武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变
陈德靓 , 吴剑 , 孔少飞 , 董浩宇 , 江惟缌 , 祁士华
地球科学 ›› 2025, Vol. 50 ›› Issue (09) : 3488 -3505.
武汉城市圈人为源排放PM2.5高分辨率清单估算及时空演变
Estimation of Emission Inventory with High⁃Resolution of Anthropogenic PM2.5 in Wuhan Metropolitan Area from 2017 to 2023 and Its Spatial⁃Temporal Evolution
,
,
武汉城市圈的高时空分辨率大气细颗粒物(PM2.5)排放清单研究的暂时缺乏,制约着区域PM2.5污染的精确模拟和防控. 本研究采用排放因子法,融合高德地图兴趣点数据以及人口、路网和土地利用类型等代用指标,构建了2017-2023年该区域人为源排放PM2.5的高空间分辨率(1 km×1 km)排放清单,评估其不确定性,揭示其时空演变规律. 结果表明,武汉城市圈PM2.5排放总量在2018年达峰值(164.59 kt),2020年因疫情降至137.15 kt,2023年反弹至149.97 kt. 各源类排放PM2.5的不确定性为-31.7%~42.2%,化石燃料燃烧源(-13.2%~35.8%)和工艺过程源(-15.2%~34.3%)不确定性较高,扬尘源不确定性最低(-8.2%~15.4%). 工艺过程源和扬尘源为主要贡献源,占PM2.5总排放的46.5%~52.6%和26.7%~31.8%. 区域内PM2.5排放强度在城市中心区为600~800 t/km2,是郊区、农村区域排放强度的40~50倍. 本研究可为改进大气化学数值模拟精度提供可靠的高精度清单数据支撑.
The lack of high spatio-temporal resolution emission inventories for atmospheric fine particulate matter (PM2.5) in the Wuhan metropolitan area limits the accurate simulation and control of regional PM2.5 pollution. In this study, the emission factor method was adopted, integrating point of interest data from Amap as well as relevant allocation indices including population, road network and land use type, etc., to construct a high-spatial-resolution (1 km×1 km) emission inventory of anthropogenic PM2.5 emissions in the region from 2017 to 2023. Its uncertainty was evaluated, and its temporal and spatial evolution patterns were revealed. Results show that the total PM2.5 emissions peaked in 2018 at 164.59 kt, dropped to 137.15 kt in 2020 due to the pandemic, and rebounded to 149.97 kt in 2023. The uncertainty of PM2.5 emissions from various source categories ranged from -31.7% to 42.2%, fossil fuel combustion sources (-13.2% to 35.8%) and process sources (-15.2% to 34.3%) have high uncertainty, while dust sources have the lowest uncertainty (-8.2% to 15.4%). Industrial and dust sources were the main contributors, accounting for 46.5%-52.6% and 26.7%-31.8% of total PM2.5 emissions, respectively. The emission intensity of PM2.5 in urban central area was 600-800 t/km2, which was 40-50 times that in suburban and rural areas. This study can provide reliable high-precision emission inventory data support for improving the accuracy of atmospheric chemistry numerical simulations.
武汉城市圈 / 细颗粒物 / 排放清单 / 高分辨率 / 时空演变 / 大气化学 / 大气污染.
Wuhan metropolitan area / fine particulate matter / emission inventory / high resolution / spatial⁃temporal evolution / atmospheric chemistry / air pollution
| [1] |
Ali, M. A., Huang, Z. W., Bilal, M., et al., 2023. Long⁃Term PM2.5 Pollution over China: Identification of PM2.5 Pollution Hotspots and Source Contributions. Science of the Total Environment, 893: 164871. https://doi.org/10.1016/j.scitotenv.2023.164871 |
| [2] |
An, J. Y., Huang, Y. W., Huang, C., et al., 2021. Emission Inventory of Air Pollutants and Chemical Speciation for Specific Anthropogenic Sources Based on Local Measurements in the Yangtze River Delta Region, China. Atmospheric Chemistry and Physics, 21(3): 2003-2025. https://doi.org/10.5194/acp⁃21⁃2003⁃2021 |
| [3] |
Cao, J. J., Cui, L., 2021. Current Status, Characteristics and Causes of Particulate Air Pollution in the Fenwei Plain, China: A Review. Journal of Geophysical Research: Atmospheres, 126(11): e2020JD034472. https://doi.org/10.1029/2020JD034472 |
| [4] |
Chen, J. W., Man, H. Y., Cai, W. Y., et al., 2023. Evaluating City Road Dust Emission Characteristics with a Dynamic Method: A Case Study in Luoyang, China. Science of the Total Environment, 898: 165520. https://doi.org/10.1016/j.scitotenv.2023.165520 |
| [5] |
Chen, Y. F., Zhao, Y. H., Zhang, L., et al., 2025. High⁃Resolution Inventories for Reactive Nitrogen Emissions from China’s Livestock during 2005-2022. Scientific Data, 12: 1062. https://doi.org/10.1038/s41597⁃025⁃05394⁃x |
| [6] |
Cheng, L., Wei, W., Cheng, S. Y., et al., 2024. Reductions of Multiple Air Pollutants from Coking Industry through Technology Improvements and Their Impacts on Air Quality and Health Risks in a Highly Industrialized Region of China. Science of the Total Environment, 908: 168360. https://doi.org/10.1016/j.scitotenv.2023.168360 |
| [7] |
Dai, L. W., Meng, J., Li, Q. Q., et al., 2021. VOCs Emission Inventory and Variation Characteristics of Artificial Sources in Hubei Province in the Yangtze River Economic Belt. Environmental Science, 42(3): 1039-1052 (in Chinese with English abstract). |
| [8] |
Dai, T. J., Dai, Q. L., Yin, J. C., et al., 2024. Spatial Source Apportionment of Airborne Coarse Particulate Matter Using PMF⁃Bayesian Receptor Model. Science of the Total Environment, 917: 170235. https://doi.org/10.1016/j.scitotenv.2024.170235 |
| [9] |
Duan, W. J., Lang, J. L., Cheng, S. Y., et al., 2018. Air Pollutant Emission Inventory from Iron and Steel Industry in the Beijing⁃Tianjin⁃Hebei Region and Its Impact on PM2.5. Environmental Science, 39(4): 1445-1454 (in Chinese with English abstract). |
| [10] |
Feng, M. L., Ren, J. F., He, J., et al., 2022. Potency of the Pandemic on Air Quality: An Urban Resilience Perspective. Science of the Total Environment, 805: 150248. https://doi.org/10.1016/j.scitotenv.2021.150248 |
| [11] |
Feng, X. Y., Tian, Y. Z., Zhang, T. F., et al., 2024. High Spatial⁃Resolved Source⁃Specific Exposure and Risk in the City Scale: Influence of Spatial Interrelationship between PM2.5 Sources and Population on Exposure. Science of the Total Environment, 926: 171873. https://doi.org/10.1016/j.scitotenv.2024.171873 |
| [12] |
Gao, C. C., Li, S. H., Liu, M., et al., 2021. Impact of the COVID⁃19 Pandemic on Air Pollution in Chinese Megacities from the Perspective of Traffic Volume and Meteorological Factors. Science of the Total Environment, 773: 145545. https://doi.org/10.1016/j.scitotenv.2021.145545 |
| [13] |
Gao, Y. B., Xing, Y. K., He, F., et al., 2021. Research on Co⁃Control Effectiveness Evaluation of Energy Saving and Emission Reduction Measures in China’s Iron and Steel Industry. Climate Change Research, 17(4): 388-399 (in Chinese with English abstract). |
| [14] |
Giglio, L., Justice, C., Boschetti, L., et al., 2021. MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V06. NASA Land Processes Distributed Active Archive Center. https://doi.org/10.5067/MODIS/MCD64A1.061 |
| [15] |
Gu, C., Zhang, L., Xu, Z. D., et al., 2023. High⁃Resolution Regional Emission Inventory Contributes to the Evaluation of Policy Effectiveness: A Case Study in Jiangsu Province, China. Atmospheric Chemistry and Physics, 23(7): 4247-4269. https://doi.org/10.5194/acp⁃23⁃4247⁃2023 |
| [16] |
Gu, Y. S., Li, Y. N., Xie, S. C., et al., 2023. On the Establishment of Wuhan as an International Wetland City from the Perspective of Lake Evolution. Earth Science, 48(8): 3193-3204 (in Chinese with English abstract). |
| [17] |
Guo, W. K., Li, G. Y., Chen, B., et al., 2021. Establishment of a High⁃Resolution Anthropogenic Emission Inventory and Its Evaluation Using the WRF⁃Chem Model for Lanzhou. Environmental Science, 42(2): 634-642 (in Chinese with English abstract). |
| [18] |
He, M., Wang, X. R., Han, L., et al., 2015. Emission Inventory of Crop Residues Field Burning and Its Temporal and Spatial Distribution in Sichuan Province. Environmental Science, 36(4): 1208-1216 (in Chinese with English abstract). |
| [19] |
Hong, X. H., Zhang, C. X., Tian, Y., et al., 2023. Quantification and Evaluation of Atmospheric Emissions from Crop Residue Burning Constrained by Satellite Observations in China during 2016-2020. Science of the Total Environment, 865: 161237. https://doi.org/10.1016/j.scitotenv.2022.161237 |
| [20] |
Hu, W. Y., Zhao, T. L., Bai, Y. Q., et al., 2022. Regulation of Synoptic Circulation in Regional PM2.5 Transport for Heavy Air Pollution: Study of 5⁃Year Observation over Central China. Journal of Geophysical Research: Atmospheres, 127(13): e2021JD035937. https://doi.org/10.1029/2021JD035937 |
| [21] |
Huang, F., Zhou, J. B., Chen, N., et al., 2019. Chemical Characteristics and Source Apportionment of PM2.5 in Wuhan, China. Journal of Atmospheric Chemistry, 76(3): 245-262. https://doi.org/10.1007/s10874⁃019⁃09395⁃0 |
| [22] |
Huang, X., Ding, A. J., Gao, J., et al., 2021. Enhanced Secondary Pollution Offset Reduction of Primary Emissions during COVID⁃19 Lockdown in China. National Science Review, 8(2): nwaa137. https://doi.org/10.1093/nsr/nwaa137 |
| [23] |
Huang, Y., Hu, C. J., Cheng, H. R., et al., 2018. Emission Inventory and Spatial Distribution Characteristics of Particulate Matters from Dust Source in Wuhan, China. Journal of Wuhan University (Natural Science Edition), 64(4): 354-362 (in Chinese with English abstract). |
| [24] |
Huang, Y., Shen, H. Z., Chen, H., et al., 2014. Quantification of Global Primary Emissions of PM2.5, PM10, and TSP from Combustion and Industrial Process Sources. Environmental Science & Technology, 48(23): 13834-13843. https://doi.org/10.1021/es503696k |
| [25] |
Jena, C., Ghude, S. D., Kumar, R., et al., 2021. Performance of High Resolution (400 m) PM2.5 Forecast over Delhi. Scientific Reports, 11: 4104. https://doi.org/10.1038/s41598⁃021⁃83467⁃8 |
| [26] |
Jia, C. Y., Li, W. D., Wu, T. C., et al., 2021. Road Traffic and Air Pollution: Evidence from a Nationwide Traffic Control during Coronavirus Disease 2019 Outbreak. Science of the Total Environment, 781: 146618. https://doi.org/10.1016/j.scitotenv.2021.146618 |
| [27] |
Jiang, P. Y., Zhong, X., Li, L. Y., 2020. On⁃Road Vehicle Emission Inventory and Its Spatio⁃Temporal Variations in North China Plain. Environmental Pollution, 267: 115639. https://doi.org/10.1016/j.envpol.2020.115639 |
| [28] |
Jin, Q., Luo, Y. N., Meng, X. R., et al., 2023. Short⁃ and Long⁃Term Impacts of the COVID⁃19 Epidemic on Urban PM2.5 Variations: Evidence from a Megacity, Chengdu. Atmospheric Environment, 294: 119479. https://doi.org/10.1016/j.atmosenv.2022.119479 |
| [29] |
Kuang, M., Li, Z. Q., Liu, C. L., et al., 2013. Overall Evaluation of Combustion and NOx Emissions for a Down⁃Fired 600 MWe Supercritical Boiler with Multiple Injection and Multiple Staging. Environmental Science & Technology, 47(9): 4850-4858. https://doi.org/10.1021/es304492j |
| [30] |
Lam, Y. F., Cheung, C. C., Zhang, X. G., et al., 2021. Development of a New Emission Reallocation Method for Industrial Sources in China. Atmospheric Chemistry and Physics, 21(17): 12895-12908. https://doi.org/10.5194/acp⁃21⁃12895⁃2021 |
| [31] |
Lei, T. Y., Wang, D. P., Yu, X., et al., 2023. Global Iron and Steel Plant CO2 Emissions and Carbon⁃Neutrality Pathways. Nature, 622(7983): 514-520. https://doi.org/10.1038/s41586⁃023⁃06486⁃7 |
| [32] |
Li, B., Xu, Z. H., Liu, B. Y., et al., 2024. Development of a Finer⁃Resolution Multi⁃Year Emission Inventory for Open Biomass Burning in Heilongjiang Province, China. Scientific Reports, 14: 29969. https://doi.org/10.1038/s41598⁃024⁃81092⁃9 |
| [33] |
Li, G. D., Fang, C. L., Wang, S. J., et al., 2016. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China. Environmental Science & Technology, 50(21): 11452-11459. https://doi.org/10.1021/acs.est.6b02562 |
| [34] |
Li, R., Zhao, Y. L., Fu, H. B., et al., 2021. Substantial Changes in Gaseous Pollutants and Chemical Compositions in Fine Particles in the North China Plain during the COVID⁃19 Lockdown Period: Anthropogenic vs. Meteorological Influences. Atmospheric Chemistry and Physics, 21(11): 8677-8692. https://doi.org/10.5194/acp⁃21⁃8677⁃2021 |
| [35] |
Lian, X. B., Huang, J. P., Huang, R. J., et al., 2020. Impact of City Lockdown on the Air Quality of COVID⁃19⁃Hit of Wuhan City. Science of the Total Environment, 742: 140556. https://doi.org/10.1016/j.scitotenv.2020.140556 |
| [36] |
Liu, J., Tong, D., Zheng, Y. X., et al., 2021. Carbon and Air Pollutant Emissions from China’s Cement Industry 1990-2015: Trends, Evolution of Technologies, and Drivers. Atmospheric Chemistry and Physics, 21(3): 1627-1647. https://doi.org/10.5194/acp⁃21⁃1627⁃2021 |
| [37] |
Lu, Y., Shao, M., Zheng, C. H., et al., 2020. Air Pollutant Emissions from Fossil Fuel Consumption in China: Current Status and Future Predictions. Atmospheric Environment, 231: 117536. https://doi.org/10.1016/j.atmosenv.2020.117536 |
| [38] |
Ma, J. L., Shen, J. Y., Wang, P., et al., 2021. Modeled Changes in Source Contributions of Particulate Matter during the COVID⁃19 Pandemic in the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 21(9): 7343-7355. https://doi.org/10.5194/acp⁃21⁃7343⁃2021 |
| [39] |
Milne, A. E., Glendining, M. J., Bellamy, P., et al., 2014. Analysis of Uncertainties in the Estimates of Nitrous Oxide and Methane Emissions in the UK’s Greenhouse Gas Inventory for Agriculture. Atmospheric Environment, 82: 94-105. https://doi.org/10.1016/j.atmosenv.2013.10.012 |
| [40] |
Ni, Z. L., Zhou, Y. D., Zhang, Y. J., et al., 2021. Establishment of High Resolution Atmospheric Emission Inventory in Ezhou City. Environmental Science & Technology, 44(2): 90-96 (in Chinese with English abstract). |
| [41] |
Puliafito, S. E., Allende, D., Pinto, S., et al., 2015. High Resolution Inventory of GHG Emissions of the Road Transport Sector in Argentina. Atmospheric Environment, 101: 303-311. https://doi.org/10.1016/j.atmosenv.2014.11.040 |
| [42] |
Qi, J., Zheng, B., Li, M., et al., 2017. A High⁃Resolution Air Pollutants Emission Inventory in 2013 for the Beijing⁃Tianjin⁃Hebei Region, China. Atmospheric Environment, 170: 156-168. https://doi.org/10.1016/j.atmosenv.2017.09.039 |
| [43] |
Qin, S., Kong, S. F., Wu, J., et al., 2020. Spatial⁃Temporal Diversities of Ammonia Emissions and Impacting Factors in Hubei Province from 1996 to 2016. China Environmental Science, 40(4): 1403-1413 (in Chinese with English abstract). |
| [44] |
Qiu, P. P., Tian, H. Z., Zhu, C. Y., et al., 2014. An Elaborate High Resolution Emission Inventory of Primary Air Pollutants for the Central Plain Urban Agglomeration of China. Atmospheric Environment, 86: 93-101. https://doi.org/10.1016/j.atmosenv.2013.11.062 |
| [45] |
Randerson, J. T., Chen, Y., van der Werf, G. R., et al., 2012. Global Burned Area and Biomass Burning Emissions from Small Fires. Journal of Geophysical Research: Biogeosciences, 117(G4): 2012JG002128. https://doi.org/10.1029/2012JG002128 |
| [46] |
Sun, B., Li, J. H., 2025. Asymmetric Effects of Natural and Socioeconomic Factors on PM2.5 Pollution in Chinese Counties. Scientific Reports, 15: 19128. https://doi.org/10.1038/s41598⁃025⁃03138⁃w |
| [47] |
Sun, C., Zhan, L. X., Yin, H., et al., 2018. Establishment of Anthropogenic Volatile Organic Compounds Emission Inventory in Wuhan. Environmental Science & Technology, 41(4): 166-171 (in Chinese with English abstract). |
| [48] |
Sun, X. W., Cheng, S. Y., Lang, J. L., et al., 2018. Development of Emissions Inventory and Identification of Sources for Priority Control in the Middle Reaches of Yangtze River Urban Agglomerations. Science of the Total Environment, 625: 155-167. https://doi.org/10.1016/j.scitotenv.2017.12.103 |
| [49] |
Thompson, R. J., Li, J. H., Weyant, C. L., et al., 2019. Field Emission Measurements of Solid Fuel Stoves in Yunnan, China Demonstrate Dominant Causes of Uncertainty in Household Emission Inventories. Environmental Science & Technology, 53(6): 3323-3330. https://doi.org/10.1021/acs.est.8b07040 |
| [50] |
Tian, G., Huang, Y. H., Li, G., 2009. Establishment and Application of Four⁃Dimensional Fluxes Emission Factor Model for Construction Fugitive Dust. Environmental Science, 30(4): 1003-1007 (in Chinese with English abstract). |
| [51] |
Wang, H. L., Jing, S. A., Lou, S. R., et al., 2018. Estimation of Fine Particle (PM2.5) Emission Inventory from Cooking: Case Study for Shanghai. Environmental Science, 39(5): 1971-1977 (in Chinese with English abstract). |
| [52] |
Wang, S., Wang, Q. Q., Zhu, S. H., et al., 2022. Hourly Organic Tracers⁃Based Source Apportionment of PM2.5 before and during the Covid⁃19 Lockdown in Suburban Shanghai, China: Insights into Regional Transport Influences and Response to Urban Emission Reductions. Atmospheric Environment, 289: 119308. https://doi.org/10.1016/j.atmosenv.2022.119308 |
| [53] |
Wang, S. Y., Zhu, Y., Jang, J. C., et al., 2024. Modeling Assessment of Air Pollution Control Measures and COVID⁃19 Pandemic on Air Quality Improvements over Greater Bay Area of China. Science of the Total Environment, 926: 171951. https://doi.org/10.1016/j.scitotenv.2024.171951 |
| [54] |
Wang, Y., Tang, X., Chen, K. Y., et al., 2022. Multidimensional Observation Analysis of the Air Quality Changes in Wuhan during the Coronavirus Disease⁃2019 Pandemic. Climatic and Environmental Research, 27(6): 756-768 (in Chinese with English abstract). |
| [55] |
Wu, J., Kong, S. F., Wu, F. Q., et al., 2020. The Moving of High Emission for Biomass Burning in China: View from Multi⁃Year Emission Estimation and Human⁃ Driven Forces. Environment International, 142: 105812. https://doi.org/10.1016/j.envint.2020.105812 |
| [56] |
Wu, J., Kong, S. F., Zeng, X., et al., 2021. First High⁃Resolution Emission Inventory of Levoglucosan for Biomass Burning and Non⁃Biomass Burning Sources in China. Environmental Science & Technology, 55(3): 1497-1507. https://doi.org/10.1021/acs.est.0c06675 |
| [57] |
Wu, Y. F., You, Y., Wang, Z. C., et al., 2024. Establishment of High Temporal⁃Spatial Resolution Anthropogenic Emission Inventory of Air Pollutants in 2017 for Macao, China. Atmospheric Environment, 337: 120735. https://doi.org/10.1016/j.atmosenv.2024.120735 |
| [58] |
Xia, L., Liu, R., Fan, W. X., et al., 2025. Emerging Carbon Dioxide Hotspots in East Asia Identified by a Top⁃Down Inventory. Communications Earth & Environment, 6: 10. https://doi.org/10.1038/s43247⁃024⁃01991⁃7 |
| [59] |
Xiong, J. H., Kong, S. F., Zheng, H., et al., 2023. Impacts of Emission and Meteorological Conditions on Air Pollutants at Various Sites around the COVID⁃19 Lockdown in Wuhan. Environmental Science, 44(2): 670-679 (in Chinese with English abstract). |
| [60] |
Xiong, T. Q., Jiang, W., Gao, W. D., 2016. Current Status and Prediction of Major Atmospheric Emissions from Coal⁃Fired Power Plants in Shandong Province, China. Atmospheric Environment, 124: 46-52. https://doi.org/10.1016/j.atmosenv.2015.11.002 |
| [61] |
Xu, H. H., Chen, H., 2021. Impact of Urban Morphology on the Spatial and Temporal Distribution of PM2.5 Concentration: A Numerical Simulation with WRF/CMAQ Model in Wuhan, China. Journal of Environmental Management, 290: 112427. https://doi.org/10.1016/j.jenvman.2021.112427 |
| [62] |
Yan, D. J., Ding, Y. F., Yu, Y., et al., 2019. Inventory and Reduction Potential of Anthropogenic PM2.5 Emission in Xi’an City. Research of Environmental Sciences, 32(5): 813-820 (in Chinese with English abstract). |
| [63] |
Yang, L. L., Wang, X. M., Chen, Q. J., 2012. New Method for Investigating Regional Interactions of Air Pollutants. Acta Scientiae Circumstantiae, 32(3): 528-536 (in Chinese with English abstract). |
| [64] |
Yuan, Q., Qi, B., Hu, D. Y., et al., 2021. Spatiotemporal Variations and Reduction of Air Pollutants during the COVID⁃19 Pandemic in a Megacity of Yangtze River Delta in China. Science of the Total Environment, 751: 141820. https://doi.org/10.1016/j.scitotenv.2020.141820 |
| [65] |
Zeng, C. Y., Wu, S. H., Cheng, M., et al., 2024. High⁃Resolution Mapping of Carbon Dioxide Emissions in Guizhou Province and Its Scale Effects. Scientific Reports, 14: 20916. https://doi.org/10.1038/s41598⁃024⁃71836⁃y |
| [66] |
Zhan, Y., Xie, M., Zhao, W., et al., 2023. Quantifying the Seasonal Variations in and Regional Transport of PM2.5 in the Yangtze River Delta Region, China: Characteristics, Sources, and Health Risks. Atmospheric Chemistry and Physics, 23(17): 9837-9852. https://doi.org/10.5194/acp⁃23⁃9837⁃2023 |
| [67] |
Zhang, J. K., Chen, C. Y., Su, Y. F., et al., 2024a. Characterization of Summertime Single Aerosol Particles in Chengdu (China): Interannual Evolution and Impact of COVID⁃19 Lockdown. Science of the Total Environment, 907: 167765. https://doi.org/10.1016/j.scitotenv.2023.167765 |
| [68] |
Zhang, J. L., Huang, Y. Y., Zhou, N., et al., 2024b. Contribution of Anthropogenic Emission Changes to the Evolution of PM2.5 Concentrations and Composition in the Pearl River Delta during the Period of 2006-2020. Atmospheric Environment, 318: 120228. https://doi.org/10.1016/j.atmosenv.2023.120228 |
| [69] |
Zhang, J., Liu, L., Zhao, Y., et al., 2020. Development of a High⁃Resolution Emission Inventory of Agricultural Machinery with a Novel Methodology: A Case Study for Yangtze River Delta Region. Environmental Pollution, 266: 115075. https://doi.org/10.1016/j.envpol.2020.115075 |
| [70] |
Zhang, J. K., Su, Y. F., Chen, C. Y., et al., 2024c. Chemical Composition, Sources and Formation Mechanism of Urban PM2.5 in Southwest China: A Case Study at the Beginning of 2023. Atmospheric Chemistry and Physics, 24(5): 2803-2820. https://doi.org/10.5194/acp⁃24⁃2803⁃2024 |
| [71] |
Zhang, L., Niu, M. C., Zhang, Z., et al., 2023. A New Method of Hotspot Analysis on the Management of CO2 and Air Pollutants, a Case Study in Guangzhou City, China. Science of the Total Environment, 856: 159040. https://doi.org/10.1016/j.scitotenv.2022.159040 |
| [72] |
Zhang, Q., Zheng, Y. X., Tong, D., et al., 2019. Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463-24469. https://doi.org/10.1073/pnas.1907956116 |
| [73] |
Zhang, X. C., Wang, W. J., Wang, M. Y., et al., 2022. Emission Inventory and Spatial Distribution Characteristics of Anthropogenic Air Pollutants in Basin City in China—A Case Study of Jincheng City. Environmental Chemistry, 41(12): 4016-4031 (in Chinese with English abstract). |
| [74] |
Zhao, G. S., Pu, Z. G., Huang, Q. B., et al., 2024. A Review of Influence of Warming and Precipitation Changes on Soil CO2 Release. Earth Science, 49(12): 4608-4621 (in Chinese with English abstract). |
| [75] |
Zhao, X. Y., Wang, G., Wang, S., et al., 2021. Impacts of COVID⁃19 on Air Quality in Mid⁃Eastern China: An Insight into Meteorology and Emissions. Atmospheric Environment, 266: 118750. https://doi.org/10.1016/j.atmosenv.2021.118750 |
| [76] |
Zhao, Y., Nielsen, C. P., Lei, Y., et al., 2011. Quantifying the Uncertainties of a Bottom⁃Up Emission Inventory of Anthropogenic Atmospheric Pollutants in China. Atmospheric Chemistry and Physics, 11(5): 2295-2308. https://doi.org/10.5194/acp⁃11⁃2295⁃2011 |
| [77] |
Zheng, B., Cheng, J., Geng, G. N., et al., 2021. Mapping Anthropogenic Emissions in China at 1 km Spatial Resolution and Its Application in Air Quality Modeling. Science Bulletin, 66(6): 612-620. https://doi.org/10.1016/j.scib.2020.12.008 |
| [78] |
Zheng, H. T., Cai, S. Y., Wang, S. X., et al., 2019. Development of a Unit⁃Based Industrial Emission Inventory in the Beijing⁃Tianjin⁃Hebei Region and Resulting Improvement in Air Quality Modeling. Atmospheric Chemistry and Physics, 19(6): 3447-3462. https://doi.org/10.5194/acp⁃19⁃3447⁃2019 |
| [79] |
Zheng, H., Kong, S. F., Chen, N., et al., 2020. Significant Changes in the Chemical Compositions and Sources of PM2.5 in Wuhan since the City Lockdown as COVID⁃19. Science of the Total Environment, 739: 140000. https://doi.org/10.1016/j.scitotenv.2020.140000 |
| [80] |
Zhong, H., Zhao, Y., Muntean, M., et al., 2016. A High⁃Resolution Regional Emission Inventory of Atmospheric Mercury and Its Comparison with Multi⁃Scale Inventories: A Case Study of Jiangsu, China. Atmospheric Chemistry and Physics, 16(23): 15119-15134. https://doi.org/10.5194/acp⁃16⁃15119⁃2016 |
| [81] |
Zhong, Z. M., Zheng, J. Y., Zhu, M. N., et al., 2018. Recent Developments of Anthropogenic Air Pollutant Emission Inventories in Guangdong Province, China. Science of the Total Environment, 627: 1080-1092. https://doi.org/10.1016/j.scitotenv.2018.01.268 |
| [82] |
Zhou, H. J., Liu, T., Sun, B., et al., 2022. Chemical Characteristics and Sources of PM2.5 in Hohhot, a Semi⁃Arid City in Northern China: Insight from the COVID⁃19 Lockdown. Atmospheric Chemistry and Physics, 22(18): 12153-12166. https://doi.org/10.5194/acp⁃22⁃12153⁃2022 |
| [83] |
Zhou, Y., Xing, X. F., Lang, J. L., et al., 2017. A Comprehensive Biomass Burning Emission Inventory with High Spatial and Temporal Resolution in China. Atmospheric Chemistry and Physics, 17(4): 2839-2864. https://doi.org/10.5194/acp⁃17⁃2839⁃2017 |
| [84] |
Zhu, C. Y., Qu, X. Y., Qiu, M. Y., et al., 2023. High Spatiotemporal Resolution Vehicular Emission Inventory in Beijing⁃Tianjin⁃Hebei and Its Surrounding Areas (BTHSA) during 2000-2020, China. Science of the Total Environment, 873: 162389. https://doi.org/10.1016/j.scitotenv.2023.162389 |
湖北省自然科学基金杰出青年项目(2022CFA040)
国家重点研发计划(2023YFC3709802)
/
| 〈 |
|
〉 |