y., Qu, X. Y., Qiu, M. Y., et al., 2023. High Spatiotemporal Resolution Vehicular Emission Inventory in Beijing⁃Tianjin⁃Hebei and Its Surrounding Areas (BTHSA) during 2000-2020, China. Science of the Total Environment, 873: 162389. https://doi.org/10.1016/j.scitotenv.2023.162389

基金资助

湖北省自然科学基金杰出青年项目(2022CFA040)

国家重点研发计划(2023YFC3709802)

AI Summary AI Mindmap
PDF (4478KB)

124

访问

0

被引

详细

导航
相关文章

AI思维导图

/